
Comparative Application of Real-Time Verification Methods to an Automotive
Architecture

Steffen Kollmann, Victor Pollex, Kilian Kempf and Frank Slomka
Ulm University

firstname.lastname@uni-ulm.de

Matthias Traub and Torsten Bone
Daimler AG

firstname.lastname@daimler.com

Jürgen Becker
Karlsruhe Institute of Technology

becker@kit.edu

Abstract

Designing embedded systems is a challenge. This ap-
plies especially to distributed automotive architectures.
The high connectivity of different control units forms het-
erogeneous system architectures that have to handle the
many different applications involved in providing the sys-
tems’ services. This has a direct impact on model based
design techniques which must be able to verify that differ-
ent design constraints are satisfied. One issue is the real-
time analysis for checking whether the different applica-
tions meet their real-time deadlines or not. In the past 40
years, many techniques have been developed to find an an-
swer to this question. In this paper, different approaches
for the verification of real-time behavior of an automotive
architecture are compared. Two tools that are available
on the market and two from universities, including a new
prototype, have been chosen. In order to compare these
tools in an appropriate way we have applied them to an
automotive industry state of the art architecture model.

1. Introduction

Embedded systems are the most widespread computer
systems in the world. Hidden from the users’ view, they
perform steady operations while the users rely on the cor-
rectness of the system. Cars, airplanes, and mobile phones
are examples for this unnoticed relationship between com-
puters and users. The confidence in the systems’ function
is based on highly dependable design processes present
in the industry. Due to the increasing system complexity,
new design processes and methodologies are necessary to
maintain the standards of reliable systems. The complex-
ity is mainly a result of the applications being distributed
over the whole system, for example a layout caused by
sensor fusion or the necessity of separating actors and sen-
sors.

This work is supported in part by the Carl Zeiss Foundation and the
German Research Foundation.

Many technical constraints have to be considered dur-
ing the design process of these systems. Beyond that, the
automotive industry has economical constraints. As a re-
sult, the number of applications which have to be inte-
grated on a single electronic control unit (ECU) is con-
stantly increasing.

Besides timing issues, additional constraints like power
consumption, space requirements, weight, etc., have to be
considered. This results in a multi-criteria optimization
problem, where many different possible solutions have to
be assessed during the design process in order to find an
optimal solution. Such a design space exploration needs
fast verification algorithms to check the requirements.

One challenging aspect in the design of automotive ar-
chitectures involves the communication behavior and net-
work topologies. Increasing data exchange between the
ECUs results in increasing requirements concerning the
networks. Key questions in this context include busload,
communication relations between the ECUs, and the re-
sulting timing behavior of a network branch or the entire
network [24]. Different approaches are available for the
evaluation of these questions. To our knowledge, no com-
parative case studies considering design challenges of the
automotive area exist.

Perathoner et al. have published a comparison of dif-
ferent approaches in [18], using a set of five benchmark
problems for their analysis. These benchmarks have been
specifically constructed to analyze the behavior of dif-
ferent methodologies under certain conditions and reveal
their particular characteristics. While this is appropriate
for the analysis of specific properties, it hardly allows con-
clusions to be drawn about their performance when ap-
plied to real-world architectures and systems.

A more complex exemplary architecture has been pro-
vided by Künzli et al. in [15], which was used to show
the benefit of a combination of two different methods on
a distributed real-time system. The example is still specif-
ically designed and does not necessarily match the indus-
try’s present systems.

ha
l-0

05
46

90
3,

 v
er

si
on

 1
 - 

15
 D

ec
 2

01
0

Author manuscript, published in "18th International Conference on Real-Time and Network Systems, Toulouse : France (2010)"

http://hal.archives-ouvertes.fr/hal-00546903/fr/
http://hal.archives-ouvertes.fr


DokumentDokument*.fibex,
*.arxml,

*.xls

Modeling
Rules

Real-Time Evaluation Tools
- ChronSIM [5]
- SymTA/S [21]
- RTC [25]
- Efixes [13,14]

E/E Architecture Tool

PREEvision [19]

Functions

AUTOSAR Toolchain [2]

