Effects of Simultaneous Stimulation on the Event

Stream Densities of Fixed-Priority Systems

Steffen Kollmann, Karsten Albers and Frank Slomka
Ulm University

{firstname }.{lastname } @uni-ulm.de

Abstract—In this paper we present an approach to calculate
the maximum density of events in a distributed hard real-time
system having tree-shaped dependencies. Thereby we will show
that the density of events can be relaxed when taking scheduling
dependencies into account. This relaxation has a direct impact
on successive tasks and leads to tighter bounds for real-time
analysis. We will also provide the real-time analysis for systems
with static priorities.

I. INTRODUCTION

Nowadays, embedded systems surround us in many day
to day life situations. Steering a car, calling with a mobile
phone or flying with a plane are only some examples where
embedded systems help us. Thereby, the requirements for the
systems increase from generation to generation.

Reliability, performance and costfactors are very important
during the design process of such systems. The systems must
also fulfill real-time constraints, since they are integrated in a
technical context. Due to the increasing complexity of these
systems makes it necessary to have appropriate methods for
the real-time verification.

Many approaches have been developed to analyze hard
real-time systems but most of them assume that the tasks in
the system are independent. To include dependencies in the
analysis leads us to a more accurate analysis of these systems.
This has a direct effect on the performance of these systems,
because more tasks can be scheduled on the same processor or
a slower processor could be used. In this paper we introduce
an approach to include dependencies of such tasks into the
real-time analysis.

The rest of the paper is organized as follows. Chapter
IT gives an overview about related work in this domain. In
chapter III we describe the problem we have explored. In
chapter IV we will introduce our model based on the event
stream model by K. Gresser [4]. Chapter V shows how a real-
time analysis is possible with the model. On the basis of this
model and the analysis we will show how to calculate the event
streams in a heterogeneous distributed system. Subsequently,
we give a case study showing the improvements of the
approach. The conclusion follows at the end.

II. RELATED WORK

For a real-time analysis it is necessary to choose an ap-
propriate model. Most of the work in this area is based on
the periodic task model with jitter as it is used by Tindell
and Clark [11], for example. Many approaches have been
developed based on this model but the simplicity of these
models leads to a loss of accuracy. Another disadvantage
is that no dependencies have been considered. Hence, the
transaction model [10] has been developed where it is possible
to group dependent tasks in transaction groups describing
dependencies with fixed offsets. This approach has been inte-
grated in the Holistic Scheduling Analysis. Redell generalized
this approach in [9] and allows more sophisticated task chains.
In his approach it is possible that a task can trigger more than
one task what is in our opinion a more realistic case. The
idea was used in [5] by Henia et al. This paper explores time-
correlations between tasks via tree-shaped-dependencies. This
allows to describe additionally relative dependencies to the last
common predecessor of tasks. Henia et al. have improved this
idea in [6].

Another approach to relax the density of events in a dis-
tributed system was explored in [7]. In this paper a correlation
between the incoming jitter and the response time of a task was
developed. This has led to a more relaxed output jitter which
has a direct influence on the response time of successive tasks.

In this paper we use a correlation between tasks triggered
by the same source to improve the density of events. For this
purpose we use the event stream model [4] to describe the
stimulation. The advantage of this model is that we are able
to describe any kind of stimulation. Due to the simplicity we
use the event streams, although the approach is extendible on
more expressive hierarchical events streams [1].

III. PROBLEM FORMULATION

In this paper we consider dependencies as shown in figure

It shows three resources. The tasks 71, 7o and 73 are
triggered by the same source which is described by an event
stream © 4. Task 7y has got the highest priority, 7o the middle

o~

] ®B _&»
priority=high priority=high
®/\

(:) .] | ®1| >
priority=middle priority=middle
priority=low priority=low

CPU1 CPU2
—)
Fig. 1. Example of a distributed system where tasks have the same source.

and 73 the lowest. The tasks 75 and 73 send their information
over a bus to a second processing element. We assume a
priority driven bus. This can be modeled like a processing
element where each channel over the bus can be considered
as a task. The execution times of the tasks specify the time
needed by the communication. The tasks 74 and 75, where 74
has got a higher priority than 75, trigger the tasks 74, 77 and 75
on C'PU?2. Task 7¢ has got the highest priority, 77 the middle
and 7g the lowest. Note, 77 and 73 have got the same source.

