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Abstract. Due to complex embedded systems it is no longer possible to find the optimal design
solution instantly and a design space exploration is necessary. In each step the real-time constraints of
the system have to be verified. This can be performed by a schedulability analysis. To find the optimal
solution the real-time analysis must deliver tight results of the tasks’ worst-case response times. This can
only be done by using appropriate models. The calculation of tight results leads to an increased runtime
of the analysis. But due to short design phases fast real-time feasibility tests and analysis algorithms
are necessary for a high acceptance of the formal techniques by industrial software engineers. In this
paper both the possibility to calculate tight worst-case response times of the tasks in a distributed system
and the reduction of the algorithm’s runtime is presented. The correctness of the approach is proven
analytically and experimental.

1. Introduction
Embedded systems are the most widespread computer systems in the world. The complexity

of them increases from generation to generation with the effect that the optimal design solution
is no longer obvious. One possibility to analyze different solutions is to perform a design space
exploration. In each step of the search different constraints like space, energy, reliability, safety
and time of the system can be evaluated and compared to other solutions. One special issue
during such an exploration is to verify whether the time constraints of the systems can be met.

Schedulability analysis techniques play an important role to verify the real-time constraints of
embedded systems. The idea of such analysis methodologies is to determine an upper bound of
the worst-case response times in the system. It is very important that these upper bounds are as
tight as possible, because overestimated response times lead to oversized processors and therefore
to worse design solutions concerning energy and space. To determine worst-case response times
an event model to describe the stimulation in a distributed system is necessary. A common
approach is to assume an event-triggered system where each task generates an event at the end
of its execution to notify other tasks. By means of the event model and the worst-case and best-
case execution time of the tasks the worst-case response times can be determined by a global
fixpoint iteration over the whole system. To accomplish tight results of the response times an
expressive event model is necessary which is able to describe the stimulation in a system exactly.
Based on the event stream model presented in [6] we will show how tight response times can
be determined and compare these results with well known methodologies like Tindell and Clark
[15] and SymTA/S [12].

Since the calculation of tight response times leads to an increased runtime of the real-time
analysis we will also show that the runtime can be improved despite using an expressive event
stream model. The idea of the improvement is to define an upper bound and a lower bound for
the search interval which calculates the worst-case response time of a task.

The paper is organized as follows: Section 2 gives an overview about related work. The model
is presented in section 3. The necessary real-time analysis is described in section 4. In section 5
we introduce our runtime improved real-time analysis concerning the worst-case response time.
The work closes with experiments and a conclusion.

2. Related Work
Many different approaches exist to determine the feasibility of a real-time system. Liu and

Layland [9] have developed a sufficient feasibility test for strict periodic task sets scheduled by
the rate monotonic policy. Since then a lot of conditions for sufficient feasibility tests have been
found. A good overview is given in [17]. Recently, Bini and Baruah [2] have presented an upper
bound condition for the worst-case response time of a task. By means of this bound condition
a new sufficient feasibility analysis for periodic tasks has been introduced.

Lehoczky [8] has introduced a worst-case response time analysis with arbitrary deadlines.
Sjödin and Hansson [13] have proposed some lower bound conditions for the starting job of this



test to improve its performance. An approach to reduce the number of jobs during a worst-case
response time analysis by upper bound condition has been introduced by Pollex et al. [11]. In
[11] the sufficient feasibility analysis from Bini and Baruah [2] has been used to derive an upper
bound condition for the worst-case response time. The analysis is based on the periodic model
with jitter.

Other approaches have also been considered to improve the runtime of the worst-case response
time. In [4], [5] and [10] some techniques are proposed in order to reduce the number of iterations
during the analysis. But these approaches do not consider a job number reduction.

For distributed real-time systems many different models which can specify the stimulation of a
system have been developed. The most popular is the analysis by Tindell and Clark presented in
[15]. Based on the periodic model with jitter (p, j) Tindell et al. introduces in [15] the analysis
for distributed real-time systems.

Later, Richter presents in [12] an extension of this model by introducing a minimal distance
between events (p, j,d). This parameter d has the effect that if the jitter is greater than the period
the events cannot occur simultaneously. This results finally in tighter worst-case response times.

The lack of both approaches is that the used event models are not able to describe arbitrary
stimulation in the system exactly due to the few parameters of the models. Another big
disadvantage is that the jitter parameter can only grow during the analysis, meaning that events
can only occur closer. A relaxation of the jitter is not provided. But this is important for a tight
real-time analysis.