DokumentDokumentAUTOSAR BSW
*.c, *.h

DokumentDokumentManual 
Annotations

*.ais

DokumentDokumentOS 
Configuration

DokumentDokumentObjectcode 
Binary

DokumentDokumentGenerated 
Annotations

*.ais

Execution 
Times

OR
Measurement 

directly on 
hardware

DokumentDokumentConfiguration
*.c, *.h

Compiler

Annotation Rules
(ais File Generator)

WCET Analysis

aiT [1]

Figure 1: Design flow, including timing evaluation [23]

Electric/Electronic architectures (E/E architectures)
from the automotive domain are the prime examples for
the problems discussed above. Contemporary automo-
tive E/E architectures are highly networked systems with
many real-time constraints. Networked cars may have
more than 70 ECUs connected by different bus systems
like CAN (controller area network) and FlexRay. These
different types of busses and ECUs designed by differ-
ent suppliers are commonly used in the same network-
ing architecture. Such a heterogeneous architecture has
to be integrated by the original equipment manufacturer
(OEM), which requires an appropriate design process in-
cluding the consideration of real-time constraints of a sin-
gle system and the whole network architecture.

In this paper, different approaches for the analysis of
the real-time behavior of automotive E/E architectures as
introduced above are compared. This should help to get an
impression of the developed techniques and their ability to
cover the challenges of the automotive area. For this com-
parison, a part of a larger automotive network architecture
from Daimler has been considered and different real-time
evaluation methods have been applied. On this basis it
will be shown that it is not sufficient to use only one tech-
nique and that it is very important to have all information
about the timing behavior of the systems available for a
sophisticated analysis.

This paper is organized as follows: Section 2 provides
an overview of the design flow aspired by industrial com-
panies. After this, the networking architecture used for
this case study is presented. Section 4 introduces the con-
sidered real-time evaluation tools. The results of this case
study are discussed in section 5, conclusions are presented
in section 6.

2. Design Flow

Due to increasing complexity of automotive E/E ar-
chitectures, model based design techniques are a main

branch of research in industrial companies. In this section,
we characterize a possible design flow integrating timing
evaluation tools into the development process.

As design entry for the network architecture, we use
the E/E architecture concept tool PREEvision of the com-
pany aquintos [19]. This tool is a model based design ap-
proach based on a domain specific language which is used
to design E/E architectures.

Based on this PREEvision model, exporting the neces-
sary information of the system to the real-time evaluation
tools described in section 4 is required. We have used
the standard format FIBEX [7] for bus configurations and
a simple comma separated value (csv) format for the re-
maining information of the architecture. This information
is then imported into the considered real-time evaluations
tools.

Unfortunately, not all information for the real-time
analysis can be extracted directly from the PREEvision
model, because necessary details about the software ar-
chitecture are not provided. Performing a timing verifi-
cation requires the knowledge of worst- and best-case ex-
ecution times of messages and tasks in the system. The
execution times of message transmissions can be directly
derived from the bus speed and the message size. E. g.
the transmission of a standard message with an eight byte
payload on a 500 kBit/s CAN bus takes up to 240 µs. Since
the execution of preemptive tasks on ECUs is not deter-
ministic, the extraction of task execution times is more
sophisticated.

For the extraction of the relevant task execution times,
executable code has to be generated. Information on the
network architecture and the functions are imported into
the AUTOSAR toolchain [2]. This allows to take the op-
erating system configuration into account, which is impor-
tant, as the operating system has a direct impact on the ex-
ecution times of the tasks. After the AUTOSAR software
for each ECU has been configured, an executable binary
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Figure 2: Network view of the E/E architecture

can be compiled. In the next step, the execution times of
the functions and tasks can be measured or analyzed. This
measurement can be done directly on a hardware proto-
type. Alternatively, it is possible to conduct a static code
analysis as provided by the tool aiT of Absint [1].

For the refinement of the timing models, modeling
rules are used. This means that the different approaches
are not capable of modeling the system in the same level
of detail. Some approaches consider more details than the
others. These differences are discussed in section 4.