In previous approaches it was necessary to consider the
stimulation of task 73 independent of the stimulation of task
71 and 7o in order to calculate the outgoing event stream O p
of 73. The dependency that all three tasks are triggered by the
same event stream and must occur therefore simultaneously,
has not been considered in these analysis. Taking this depen-
dency into account, may allow to reduce the resource BUS1
or CPU?2 and still keeps all real-time constraints. Furthermore
a response time reduction for successive tasks, 7g for example,
is possible.

IV. MODEL

In this section we introduce our models. We differentiate
between the task model and the model for the stimulation. The
reason for this can be observed, for example, in the periodic
task model with jitter [11] where we have got on the one hand
the task model with the best case and worst case execution
times, and on the other hand the model for the stimulation with
jitter and period. But this is not enough to describe a major
range of stimulations. Therefore we use the more generalized
event stream model [4] to describe the stimulation.

A. Task Model

T is the set of tasks on one resource I' = {7y, ..., 7, }. A task
is a 4-tuple with 7 = (¢, b,p, ©). ¢ is the worst case execution
time, b is the best case execution time, p is the priority for the

scheduling (the lower the number the higher the priority) and
© defines the stimulation of the task by an event stream. Let
7;; be the j-th job/execution of task ;.

In our model we assume that a task can only generate
an event at the end of its execution to notify other tasks.
Furthermore we assume a fixed-priority scheduling.

B. Event Streams

Event streams have been first defined in [4]. The purpose
was to give a generalized description for every kind of stimuli.
The basic idea is to define an event function E(I,©) which
can calculate for every interval I the maximum amount of
events occurring within . In the following, when speaking
of intervals we mean the length of the interval. The event
function needs a properly described model behind it which
makes it easy to extract the information. The idea is to notate
for each number of events the minimum interval which can
include this number of events. Therefore we get an interval for
one event (which is infinitely small and therefore considered
to be zero), two events and so on. The result is a sequence
of intervals showing a non-decreasing behaviour. The reason
for this behaviour is, that the minimum interval for n events
cannot be smaller than the minimum interval for n-1 events
since the first interval also includes n-1 events. This sequence
of intervals shows a periodic behaviour and is called event
stream. Each of the single intervals is called event stream
element.

Definition 1:
elements 0:0={01,0,,...,0,,} and each event stream element O =

An event stream is a set of event stream

(p, a) consists of an offset-interval a and a period p.

Each event stream element describes a set of intervals of the
sequence. For the event stream element 6 the interval a + k- p
is part of the sequence and all the intervals with £k € N. An
event stream models a given sequence if all the elements and
only the elements of the sequence can be generated using the
event stream elements. Therefore it is possible to calculate for
each interval the maximum amount of events that can occur
within this interval:

Event Stream Function:

0 I<ag
E(I,0)=3 E(,0);E(1,0)={ | 1=% (1)
(1,)5 , +1 I>agA\pg<oo
EE) Po
1 I>agApg=00

As inverse function we define the following function which
gives to a number of events the minimum interval in which
these events can occur:

Request Time Function:

RT(n,0)=min{I|E(I,0)=n} 2)

Furthermore the event stream model complies the character-
istic E(I,+12,0)<E(I,,0)+E(I,,0). This characteristic is called
sub-additivity. This means that the maximum number of events
of an interval cannot exceed the cumulated maximum number
of events of its subintervals.

Events can occur in a greater distance than it is described in
the event stream which describes only the minimum distance
between a number of events.

An event stream in which all elements have either the same
or an infinite period is called homogeneous and every event
stream can be made homogeneous using the least common
multiplier of its periods as new period of all elements to
complete its set of event stream elements. With a infinite (co)
period it is possible to model irregular behaviour.

Note that the order of the elements is of no concern for the
evaluation. For the purpose of evaluation it is not necessary
to find the exact minimum intervals. It is sufficient to find a
lower bound for all intervals. This can allow to simplify the
event stream (also might mean to accept an overly pessimistic
description). A detailed definition of the concept and the
mathematical foundation can be found in [2].