The real-time calculus [16] has no discrete model in order to describe the occurrence of events
in a system. This technique consists of approximated curves describing the arrival of events and
the capacity of the processors. Since this methodology bases on the network calculus [3], it is
not possible to apply the runtime improvement presented in section 5 to this methodology.

3. System Model
3.1. Task Model

Γ is the set of tasks on one resource Γ = {τ1, ...,τn}. A task τ = (c+,c−,d,φ ,Θ+) consists of
c+ its worst-case execution time, c− its best-case execution time, d its deadline, φ its priority
for the scheduling (the lower the number the higher the priority) and Θ+ defines the maximum
stimulation (maximum number of events in an interval). Let τi, j be the j-th job/execution of
task τi. Each job generates an event at the end of its execution to trigger other tasks. On each
resource we assume a fixed-priority schedule.

3.2. Event Model
Event streams have been first defined in [6]. The basic idea is to define an event function

η(∆t,Θ) which describes the maximum amount of events occurring in an interval of length
∆t. The event function needs a properly described model which makes it easy to extract the
information.
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Fig. 1: Example of three different event streams

3.2.1. Maximum Event Streams: The idea
of the maximum event streams is to write
for any given number of events the minimum
interval in which this number of events can
occur. Therefore we get an interval for one
event, two events and so on.

The length of the interval for one event is
infinitesimal small and therefore considered to
be zero. The result is a sequence of interval
lengths showing a non-decreasing behavior.
The reason for this behavior is, that the min-
imum interval length for n events cannot be
smaller than the minimum interval length for
n−1 events since the first interval also includes n−1 events.

Definition 1: A maximum event stream is a set of event stream elements θ : Θ+= {θ1,θ2, ...,θn}
and each event stream element θ =(p,a) consists of an offset-interval a and a period p. The event



function of the maximum event stream has the property of sub-additivity: η(∆t1 +∆t2,Θ+) ≤
η(∆t1,Θ+)+η(∆t2,Θ+).

This means that the maximum number of events of an interval cannot exceed the cumulated
maximum number of events of its subintervals. Each event stream element θ describes a set of
interval lengths {aθ + k · pθ |k ∈ N} of the sequence. The event function is defined as follows:

Definition 2: The event function calculates the number of events for a given event stream Θ

and a given length of the interval ∆t:

η(∆t,Θ) = ∑
θ∈Θ

aθ≤∆t

⌈
∆t−aθ

pθ

⌉
(1)

Events that occur exactly at the end of the interval ∆t = [t1, t2) have not to be considered,
because the executions of the considered tasks have just finished before the new events arrive.
The inverse function to the event function is the interval function.

Definition 3: The interval function calculates the smallest length of the interval in which the
given number of events n occur in the given event stream Θ:

∆t(n,Θ) = in f{∆t|η(∆t,Θ)≥ n} (2)

With an infinite (∞) period it is possible to model irregular behaviour of periodic events. A
detailed definition of the concept and the mathematical foundation of the event streams can be
found in [1].

Example 1: In figure 1 some examples for event streams can be found. The first one Θ
+
1

= {(p,0)} has a strictly periodic stimulus with a period p. The second example Θ
+
2 = {(∞,0),

(p,p-j)} shows a periodic stimulus in which the single events can jitter within a interval of size
j. In the third example Θ

+
3 = {(p,0),(p,0),(p,0),(p, t)} three events occur at the same time and

the fourth occurs after a time t. This pattern is repeated with a period of p. Event streams can
describe all these examples in an easy and intuitive way.

3.2.2. Normalized Event Streams: The introduced model allows an event stream to be
described in several ways. For an efficient implementation of the approach we define a normalized
event stream as introduced in [7]. By means of this normalization the interval function can be
efficiently computed. For a detailed description how to transform an event stream to a normalized
event stream and how the interval function can be described efficiently see [7]. In the following
we use the definition:

Definition 4: A normalized event stream Θ has the form:

{(∞,a1), . . . ,(∞,am),(p,am+1), . . . ,(p,an)} : (0≤ m≤ n∧ai ≤ a j⇔ i≤ j) (3)

We define further that N∞ = m is the number of aperiodic elements of an event stream and
Np = n−m is the number of periodic elements of an event stream. With definition 4 we can
formulate the utilization of a task τ as follows:

Definition 5: The utilization of a task τ and its normalized event stream Θ+
τ is defined as:

Uτ =
Np · c+τ

p
(4)

4. Real-Time Analysis
In order to get tighter bounds for the response times we combine the event stream model

with the real-time analysis from Tindell and Clark presented in [15]. As described in [15] in
each global iteration step of the real-time analysis the worst-case response time and the outgoing
stimulation for each task in the system are computed until a fix-point is found. The convergence
of the global fix-point iteration is proven in [14].