3. System Architecture

In this section, the networking part of an E/E archi-
tecture that we have used for the case study is presented.
Since the whole architecture is too complex, only the parts
relevant for the real-time analysis are described.

3.1. Networking Architecture
The networking architecture is shown in figure 2. It

consists of 15 electronic control units (ECUs) and two
busses connected by a gateway. The number of different
messages transmitted (Tx) and received (Rx) by each ECU
and gateway on the connected bus is annotated. E. g. the
gateway transmits 38 messages and receives 39 messages
over the CAN bus.

The gateway and ECU1 to ECU9 are connected by a
500 kBit/s CAN bus. In total, 85 different messages are
sent over the CAN bus, generating an average bus load of
41.63 %. Each message has a unique identifier, where a
lower identifier value denotes a higher priority. The trans-
mission scheduling scheme of the CAN bus can be mod-
eled with a fixed-priority non-preemptive scheduling pol-
icy.

In order to prevent peak loads on the bus, the startup
times of the CAN messages have offsets. This leads to a

more uniform bus load and thus to shorter response times
of the messages, because fewer messages compete for si-
multaneous bus access.

Since most of the ECUs transmit more than one mes-
sage, a scheduling policy for the transmission of the mes-
sages is necessary. Two main policies are used in such
architectures. One of them is the fist-in first-out (FIFO)
policy, which is used by a basic CAN controller. This pol-
icy can lead to a priority inversion, as illustrated:

Example 1 Assume that ECU1 has a basic CAN con-
troller that uses a FIFO policy and wants to transmit mes-
sage 1 with identifier 0x2 and message 2 with identifier
0x100 in short succession. Message 2 is queued first and
message 1 is queued after message 2. Therefore message 1
has to wait until message 2 has been sent although mes-
sage 1 is the highest priority message. This means that
message 1 can not only be delayed by higher priority mes-
sages from other ECUs but also by messages from them
with an identifier in the range from 0x3 to 0xFF.

The other policy mentioned above is a priority order
policy, where the highest priority message in the queue
of the controller competes for bus arbitration at any given
time. This behavior leads to a more predictable behavior
on the CAN bus. Therefore this behavior has been chosen
as the default behavior of a CAN controller.

The second bus used in the architecture is a FlexRay
bus, which connects the gateway and ECU10 to ECU15.
This bus has a data rate of 10 Mbit/s with a cycle time of
5 ms. Only the static configuration part of the bus proto-
col, which is implemented as the deterministic Time Divi-
sion Multiple Access (TDMA) policy, is considered.

The gateway connects the CAN bus to the FlexRay bus
by translating CAN message frames into FlexRay mes-
sage frames and vice versa. It is not modeled in de-
tail and the time spent on the protocol translation of the
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Figure 3: Software architecture of ECU7

data is assumed to be 1 ms regardless of translation direc-
tion and data amount. The delay caused by the transition
from the event triggered CAN bus to the time triggered
FlexRay bus is considered when the end-to-end delay is
determined.

To consider path latencies in the analysis, the data ex-
change of ECU7 and ECU10 is modeled in detail. They
are described in the following sections. Both use an
OSEK-OS operating system [17].

3.2. Software Architecture of ECU7
ECU7 consists of three interrupt service routines

(ISRs), T1 to T3, and six tasks, T4 to T9, as shown in
figure 3. The corresponding parameters of the tasks are
listed in table 1. The data input of a task or ISR is repre-
sented by two rectangles and the trigger by a triangle.

Each task can be an ISR or is either preemptable or not.
All ISRs have the same and also the highest priority. They
are scheduled according to a FIFO policy, all the other
tasks according to their respective priority. This can be
regarded as a hierarchical scheduling on the ECU.

The ISRs T1 and T2 are triggered asynchronously. T1
is triggered after T4 has finished its execution and data is
ready to be sent over the CAN bus. T2 is triggered when
a CAN message is received by this ECU. The other tasks
that are triggered asynchronously are T8 and T9. They
are triggered every 15 ms and every 50 ms, respectively.