S It T S
o oy

\j

\j

Fig. 2. This figure shows three different event sequences. p describes
period, ¢ and j an offset

[

In figure 2 some examples for event streams can be found.
The first one ©; = (p,0) has a strictly periodic stimulus with
a period p. The second example Oy = (00,0), (p,p-j) shows a
periodic stimulus in which the single events can jitter within a
jitter interval of size j. In the third example ©3 = (p,0), (p,0) ,
(p,0), (p,t) three events occur at the same time and the fourth
occurs after a time t. This pattern is repeated with a period of
p. Event streams can describe all these examples in an easy
and intuitive way.

C. Normalized Event Streams

Some event streams can have several different descriptions
in the event stream model. For an efficient implementation
of the approach in chapter VI we define a normalized event
stream. We introduce the identifier 6; denoting the i-th element

in the event stream.

©={(00,a1),...,(00,am—1),(Pk+am);---s(Pr,an) }:1<m<nAa; <a;<i<j

3)
Here normalization means that all aperiodic events are de-
scribed first in the stream. All other events have the same
period and follow directly after the aperiodic events. This
is no restriction, because every event stream can be trans-
formed into this pattern. To achieve this we calculate the least
common multiplier for all periods and use it as new period.
We shift the offset of all periodic events until the equation
is fulfilled. The shift operation is performed as follows:
(p,a) = (00, a), (p, (a + p)). Furthermore it is necessary that
the aperiodic part is sorted by its offset as well as the periodic
part.

It is useful to define names for certain properties of the
event stream. /N is the number of tuple in the event stream.
N is the number of tuples with a period p = co and N, is
the number of tuples with a period p # oc.

V. REAL-TIME ANALYSIS

The most usual way to do a real-time analysis is to perform
a response time analysis as introduced by Lehoczky et. al.
[8]. The condition V7 € T' : WCRTy(7) < d, holds when
the real-time analysis is successful. In order to calculate the
worst case response time we have adapted the approach from
[8].

WCRTy (t)=min{I|I=k-c.+ Y, EI,0_)c/} 4)
T/€eHP

The equation is similar to the common definition of the worst
case response time. Only the calculation of the influence
of higher priority events has been changed. The amount of
execution produced by higher priority tasks can be calculated
by the event function multiplied by the worst case execution
time. By means of a fixed point iteration the worst case
response time can be calculated for every k.

Our approach is also applicable to other analysis, for
example the analysis described by S. Baruah [3].

VI. WORST CASE DENSITY

In this chapter we present a technique to calculate the event
streams in a distributed system by considering dependencies
caused by same sources. Thereby the assumptions made in
chapter IV are used.

A. Improvement by Simultaneous Events

As mentioned in chapter II and III it is important to consider
dependencies during an analysis, in order to relax worst case
scenarios. One of such dependencies is depicted in figure 3.
Note, that ¢; ; is the worst case execution time of the j-th job

of task 7; and b; ; is the best case execution time of the j-th
job of task ;.

not considered

-

2
> [T

e

‘cb
y

4

@ Txm Cez
l ‘ Cv 1
()

L FT N

e

considered

txm CX? »
Tyl c 1 i Cv1 b 2 l b 3 -

%

T
improvement

Fig. 3. Improvement of the event density by considering simultaneous
stimulation

In the left part of the figure we see two tasks scheduled on
the same cpu. Both are triggered by the incoming event stream
called ©;. For successive tasks which could be triggered by
7, and T, it is important to calculate the outgoing event
streams O, and Og as accurate as possible. We assume, as
it is common in real-time analysis, that a task generates an
event at the end of its execution.

In the right part of the picture the scenario is depicted if no
dependencies and if dependencies are considered. The above
gantt-diagramm shows how the outgoing event stream of 7,
can be determined if no dependencies are considered. The first
event occurs as late as possible and all further events as early
as possible. This leads to the maximum density of events.
(The proof for this is given in the next subsection). Note,
that only executions of the higher priority task are considered
when the first event is delayed. This means, that no further
executions of 7, are considered during other executions of 7.
Such kind of calculation is the common proceeding in real-
time analysis. But this is only an estimation as it can be seen in
the lower gantt-chart. Since the task are triggered by the same
event stream the execution of the higher priority task has to be
considered during every execution of the lower priority task.
This leads to more relaxed outgoing event streams. In the lower
gantt-chart of the figure it can be seen that the occurrence of
the third outgoing event can be relaxed by considering the best
case execution of the higher priority task. Consequently, we
have to improve the existing analysis technique in a way that
such scenarios can be considered.