First we have to show how the worst-case response time analysis can be performed and then
how the outgoing event streams can be determined. For this we define the term busy-window:

Definition 6: The busy-window of a task τ is the smallest interval greater zero in which the
execution demand of the jobs of the task τ itself or jobs of higher priority tasks ∀τi ∈ Γ : φτi < φτ

is completely executed.



4.1. Worst-Case Response Time
To calculate the worst-case response time of a task τ we have adapted the approach from [8].
Definition 7: If for all tasks ∀τ ∈ Γ the worst-case response time is smaller or equal to its

deadline r+(τ) ≤ dτ , the task set Γ is feasible and the real-time analysis is successful. The
worst-case response time of a task considering event streams can be calculated by:

r+(τ) = max
k∈[1,m]

{r+(k,τ)−∆t(k,Θ+
τ )} m = min

n∈N
{n|r+(n,τ)≤ ∆t(n+1,Θ+

τ )}

r+(k,τ) = min{∆t|∆t = k · c+τ + ∑
τ ′∈ΓHP

η(∆t,Θ+
τ ′) · c

+
τ ′}

The equations are similar to the definition of the worst-case response time introduced in [8].
Only the calculation of higher priority tasks (ΓHP) has been changed, because we use the event
stream model.

Assuming that ∆t is the smallest length of an interval in which all the execution demand
of the considered tasks have been processed k · c+τ . During the fix-point iteration we have to
verify whether more interrupts in this interval from the considered tasks can occur or not. So the
amount of execution demand produced by higher priority tasks can be calculated by the event
function η(∆t,Θ+

τ ′) multiplied by the worst-case execution time c+. By means of a fix-point
iteration the worst-case response time can be calculated for every job k in the busy-window as
shown in [8]. The convergence of the fix-point iteration is generally proven in [14].

4.2. Outgoing Event Density
Now, we will show how it is possible to determine the event density a task can produce. For

this we have to identify when the worst-case occurs. In order to prove our presumptions we
define the following terms:

Definition 8: The completion time r±(n,τ) of the n-th job is the interval from the request of
the first job up to the point in time where the n-th job has finished its execution. The response
time of a job is the completion time r±(n,τ) minus the request time ∆t(n,Θ+

τ ).
Now we define how it is possible to determine the maximum event density which can be produced
by a task.

Lemma 1: A number of outgoing events occur in maximum density when the first event
occurs as late as possible and all further events occur as early as possible. So the maximum
event density is bounded by:

∆tmin(n,τ) =
{

0 n = 1
max(∆t(n,Θ+

τ ),r
+(τ)+∆tmin(n−1,τ))+ c−τ − r+(τ) n > 1 (5)

Proof: The proof is a proof by contradiction and we have to show that it exists no interval
∆t lower than the interval in the assumption.

Case 1 (n = 1): According to the maximum event stream definition one event occurs in the
interval 0.

Case 2 (n > 1): Assuming an interval ∆t which is smaller than max(∆t(n,Θ+
τ ),r

+(τ) +
∆tmin(n−1,τ))+ c−τ − r+(τ) and i, j ∈ N : j− i+1 = n. Then it follows:

∆t < ∆t(n,Θ+
τ )+ c−τ − r+(τ)

∆t( j,Θ+
τ )+(r±( j,τ)−∆t( j,Θ+

τ ))− (∆t(i,Θ+
τ )+(r±(i,τ)−∆t(i,Θ+

τ )) < ∆t(n,Θ+
τ )+ c−τ − r+(τ)

This is a contradiction, since ∆t( j,Θ+
τ )−∆t(i,Θ+

τ )<∆t(n,Θ+
τ ) violates the sub-additivity from

definition 1, r±( j,τ)−∆t( j,Θ+
τ )< c−τ the definition of the best-case execution time and r±(i,τ)−

∆t(i,Θ+
τ )> r+(τ) the definition of the worst-case response time. So we have to consider

∆t < (r+(τ)+∆tmin(n−1,τ))+ c−τ − r+(τ)
∆t( j,Θ+

τ )+(r±( j,τ)−∆t( j,Θ+
τ ))

−(∆t(i,Θ+
τ )+(r±(i,τ)−∆t(i,Θ+

τ )) < (r+(τ)+∆tmin(n−1,τ))+ c−τ − r+(τ)