Name Type Priority WCET [µs] EVENT [ms] offset [ms]

T1 ISR CAT2 255 20 - -
T2 ISR CAT2 255 20 - -
T3 ISR CAT2 255 10 20 (Sync) 0

T4 Non- 25 80 20 (Sync) 1Preemptive

T5 Non- 24 200 20 (Sync) 10Preemptive

T6 Non- 23 500 20 (Sync) 5Preemptive

T7 Non- 22 100 20 (Sync) 0.5Preemptive
T8 Preemptive 21 50 15 -
T9 Preemptive 20 150 50 -

Table 1: Parameters of the tasks on ECU7
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Figure 4: Software architecture of ECU11

The remaining tasks T3 to T7 are triggered synchronously
every 20 ms, where the triggering events are delayed by
time offsets. This eliminates blocking times and reduces
response times.

Sensor data is propagated from the receiving ISR T3
via task T7, which is activated 0.5 ms after T3, and via
task T6 (activation offset 5 ms) and T5 (activation offset
10 ms) to the actuator.

A second data path starts at T7 via the task T4 to the
ISR T1 sending a message to the CAN bus. The mes-
sage is propagated to ECU11 on the FlexRay side. At ISR
T2, ECU7 receives a second sensor value originating from
ECU11, which is then transmitted to T5.

3.3. Software Architecture of ECU11
The software architecture, the data paths, and the cor-

responding parameters of ECU11 are shown in figure 4
and table 2. The control unit consists of five tasks, T3 to
T7, and two ISRs, T1 and T2. As on ECU7, the operating
system is OSEK, so the same scheduling policies apply to
this unit.

The two ISRs represent the communication with the
FlexRay bus. Since the bus uses a time-triggered protocol,
the ISRs are activated by a strictly periodic stimulation
that is synchronized to the FlexRay cycle.

Beside the main application, another small application
is running on the ECU and is implemented by the task T7.

Name Type Priority WCET [µs] EVENT [ms] offset [ms]

T1 ISR CAT2 255 80 20 (Sync) 1.5
T2 ISR CAT2 255 70 5 (Sync) 0

T3 Non- 25 120 20 (Sync) 1Preemptive

T4 Non- 24 10 20 (Sync) 1.5Preemptive

T5 Non- 23 180 20 (Sync) 0.5Preemptive

T6 Non- 22 200 20 (Sync) 0Preemptive
T7 Preemptive 21 100 15 -

Table 2: Parameters of the tasks on ECU11
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This task is triggered every 15 ms, asynchronously to the
other tasks.

The main application consists of the tasks T3 to T6.
Incoming data, for instance from ECU7, is received by
task T2. The data is then propagated via T3 and T4 to T5.
Just as on ECU7, the tasks are triggered synchronously
and they are delayed to avoid preemption by other tasks.

A second data path starts at task T6. From the output
of T6, the data is processed by T5 in conjunction with data
received from ECU7 and then delivered via T3 to T1, the
transmit task. The message is then sent to the gateway and
back to ECU7.

3.4. Data Paths of Interest
Two aspects are of special interest for the evaluation of

the timing tools: The worst-case delays that can occur to
messages on the CAN bus and the end-to-end delay of the
two paths shown in figures 2, 3, and 4.

The first path starts at the input of T3 of ECU7 and runs
through T7, T4, and T1 to the CAN bus. The data is sent
as CAN message 47. At the gateway, it is translated into a
FlexRay frame and sent to ECU11. T2 of ECU11 receives
the data and the path continues via T3 and T4 to the input
of T5 where the path ends.

The second path starts at the input of T5 of ECU11 and
runs through T3 and T1 to the FlexRay bus. The data is
received by the gateway and translated into CAN message
38. It is received by ECU7 (T2) and propagated through
T5 to the input of the actuator where the path ends.

4. Evaluation of Real-Time Behavior

After discussing the architecture we will now introduce
the approaches used in this case study. In principle, only
two main concepts can be applied in early design states
of such systems. One is a simulation and the other is an
analytical approach, where both have their advantages and
disadvantages. With the help of a simulation tool it is pos-
sible to gain a detailed insight into the system but it is very
difficult to get guaranteed results regarding the response
times. As in every simulation approach, the main problem
is the coverage of the cases. It cannot be guaranteed that
the worst case has been found in a simulation run. We
used only one simulation tool for this case study, and that
is the software chronSIM by the company Inchron [5].