B. Calculation of the Density of Events

In order to calculate the outgoing event stream of a task
we have to determine the maximum density of events that a
task can produce. The next lemma gives the worst case. We
assume that the task is triggered by the maximum density

of events which is described by the event stream. The event
stream stimulating a task is called incoming event stream and
the event stream produced by a task is called outgoing event
stream.

Lemma 1: A number of outgoing events occur in the
maximum density when the first event is delayed as much as
possible and all further events occur as early as possible.

Proof: We assume that two outgoing events e; and eo
exist having a higher density than the events fulfilling the
assumption. If e; and e; are closer together than in the
assumption, this would mean either e; arrives later than
allowed by the assumption or ey arrives earlier than allowed
by the assumption. This is a contradiction, because we assume
already the maximum or minimum values for both arrival
times. So there must be two other events later in the outgoing
event stream having a shorter distance to each other. Assume
that two events are occurring closer than in the assumption
and the first event is delayed as much as possible and the
second arrives as early as possible, this would mean that the
corresponding incoming events also have a shorter distance
to each other than the first two incoming events. But this is
in contradiction to the event stream definition. The proof for
another number of events is analog.]

This lemma is similar to other techniques. Tindell, for
example, uses this in [11] to determine the worst case response
time of tasks in a distributed system. There the maximum jitter
for the first event is assumed and all further events occur within
the minimal period. This leads finally to the maximum density
of events.

We are able to determine the outgoing event stream of a
task via lemma 1. It is shown in figure 4 that three tasks 71,
7o and 73 are scheduled on the same resource. Thereby, 7 has
a higher priority than 7, and 7 has got a higher priority than
T3. To and 73 are triggered by the same source whereas 7y is
triggered by a different one. Arrows over the timeline show
requests (Request Time; RT) for a task and arrows under the
timeline show when a task produces an outgoing event. The
points in time /3 up to /g are called Request End Time (Request
End Time; RET). This is the time interval between when a
task produces an event and .

For the calculation of the density of the outgoing events we
define an extended interval function. This function gives for
an amount of events the minimum interval in which they can
occur. We call it interval dependency function and define it as
follows:

n=1 (5)

0
Ip(n,7)=
RET(n,7)—RET(1,7)

According to the event stream definition one event occurs

n>1

‘ C = worst case execution time ; b = best case execution time ‘

Tlllllllllmlllllll

incoming event or request

b

P ie
v [-

1 time unit § V"noutgoingevent l

o b} b
[

I I ‘

Worst Case Response Time "
|

Priority

a

—
%l
B

 ——
——

BB
I‘llll

1 2

Fig. 4. Scheduling example of the tasks 71, 72 and 73

always in the interval zero. Hence, we distinguish in the
equation 5 between two cases. The first case describes the
interval for one event which is always zero according to the
event stream definition. All other events are covered by the
second case via the Request End Times. Since there are a lot
of cases to distinguish we define the following request end
time function:

WCRTy () n=1

RT(n,01)+br+HP(T) n>1 A RET(n—1,7)<RT(n,0.)

RET(n,7)= RET(n—1,7)+br n>1 A RT(n,0;) < RET(1,7)

RET(n—1,7)4+br+HP(r) n>1 A RET(1,7)<RT(n,0:) A

RT(n,©7)<RET(n—1,7)
(6)
The equation 7 describes the maximum amount of execu-
tions which higher priority tasks scheduled by the same source
can contribute to the calculation.

HP(r)= S b (@)

The different cases of this equation are visualised in figure
4. According to lemma 1 the first event is delayed by its worst
case response time of its first instance. In figure 4 737 is
delayed up to /5.

The second case covers the arrival of the next job after the
request end time of the previous job. In this case, visualised by
job 73 3, the request is only delayed by its execution time (best
case) and the execution time of the higher priority jobs trig-
gered by the same event and therefore arriving simultaneously
with the considered job.