From the discussion above we know ∆t(n,Θ+
τ ) is a bound for ∆t( j,Θ+

τ )−∆t(i,Θ+
τ ) and it

follows:

∆t(n,Θ+
τ )+(r±( j,τ)−∆t( j,Θ+

τ ))− (r±(i,τ)−∆t(i,Θ+
τ ))< (r+(τ)+∆tmin(n−1,τ))+ c−τ − r+(τ)

But this is also a contradiction, since the n-th job cannot be executed until the previous job
has been finished ∆t(n,Θ+

τ ) < (r+(τ)+∆tmin(n− 1,τ)), r±( j,τ)−∆t( j,Θ+
τ ) < c−τ violates the

definition of the best-case execution time and r±(i,τ)−∆t(i,Θ+
τ )> r+(τ) the definition of the

worst-case response time. So equation (5) bounds the length of the interval in which n events
can occur.
By means of equation (5) it is possible to calculate the outgoing event streams in the system.
For an efficient implementation of the interval function the normalized event streams are used.
Lemma 1 in conjunction with the methodologies introduced in [7] extracts the concrete outgoing
event stream. In an analogous way we could define minimal event streams and the corresponding
best-case response time analysis. But for brevity these definitions and lemma are omitted.

5. Runtime Improved Real-Time Analysis
Next, we will show how the runtime of the analysis can be improved. Thereby we focus

on reducing the number of jobs that have to be considered during a worst-case response time
analysis in a busy-window as shown in figure 2.
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Fig. 2: Job reduction by upper and lower bounds.

Sjoedin and Hansson have presented in
[13] several methods on how to reduce
the run-time complexity of the response-
time analysis. The main idea of their
presented methods is to define lower
bound conditions where the analysis can
start without changing the result of the
analysis. This allows to skip every evalu-
ation up to these lower bound conditions.
This has been improved in [11] and is
adapted in section 5.1 to the event stream
model.

We also introduce in section 5.2 a condition which allows us to stop evaluating jobs as early
as possible. It is based on the upper bound condition presented in [2] for a sufficient analysis
by Bini and Baruah. This bound has been extended in [11] to incorporate task jitter and used
to improve the performance of the exact analysis.

5.1. Lower Bound Condition
An improvement of the lower bound condition kmin is given in [11]. The idea of this approach

is the following: If between two successive events the distance is smaller or equal to the worst-
case execution time of the task, the response time of the first event is smaller or equal to the
response time of the second event. So we can determine the lower bound condition by the
following lemma:

Lemma 2: The starting job of the worst-case response time can be described by:

kmin = min
k∈N
{k|∆t(k+1,Θ+

τ )−∆t(k,Θ+
τ )> c+} (6)

Proof: First we show, if the distance between any two events (k and k+1) is smaller than the
worst-case execution time then the response time of the k+1st job is greater than the response
time of the k−th job. We start with the condition from the lemma 2:

∆t(k+1,Θ+)−∆t(k,Θ+) ≤ c+

⇒ ∆t(k+1,Θ+)−∆t(k,Θ+) ≤ r+(k+1,τ)− r+(k,τ)
⇔ r+(k,τ)−∆t(k,Θ+) ≤ r+(k+1,τ)−∆t(k+1,Θ+)



It follows that the response time of the k−th job is smaller than the response time of the k+1st
job. So we can conclude that the following implication holds:

∆t(k+1,Θ+)−∆t(k,Θ+)≤ c+⇒ r+(k,τ)−∆t(k,Θ+)≤ r+(k+1,τ)−∆t(k+1,Θ+)

Since the condition is an implication we are not able to determine what happens when the
condition does not hold. So we can only conclude that the first jobs for which the proposition
∆t(k+1,Θ+)−∆t(k,Θ+)≤ c+ holds can be omitted for the worst-case response time analysis.

We can now integrate this new bound into the worst-case response time analysis as follows:
Definition 9: The worst-case response time can start at the job kmin

r+(τ) = max
k∈[kmin,m]

{r+(k,τ)−∆t(k,Θ+
τ )} m = min

n∈N
{n|r+(n,τ)≤ ∆t(n+1,Θ+

τ )} (7)

5.2. Upper Bound Condition
After improving the lower bound condition of the starting job of the tasks, we will now derive

a new condition which will allow us to skip the evaluation of all remaining jobs from the point
where the new condition holds. The new approach is based on the upper bound condition for
the response time given in [2]. This upper bound condition is adapted to the event stream model
by extending the upper bound condition of the workload. Bini and Baruah presented in [2] a
sufficient feasibility test, in which they characterize the completion time as follows:

Ik
i = Xi−1(k · c+τ ) (8)

where Xi(h) = mint{t : Hi(t)≥ h}, with Hi(t) = t−Wi(t) being the worst-case idle time and Wi(t)
being the worst-case workload of the i highest priority tasks over an interval of length t [2].