Analytical approaches solve the coverage problem
mentioned above. They construct a worst case for the an-
alyzed system and calculate a bound for that case. The
limitation of such approaches is the difficulty to consider
the different system contexts, like offsets between the task
stimulations or mutual exclusion of tasks. For tight re-
sponse times, it is important to consider all relevant con-
texts. Many approaches have been developed, differing in
the ability to model the system, especially in the consid-
eration of system contexts. Due to significant differences
between the analysis methods, three approaches have been
chosen for this case study.

The first one is the real-time calculus [25] developed at
the ETH Zurich. This approach is not able to consider the
contexts necessary to analyze the system, so we used it as
the one that describes the case where tasks’ stimulations
are independent.

The second approach we used is SymTA/S [20] by the
company Symtavision [21]. It is based on the busy win-
dow approach and is able to consider the contexts in the
system and is therefore assumed to be accurate.

The last tool we have considered is a prototypical de-
velopment of Ulm University and is called Efixes. It dif-
fers from the SymTA/S approach in that it uses a far more
general technique to describe stimulations [14] in the sys-
tem and is able to model dependencies in a more general
way. This is a technique that is approximative as well as
scalable. All the mentioned approaches are introduced in
the next four sections.

4.1. ChronSIM
Simulation is often used in different design phases. The

advantage of such a technique is the possibility for the de-
signer to gain a very deep insight into the system. Based
on simulation traces, the interaction of the different com-
ponents of the architecture can be observed, for exam-
ple the impact of combined scheduling strategies on each
other. With the help of a simulation it is possible to ob-
serve and explain side effects caused by the components.

In this case study chronSIM version 2.0.0 (Build
07/05/2010) has been used. With this software, C or C++
code that is directly executable on the real ECUs can be
used to describe the behavior of the system. The archi-
tecture and the interconnection of the different ECUs are
modeled by the simulator, which then compiles a binary
program that is executed on the host computer and gener-
ates the desired simulation traces.

In this case study we have used the generic ECU model
provided by the software and annotated the previously de-
termined worst-case execution times.

Due to the typical coverage problems of simulation ap-
proaches, it can not be guaranteed to find the worst case.
This is a general simulation weakness and also applies to
measurements. We expect the response times always to be
lower than those calculated by the analytical methods.

4.2. Real-Time Calculus
The real-time calculus is based on the network calcu-

lus [3]. It has been extended by Chakraborty et al. [4]
and Wandeler [25] to be applicable to distributed real-time
systems.

The basic idea is to have a modular approach in which
every task can be analyzed independently. One type of
necessary parameters are the arrival curves. They are used
to model the rate at which the task is triggered. Addition-
ally, the service curves are needed, which implicitly model
the scheduling policy the task is subjected to. By using
convolution and deconvolution operations in the min-plus
and max-plus algebra, the outgoing arrival curves and the
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remaining service curves are computed. They can be used
by other tasks as their respective arrival or service curves.

For the analysis, the freely available RTC Toolbox [26]
has been used. The CAN bus in the architecture can be
modeled as a resource that uses a non-preemptive fixed
priority scheduling policy, therefore the method found in
[9] was implemented.

It is expected that the analysis with the real-time calcu-
lus will give overly pessimistic results for the worst-case
response times. This is due to the approach currently not
being able to consider the offset relations between mes-
sages or tasks.

4.3. SymTA/S
For the case study we have used version 2.2 of

SymTA/S based on the Eclipse framework.
The method this tool uses to analyze systems is based

on a busy window approach that has been introduced by
Lehoczky [16] to analyze tasks with arbitrary deadlines.
It was extended by Tindell and Clark [22] to a holistic
analysis for distributed real-time systems. An improve-
ment of this analysis was achieved by the introduction of
the minimum distance by Richter [20]. The messages that
are sent over the CAN bus have known temporal offsets
to each other. By applying [10] and [11], this knowledge
can be used in the analysis. The idea of the approach is to
group the correlated tasks into transactions. In a transac-
tion, each task has a relative offset to a previous event. To
find the worst case, all possible combinations of the tasks
have to be considered, which can lead to longer runtimes
in large systems.