In the third case, applying for job 73 o, the new job arrives
before the first job is finished. In this case the RET of the
previous job includes already the execution time of all higher

priority jobs, so only the execution of the job itself has to be
added.

In the last case the job arrives somewhere between the RET
of the first job and the RET of its previous job. This case
is visualised in figure 5. The RET(2,12) of the second job
consists of the worst case response time of the first job and
b2 2. Note that the execution time of the second job of the first
task is already included in the worst-case response time of the
first job. The third event and therefore bs 5 is not considered
at this stage. Therefore we have to add again the execution
time of the job and all concurrently arriving higher priority
jobs, to achieve the request end time of job 72 3.

v

A Y S Ci» 1,3

T

Inm I I I I
=
5
. JL o Cz,1 ‘bz,z b2,3

T

o PR B I R 91 e 1S

1 time unit
WCRT
Fig. 5. Scheduling Example of the tasks 71 and >

By means of the equation 5 and 6 it is possible to determine
for every count of events the minimum interval in which they
occur. This means the maximum density of the outgoing event
stream can be determined.

We will give two scenarios to show the calculation of the
intervals. In both scenarios we assume the architecture from
figure 1. We calculate the outgoing event stream O, whereas
the event streams O and ©p and the parameters of 74, 77
and 7y are given.

Scenario 1: Assume that O ={(12,0)}, ©r ={(20,0),
(20,2),(20,12)}, 76 =(2,2,1,0E), 7 = (2,1,2,0F) and
78 =(4,1,3,0r). With these parameter we get a schedule
like in figure 4. First we determine the interval for one event
which is Ip(1,7s) = 0 according to case one equation 5.
For two events we have to consider the second case from
equation 5. There we must determine the request end time for
the first event and for the second event. According to equation
6 RET(1,75) = WCRT1(1s) = 10. The request end time
of the second event can be determined by the third case of
equation 6. Since the count of events is greater than one and
RET(1,75) = 10 > 2 = RT(2,0F) and the second request
occurs within the worst case response time RET(1,75) =
10 > 2 = RT(2,0F), we can calculate the request end time
by the request end time of RET(1,7g) = 10 and the best case
execution of 7g (b;g = 1). The result for the second interval

is Ip(2,73) = 10 — 11 = 1. The interval for three events
can be calculated by the second case of equation 6. Since the
RET(2,75) = 11 <12 = RT(3,0F), we can determine the
request end time of the third request by the sum of the request
time of the third request RT'(3,0r) = 12 plus the best case
execution of 7g (brg = 1) plus the best executions of all higher
priority tasks triggered by the same source H P(7g) = 1. The
result is 12 + 1 + 1 = 14. The result of Ip(3,7g)=4. The
calculation of the remaining intervals is similar to the last.
Scenario 2: Assume that Op ={(c0,0),(250,210)},
OrF = {(,0),(250,140)}, 76 = (50,40,1,0F), 77 =
(40,30,2,0r) and 73 = (50, 50, 3, ©). With these parameter
we get a schedule like in the case study chapter VII. First we
determine the interval for one event which is Ip(1,75) = 0
according to case one of equation 5. For two events we have
to consider the second case from equation 5. There we must
determine the request end time for the first event and for
the second event. According to equation 6 is RET(1,75) =
WCRT:(15) =
event can be determined by the second case of equation 6.
Since the RET(1,75) = 140 < 140 = RT(2,0F), we
can determine the request end time of the second request
by the request time of the second request RT'(2,0r) = 140
plus the best case execution of 75 (brs = 50) plus the best

140. The request end time of the second

executions of all higher priority tasks triggered by the same
source HP(1g) = 30. The result is 140 + 50 + 30 = 220.
The result of Ip(2,75)=220-140=80. The calculation of the
remaining intervals is similar to the last case.

C. Resulting Event Streams

After we have shown how to calculate the request end times,
we will show now how to achieve the outgoing event stream.
The main disadvantage of the previous described functions
is that the interval function is very difficult to calculate for
arbitrary event streams. For this reason we have defined
the normalized event streams in section IV. By means of
this normalization we can very easily run through the event
stream and calculate the RET. As mentioned in chapter IV the
normalization is without lost of generality.