To adapt this technique to normalized event streams we will show how a sufficient test with
event streams can be performed.

Lemma 3: An upper bound for the completion time of a task with normalized event streams
is given by:

rup(k,τ) =

kc+τ − ∑
τ j∈ΓHP

max
N∞<l≤|Θ+

τ j |
(Uτ j(∆t(l,Θ+

τ j
)+ c+τ j

)− lc+τ j
)

1− ∑
τ j∈ΓHP

Uτ j

(9)

and therefore an upper bound for the response time is: rup(k,τ)−∆t(k,Θ+
τ ).

Proof: An upper bound condition of the workload is a linear function given by w(t)=Ut+x.
To calculate the upper bound condition for a given task it is necessary to compute the constant
x, which is performed by solving the equation w(∆t(k,Θ+

τ )+c+τ ) = k ·c+τ giving us the following
value: x =−Uτ · (∆t(k,Θ+

τ )+ c+τ )+ k · c+τ
At this point we have to show which intervals ∆t and which k we have to consider in order to

determine the constant. Since we can have more than only one periodic element in a normalized
event stream, we have to consider each of them. This is founded by the fact, that we need the
greatest value for x, so that the resulting straight line is always over the originally curve. So it
follows: x = max

N∞<l≤|Θ+
τ j |
(−Uτ j(∆t(l,Θ+

τ j
)+ c+τ j

)+ lc+τ j
)

With this constant we are able to transform the upper bound of the workload like Bini and
Baruah have shown in [2]. So we get for the workload:

W ub
τ (∆t) = ∑

τ j∈Γ

Uτ j ∆t− ∑
τ j∈Γ

max
N∞<l≤|Θ+

τ j |
(Uτ j(∆t(l,Θ+

τ j
)+ c+τ j

)− lc+τ j
)

From this the idle time follows as defined in [2]:

H lb
τ (∆t) = ∆t(1− ∑

τ j∈Γ

Uτ j)+ ∑
τ j∈Γ

max
N∞<l≤|Θ+

τ j |
(Uτ j(∆t(l,Θ+

τ j
)+ c+τ j

)− lc+τ j
)



We then get the pseudo-inverse from the idle time as defined in [2]:

Xub
τ (h) =

h− ∑
τ j∈Γ

max
N∞<l≤|Θ+

τ j |
(Uτ j(∆t(l,Θ+

τ j
)+ c+τ j

)− lc+τ j
)

1− ∑
τ j∈Γ

Uτ j

This leads finally to the upper bound condition:

rup(k,τ) =

k · c+τ − ∑
τ j∈ΓHP

max
N∞<l≤|Θ+

τ j |
(Uτ j(∆t(l,Θ+

τ j
)+ c+τ j

)− lc+τ j
)

1− ∑
τ j∈ΓHP

Uτ j

By means of this upper bound we are able to define a sufficient real-time test with event
streams:

Lemma 4: If the following condition holds for all elements in an event stream the task τ will
meet its deadline:

1≤ k ≤ |Θ+
τ | : r+up(k,τ)−∆t(k,Θ+

τ )≤ dτ (10)

Proof: We have to show how many jobs have to be considered in the busy-window. Since
we assume that we have to perform the test for each tuple in the event stream only once, we only
have to show that the approximation of the jobs produced by a periodic tuple is monotonically
non-increasing. So the following condition must hold:

rup(k+Np,τ)−∆t(k+Np,Θ
+
τ )≤ rup(k,τ)−∆t(k,Θ+

τ ) (11)

Since we consider the same tuple, we have the same constant and therefore we can omit the max
operation. Further note that ∆t(k+Np,Θ

+
τ )−∆t(k,Θ+

τ ) = p. So we can transform the assumption
as follows:
(k+Np) · c+τ − ∑

τ j∈ΓHP

(Uτ j(∆t + c+τ j
)− lc+τ j

)

1− ∑
τ j∈ΓHP

Uτ j

−∆t(k+Np,Θ
+
τ ) ≤

k · c+τ − ∑
τ j∈ΓHP

(Uτ j(∆t + c+τ j
)− lc+τ j

)

1− ∑
τ j∈ΓHP

Uτ j

−∆t(k,Θ+
τ )

(k+Np) · c+τ
1− ∑

τ j∈ΓHP

Uτ j

≤ k · c+τ
1− ∑

τ j∈ΓHP

Uτ j

+ p

Npc+τ
1− ∑

τ j∈ΓHP

Uτ j

≤ p

Npc+τ
p

+ ∑
τ j∈ΓHP

Uτ j ≤ 1

It follows that we have an utilization less or equal than one and therefore our assumption is true.
This finally means that only the first job produced by a periodic element has to be considered
and therefore each element has to be considered only once.