SymTA/S uses the techniques of all of the presented
work above. We expect that this approach delivers the
tightest bounds for the worst-case response times.

4.4. Efixes
As last analytical tool we have used Efixes from Ulm

University. The tool is based on the Eclipse framework
and prototypically implements a schedulability analysis
for distributed systems.

The analysis uses the event stream model by Gresser
[8]. The complete methodology is described in [12] and
[14]. The difference to the SymTA/S approach is the abil-
ity of the event stream model to describe any kind of stim-
ulation. So in order to describe burst behavior it is not
necessary to change the model and therefore the analysis
methodology. A second and far more important difference
of this concept was introduced in [13], where a general
model for the description of dependencies between sev-
eral event streams is proposed. The idea is to describe an
arbitrary dependency between any stimulations, by which
a limitation of the cumulated number of events is given.
As an advantage of the concept, each limitation is com-
puted separately from the analysis. This technique makes
it possible to describe any kind of dependency, like offsets
or mutual exclusion.

To get a general idea of how Efixes works, the stimula-
tions can be considered as vertices in a graph and the cor-
relation between them as edges. For each maximal clique
in the graph of size 2 or bigger a set Si is built which con-
tains all stimulations that are represented by the nodes of
the clique. Note that these cliques are usually given as
input and are not searched for. To consider every possibil-
ity which is described by the correlations, the power set
of such a previously mentioned set P(Si) is taken. For
each element of such a power set M ∈ P(Si) a limitation
for the number of events that can occur by the combined
stimulations in M is computed.

This very modular concept permits to consider corre-
lations in a scalable way by choosing only a subset of the
power set which should be considered in the analysis. This
is done in the CAN analysis where for each ECU a set Si

is built containing all stimulations of the messages that are
sent by the ECU. Out of all elements of the corresponding
power set P(Si) only those were chosen that contain ex-
actly the stimulations of the k-highest priority CAN mes-
sages that are sent by the ECU, where 2 ≤ k ≤ n and n is
the number of messages sent by the ECU.

We expect that the response times are not as tight as
those of the SymTA/S approach, but we expect them to be
computed faster. The speed of such an approach is very
important for a design space exploration.

5. Results

The tools presented in the last section have been used
to analyze the networking architecture introduced in sec-
tion 3. The aim of each approach is to find the worst-case
response times of the tasks and messages. Furthermore,
we have considered two end-to-end-path latencies intro-
duced in section 3.

While the verification tools cover the worst case, the
simulation usually does not, so it is not intuitively known
how long the simulation has to run. To find an answer, we
calculated the hyper-period of the system, which is two
seconds, and ran the simulation 50 times as long (100 sec-
onds were simulated).

First of all, we are interested in the worst-case response
times of the messages that are caused by the busses. The
response times of the FlexRay bus is not really surprising
as it uses a TDMA policy and the messages are not longer
than the slot length. The worst-case response time is equal
for all messages, in this case 5 ms or a multiple of 5 ms,
depending on the repetition factor. Therefore, we do not
consider the results concerning the FlexRay bus in detail.

The worst-case response times introduced by the CAN
bus are far more interesting, as the transmission offsets
between the messages have a great impact on them. In
figure 5, the absolute worst-case response time of each
CAN message is shown for all the approaches covered in
this case study. The messages have been ordered by de-
scending priority. The deadline of each CAN message has
been set to 70 % of its period.
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Figure 5: Worst-case response times of the approaches (absolute)

As expected, the RTC toolbox is generally overly pes-
simistic due to not considering the offset dependencies be-
tween the messages. It can be observed that the worst-
case response time of a lower priority message is always
greater than that of the next higher priority, because with-
out considering contexts, the interference of the messages
is always maximal. Generally, the worst-case response
time of a message must be at least the same as that of the
next higher priority plus the worst-case execution time of
the message itself.