Equation 8 defines how the incoming event stream is
processed in order to calculate the outgoing event stream.

j

T
J) Np+j p;
U U
i=1 RET(i,7)—~WCRTy (7) =i+l RET(i,7)—~WCRT (+)
3)

The equation consists of two parts. The first part gives
all event stream elements having an aperiodic behaviour and
the second part all event stream elements having a periodic

behaviour. The offset for the i-th element of both parts is the
distance between that point in time when the i-th event of
the incoming event stream has been processed and that point
in time when the first event of the incoming event stream
has been processed. The following incoming events have no
influence on the offset of the i-th event, because these events
can occur time-shifted according to the event stream definition.

The division of periodic and aperiodic outgoing events
is determined by a gap of time. A gap occurs when the
processing of the i-th event finishes before the arrival of the
(i+1)-th event. We need the time of the first gap after the
finishing of all aperiodic incoming events. At this point it can
be assumed that the aperiodic behaviour is finished, because
the remaining events have a constant execution time and occur
periodically. Equation 9 shows how to calculate this point in
time.

j=min{V¥i:RET (i,7)<RT(i+1,0,)ART (i+1,0,) >min{a;|pi#0} }
©))
As mentioned, the main problem is to determine the request
time efficiently. By means of the normalized event streams we
are able to calculate these points in time. Equation 10 delivers
for the i-th event of a normalized event stream the time when
it is requested. By means of the modulo calculation in the
second case it is possible to ensure that aperiodic events are
to be considered only once. Note, we use the definition from
chapter IV.

a; <N

(10)

RT(n,0)= Li:VA;mJ'p((i—N)mod Np+Noo)t >N

A((i—N)mod Np+Noc)

A short make the
clear. Assume a normalized event stream © =
{(o0,0), (00, 10), (00, 20), (150, 50), (150, 70), (150, 90)}.
For the first N events the calculation is clear, since the

example will calculation

elements are sorted by their offsets. So the first event occurs
at 0, the second at 10 and so on. Assume that we would
like to determine the request of the 14th event. This can be
calculated as follows (N =6, N, = 3, Np = 3):

{MS?)J “D((8)mod 3+3) T A((8)mod 3+3) = 920
Here we give two further scenario in order to show how
the outgoing event stream can be calculated. We use the
parameters from scenario 1 and 2.
Scenario 3: Assume that Op ={(12,0)}, ©r ={(20,0),
(20,2),(20,12)}, 76 = (2,2,1,0g), 77 =(2,1,2,05) and
Ts = (4,1,3,0F). In order to determine the outgoing event

stream we use equation 8. The gap we have to find by equation
9 can be determined during the calculation. We calculate
the first tuple of the event stream by the substraction of
the worst case response time WCRT;(1s) = 10 and the
request end time of the first request. According to 6 is this
the worst case response time. Subsequently, the first tuple
is (00,0). Before we calculate the second tuple we have to
verify whether a periodic behaviour starts or not. According
to equation 9 this is not the case, because the RET(1,75) =
10 > 1 = RT(2,0F). So we determine the next tuple by
calculating RET(2,7g). This is the RET(1,7g) = 10 plus
the best case execution of 75 (b;s = 1). So the next tuple is
(00, 1). Now we verify again whether a gap exist. This time
there exist a gap and the next request occur periodically. So
we can assume that all further events occur with a period.
The RET(3,73) = 12+ 1+ 1 =
is (20,4). Only two more tuple have to be considered to
fulfill equation 8. The remaining RET can be calculated by
12 and
RET(4,73) = 14. The result of the outgoing event stream
is ©7 = {(00,0)(00,1)(20,4)(20,12)(20,14)}

Scenario 4: Assume that O = {(o00,0),(250,210)},
Or = {(c0,0),(250,140)}, 76 = (50,40,1,0F), 77 =
(40,30,2,0r) and 75 = (50, 50, 3, O). In order to determine
©; we use equation 8. The gap we have to find by equation

14. The resultant tuple

the second case of equation 6. So RET(4,75) =

9 can be determined during the calculation. We calculate
the first tuple of the event stream by the substraction of
the worst case response time WCRT)(75) = 140 and the
request end time of the first request. According to 6 is this
the worst case response time. Subsequently, the first tuple
is (00, 0). Before we calculate the second tuple we have to
verify whether a periodic behaviour starts or not. According
to equation 9 this is the case. The RET(1,7,0p) = 140 <
140 = RT(2,0F) and the next request occurs periodically.
We found our gap and can use the second part of equation
8. Since RET(1,7,0p) = 140 < 140 = RT(2,0p) we
use the second case of equation 6, the request end time of
RET(2,75,0r) = RT(2,0F) + b;s + HP(13) = 220.
Subsequently we get as new tuple (250,80). The resulting
event stream O; = {(00,0)(250, 80)}.