This behavior does not apply when offsets between the
tasks are taken into consideration. Due to the time-shifted
activation of the messages it is possible for a message to
have a lower worst-case response time than one of a higher
priority. With messages 66 and 67, for example, this be-
havior can be observed, because SymTA/S and Efixes con-
sider the offsets.

The results of SymTA/S and Efixes are close together,
where SymTA/S gives either equal or better results than
Efixes. This is due to Efixes using an approximation when
considering the dependencies between the messages. The
differences between SymTA/S and Efixes can be seen bet-
ter in figure 6, where the response-time of a message is
given as the ratio of its period. The approximation level
can be easily chosen by the Efixes tool as described in
section 4.4. For this case study the Efixes model leads
to good results concerning the runtime and the exactness
of the response times. But this can vary from application

to application. In other scenarios the difference, concern-
ing the response times, to the SymTA/S approach can be
greater depending on the chosen approximation level.

The simulation approach of chronSIM results in the
lowest values of the five curves. Out of the simulated
100 seconds, the maximum response time of each mes-
sage has been extracted from the simulation trace. It can
be seen that the response times diverge widely, so it can
be assumed that the simulation has to run far longer to
converge at the worst case for all messages.

As expected, the worst-case response times encoun-
tered in the simulation with chronSim are always lower
than the values given by the analytical approaches. The
variability in the response times is due to the general cov-
erage problem of simulations, where it is unclear if the
worst case has been simulated. It might be assumed that
a long-term run of the simulation will lead to a smoothing
of the curve.

The question resulting from the computed values is
how realistic the results are. As the analysis usually tends
to overestimate the worst case and the simulation under-
estimates it, the true value must lie between both results.
Take message 23 for an example. The lowest value com-
puted by an analysis tool is 2898 ms and the highest value
of the simulation is 1570 ms. The difference is 1328 ms,
which is 54 % of the worst case of the analysis. In con-
trast, message 33 has a difference of 3818 ms. The sim-
ulation value is in this case 5.3 % of the worst case. It is
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Figure 6: Worst-case response times of the approaches (normalized)

not clear if the simulation has not found the worst case or
the analysis has been overestimating, but small distances
indicate a good quality of the results.

After having discussed the response times of the CAN
messages, we will now consider the path latency of the
paths described in section 3. The results of both paths are
depicted in figure 7. In order to determine the path laten-
cies, we have used two approaches. The simulation tool
provides a concept of event chains, which allows to extract
the path latency directly from the trace file. To compare
the different verification tools, we have used the approach
of SymTA/S, presented in [6], where a possibility to de-
termine the path latency is described.

As mentioned above, the first path starts on ECU7 at
the input of T3 and leads to the input of T5 on ECU11.
Due to the architecture, many delays of the path are equal
in all analytical tools. So only the tasks or messages where
a difference exists were considered. One difference is

Task RTC Efixes SymTA/S

Message 47 10488 µs 6216 µs 5928 µs
T1 ECU7 50 µs 50 µs 40 µs
T4 ECU7 630 µs 120 µs 120 µs
T4 ECU11 480 µs 90 µs 90 µs

Table 3: Worst-case response times of tasks and messages
on path 1 of the analytical tools

caused by the delay of the CAN message as described
in table 3. Since the RTC considers no correlation be-
tween the messages, the response time is the worst. The
SymTA/S approach delivers the best results. The other
tasks T1 and T4 on ECU7 and T4 on ECU11 have differ-
ent response times for the same reasons.

The simulation approach extracts the path latency di-
rectly from the trace file. Figure 7 shows that the laten-
cies of most approaches are close together. Only the RTC
overestimates the latency significantly.

The second path examined is the one from the input of
task T5 on ECU11 to the actor on ECU7. Again, only the
most important differences between the analytical tools
were considered, which are described in table 4. As in the
first path, the worst-case response time of the CAN mes-
sage and the response time of the tasks are responsible for
the different results of the analytical tools. On this path
there is a large gap between the simulation the analytical

Task RTC Efixes SymTA/S

Message 38 8274 µs 4962 µs 4944 µs
T1 ECU11 150 µs 150 µs 80 µs
T2 ECU7 50 µs 50 µs 40 µs
T5 ECU7 830 µs 240 µs 240 µs

Table 4: Worst-case response times of tasks and messages
on path 2 of the analytical tools
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Figure 7: Path latency

approaches, as depicted in figure 7. The analytical meth-
ods as well as the simulation have an inherent problem.
For the analytical approaches it is not clear if enough con-
texts have been considered during the analysis to compute
tight results. For the simulation approach it is difficult to
choose the right modeling parameters in order to construct
the worst case. Therefore it is important to have both re-
sults (analytical and simulation) to get an impression of
the quality of the results.

After considering the different results of the worst-case
response times, we will now evaluate the runtime of the
different approaches. In figure 8, the computation time
needed for each approach is shown.

Both Efixes and RTC were run on a machine with an In-
tel 2.66 GHz processor, 4 GB of RAM. JavaVM 1.6.0 20
was used for Efixes and Matlab 7.8.0 was used for the
RTC Toolbox.

The ChronSIM experiments were carried out with a li-
cense of ChronSIM 2.0.0 (Build 07/05/2010) inside a vir-
tual machine running Windows XP on the same computer.
The time shown in figure 8 was needed to simulate two
seconds, which is the hyper-period of the architecture.

The SymTA/S experiments were carried out with a
license of SymTA/S version 2.2 on an Intel Core Duo
T7500 2.2 GHz, 3 GB of RAM.

Efixes RTC chronSIM SymTA/S

0

200

400

600

800

1000

1200

1400

1600

1800

14,18

1673,3

614

320

R
un

tim
e 

[s
]

Figure 8: Runtime of the approaches

For the runtime comparison, it is not important to know
the exact values in milliseconds, because the results differ
so much from each other. The first surprising point we
observed is that the RTC has by far the longest execution
time, even though the RTC does not consider any system
context and therefore should have been very fast. One ex-
planation could be that each arrival and service curve is
explicitly described for the hyper-period of two seconds.
Applying the different convolution and deconvolution op-
erations leads to an enormous runtime.

The SymTA/S approach considers all system contexts
and is therefore not so fast. Such an analysis is appropriate
for hard real-time verifications where the accuracy is more
important than the runtime.

Efixes is the fastest approach but delivers not the tight-
est results, which makes this approach suitable for design
space explorations as described in the introduction.

The simulation needs several hours to simulate 100
seconds while not even ensuring that the worst case has
been found. This is not very appropriate to find worst-
case behavior. Therefore it is better to use the simulation
approach to examine side effects in the system. This can-
not be done with analysis tools.

6. Conclusion

For this paper, a large case study of a real automotive
networking architecture was conducted. This architecture
represents the current complexity in the vehicle network-
ing design processes of automotive companies. Due to the
complexity of heterogeneous architectures, one of the big
issues of today’s systems is the timing verification of the
real-time applications.

For the real-time evaluation, different available ap-
proaches have been evaluated, one tool for the simulation
and three analytical tools. The latter differ in the way they
consider different kinds of system contexts. The relevant
contexts were the offsets between the different CAN mes-
sage transmissions and those between the ECUs’ tasks.

The real-time calculus was used to describe the case
of independence between the tasks’ stimulations. This
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method delivers the worst results since it cannot consider
the offset correlation between the tasks.

The second verification tool SymTA/S considers all the
offset correlations. It delivers the best results of all tools.
This results in a longer runtime caused by the huge num-
ber of possible combinations that have to be computed to
determine the worst case.

The tool Efixes makes use of an approximation in or-
der to achieve shorter runtimes. This tool only consid-
eres a subset of the contexts. The result is a fast analysis
with some bounds that are less accurate than those of the
SymTA/S approach.

The conclusion of this case study is that simulation ap-
proaches and analytical approaches are both very impor-
tant for the design of complex systems. The simulation
helps to understand in detail what the system is doing. The
analysis tools are important to obtain guaranteed bounds
for the response times in the system.

Since the real response times of the system must be
between the simulation and verification results, it is desir-
able to close the gap between them. Therefore the specific
properties of a system have to be considered to get realis-
tic bounds.
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