VII. CASE STUDY

In order to show the improvements of our approach we
have carried out a case study. In this we explore a hypothetical
distributed system and compare the density of events with and
without the introduced method.

We consider again the example depicted in figure 1 whose
behaviour was described in chapter III. In order to perform
the analysis we have to define the parameters of the system
which are described in the next tables.

CPU1 T1 T2 T3 Busl T4 Ts
c 50 60 80 c 40 40
b 40 50 50 b 20 20
p 1 2 3 p 1 2
] Oa | O4 | B4 (C] Oc¢ | ©p

CPU2 T6 7 TS
c 50 40 50

b 40 30 50
p 1 2 3
(C] Or | ©rF | OF
TABLE I
PARAMETERS OF THE DISTRIBUTED SYSTEM WHICH IS DEPICTED IN
FIGURE 1

With the given parameters we have calculated the event
streams in the system. We use only normalized event streams
for our calculation. The results for the event streams are shown
in table III. The event streams have been calculated with and
as well as without the approach.

© with Approach without Approach
O4 {(250,0)} {(250,0)}

Op | {(c,0),(250,240)} {(0,0),(250,240) }
Oc | {(,0),(250,230)} {(0,0),(250,190) }
©p {(c0,0),(250,200)} {(c0,0),(250,110) }
Ofp | {(,0),(250,210)} {(0,0),(250,170)}
OF | {(00,0),(250,140)} {(00,0),(250,50)}
Oc | {(c0,0),(250,200)} {(0,0),(250,160)}
On {(0,0),(250,80)} {(0,0),(c0,30),(250,240) }
Or {(0,0),(250,80)} | {(c0,0),(c0,50),(250,120)}

TABLE I
RESULTS OF ALL EVENT STREAMS IN THE DISTRIBUTED SYSTEM. THE
RESULTS ARE COMPUTED WITH AS WELL AS WITHOUT THE APPROACH.

The result shows that we have an improvement of the event
density. Or in other words, the events occur not so dense in the
system when the dependencies are considered. Let us consider,
for example, the event stream © . Without the approach the
density of two events is 170. With the approach on the other
hand we have a density of 210. This is an improvement of
19%.

This relaxation has a direct influence on the real-time
analysis. Since the events occur not so dense, the response
time of certain tasks can be reduced.

In order to highlight the results a little bit more and to
represent the influence on the real-time analysis, we take a
closer look on the task 7g and the corresponding incoming
and outgoing events.

In table III the reduction of the density of events caused

by the approach is shown. We consider here the event streams
(S F, © H and © I

n O G)IF Imp. oy G)IH Imp. Or @/I Imp.
1 0 0 0% 0 0 0% 0 0 0%

2 140 50 64,28% 80 30 62,5% 80 50 37.5%
3 390 300 23,07% 330 240 27.27% 330 120 63,63%
4 640 550 14,06% 580 490 15,51% 580 370 36,2%
5 890 800 10.11% 830 740 10,84% 830 620 253 %
6 1140 1050 7.89% 1080 990 8.33% 1080 870 19.44%
7 1390 1300 6.47% 1330 1240 6,76% 1330 1120 15,78%
8 1640 1550 5.48% 1580 1490 5,69% 1580 1370 13,29%
9 1890 1800 4,76% 1830 1740 4.91% 1830 1620 11,47%
10 2140 2050 4,20% 2080 1990 4,32% 2080 | 1870 10,09%

TABLE III

THIS SHOWS THE IMPROVEMENT OF THE APPROACH ON THE EVENT
STREAMS O, O AND O;. © SHOWS THE INTERVALS WITH THE
DEPENDENCY, ©' SHOWS THE INTERVALS WITHOUT THE DEPENDENCY,
IMPROVEMENT IS GIVEN IN %

The table shows that the method has a very great effect on
the first events. This is caused by the fact, that the periodic part
of the events have no great influence on the intervals of the
first events. So when the number of events rise and the periodic
part of the events rise, the relaxation of the events goes down.
But the absolute relaxation is constant. This behaviour is no
disadvantage, since the greatest density of n-events is always
at the beginning of the event stream. So the absolute relaxation
of the first events is important, because there is a great effect
on the real-time analysis. The influence of the approach on
the event streams O, © g, O are depicted in figure 6.

Reduction of Density [%]
o
8

™ 1TT ;A i ir=ir=ii

#Events

Fig. 6. This figure shows the improvements of the intervals in percent of
the event stream O, Oy and Oy.

In this figure it can be seen that we have improvements up
to 64% at the first two events.

This relaxation of the events has got a direct influence of the
response of task 7g. Without dependencies the response time
of 7g is 230 and with dependencies is the response time 140.
This leads to a reduction of 39.13% of the response time. At
this point the effect of the approach can be seen. This study

shows, that the consideration of such dependencies leads to
tighter response times in real-time analysis.

VIII. CONCLUSION

The purpose of this paper was to calculate more precise
event streams for the real-time analysis of fixed priority
systems. This was possible by using the more general event
stream model. We have given the calculation of outgoing event
streams from tasks which are scheduled by fixed priorities.
Thereby we have considered the dependencies caused by the
scheduling on a processor. Especially the new consideration of
the dependency that tasks can be triggered by the same source
leads to a further relaxation.

We have also shown how a real-time analysis can be
achieved with the result. This enables us to do a real time
analysis for appropriate heterogeneous distributed systems. A
further step is to use this approach in connection with the more
expressive hierarchical event stream model [1].

REFERENCES

[1] Karsten Albers, Frank Bodmann, and Frank Slomka. Hierarchical
event streams and event dependency graphs: A new computational
model for embedded real-time systems. In ECRTS ’06: Proceedings of
the 18th Euromicro Conference on Real-Time Systems, pages 97-106,
Washington, DC, USA, 2006. IEEE Computer Society.

[2] Karsten Albers and Frank Slomka. An event stream driven approxima-
tion for the analysis of real- time systems. In ECRTS ’04: Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 187-195.
IEEE, July 2004.

[3] Sanjoy K Baruah. Dynamic- and static-priority scheduling of recurring
real-time tasks. Real-Time Systems, 24(1):93-128, 2003.

[4] Klaus Gresser. An event model for deadline verification of hard real-time
systems. In Proceedings of the 5th Euromicro Workshop on Real-Time
Systems, 1993.

[5] Rafik Henia and Rolf Ernst. Context-aware scheduling analysis of
distributed systems with tree-shaped task-dependencies. In DATE '05:
Proceedings of the conference on Design, Automation and Test in
Europe, pages 480-485, Washington, DC, USA, 2005. IEEE Computer
Society.

[6] Rafik Henia and Rolf Ernst. Improved offset-analysis using multiple
timing-references. In DATE ’06: Proceedings of the conference on
Design, automation and test in Europe, pages 450—455, 3001 Leuven,
Belgium, Belgium, 2006. European Design and Automation Association.

[7]1 Rafik Henia, Razvan Racu, and Rolf Ernst. Improved output jitter calcu-
lation for compositional performance analysis of distributed systems. In
Proceedings Workshop on Parallel and Distributed Real-Time Systems,
March 2007.

[8] John P Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In Proceedings of the 11th IEEE Real-Time Systems
Symposium, pages 201-209, December 1990.

[9] Ola Redell. Analysis of tree-shaped transactions in distributed real-time

systems. In ECRTS ’04: Proceedings of the 16th Euromicro Conference

on Real-Time Systems (ECRTS’04), pages 239-248, Washington, DC,

USA, 2004. IEEE Computer Society.

Ken Tindell. Adding time-offsets to schedulability analysis. Technical

report, University of York, Computer Science Dept, YCS-94-221, 1994.

Ken Tindell and John Clark. Holistic schedulability analysis for

distributed hard real-time systems. Microprocessing and Microprogram-

ming, 40:117-134, April 1994.

(10]

[11]