Now we can finally formulate the condition which will reduce the number of jobs which have
to be considered by the worst-case response time analysis.

Corollary 1: The remaining jobs in the busy-period can be omitted when the following
condition holds:

kmax = min
k>N∞

{k|∀k≤ j<k+Np : rup( j,τ)−∆t( j,Θ+
τ )≤ max

1≤x≤ j
(r+(x,τ)−∆t(x,Θ+

τ ))} (12)

Proof: The approximation applies only for periodic elements. So the worst-case response
times for aperiodic elements must be computed exactly (k ≤ N∞). Since we have shown in
lemma 4 that the approximation for the jobs generated by one element is monotonically non-
increasing, we have to check whether the condition holds for every periodic element. If the



condition holds for every periodic element the worst-case response time has been found an the
remaining jobs can be omitted.

We can now integrate this new bound into the worst-case response time analysis as follows:
Definition 10: The number of jobs considered during a worst-case response time analysis is

bounded by the condition:

r+(τ) = max
k∈[kmin,m]

{r+(k,τ)−∆t(k,Θ+
τ )} m = min(kmax,min

n∈N
{n|r+(n,τ)≤ ∆t(n+1,Θ+

τ )}) (13)

6. Experiments
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τ 1 2 3 4 5 6 7 8 9 10 11 12
c−[t.u.] 20 20 1500 300 5 8 1000 500 5 4 900 1000
c+[t.u.] 20 20 1500 300 5 16 1000 1000 15 4 1200 1100

Fig. 3: System used for the experiments

Next, we will present the results of the
experiments we have conducted. The sys-
tem depicted in figure 3 consists of twelve
tasks which are distributed equally between
three processing elements. Their priorities
are also described in figure 3. The best-case
and worst-case execution time of each task
is listed in the table in figure 3.

The system has been analyzed with the
periodic model with jitter [15] (PJ), the peri-
odic model with jitter and minimal distance
[12] (PJD) and the event stream model (ES)
as introduced in this paper. We compared
the resulting average worst-case response
times over all tasks and the runtime of
the different models. In the experiments the
average system utilization has been varied from 50% to 99.5% (step size 0.5) by modifying the
input stimulation S1, S3 and S6. In order to vary the input stimulation only the period and the
jitter have been modified and mapped to the different event models. The jitter was up to five
times the period. For each utilization step the average of 100 variations has been taken.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 50  55  60  65  70  75  80  85  90  95  100
 0

 20

 40

 60

 80

 100

a
v
e
ra

g
e
 w

o
rs

t-
c
a
s
e
 r

e
s
p
o
n
s
e
-t

im
e
 [
t.
u
.]

a
v
e
ra

g
e
 w

o
rs

t-
c
a
s
e
 r

e
s
p
o
n
s
e
-t

im
e
 r

a
ti
o
 [
%

]

utilization [%]

ES vs. PJ
PJ

PJD
ES

ES vs. PJD

Fig. 4: Average wcrt (Absolute and Ratio)

For each event model four variations were
used. One with the lower bound as intro-
duced in section 5.1, one with the upper
bound as introduced in section 5.2, one with
both bounds and one with no bounds. For
each model the variation with no bounds is
used as reference for the other variations
regarding their runtime. For all variations
the runtime was measured as well as the av-
erage calculated worst-case response time.

In figure 4 the average worst-case
response-time over all tasks for each event
model is shown. Also the relative improve-
ments of the event stream model compared
to the other two models are shown. As ex-
pected the PJD-Model delivers better results
than the PJ-model and the event stream model delivers better results than both the PJD-model and
the PJ-model. Especially between a utilization of 67% to 89% we have a significant improvement
of the worst-case response times of the event stream model. The ES-model computes up to
19% lower worst-case response-times than the PJD-model and up to 56% lower response times
compared to the PJ-model.

The result is that the usage of the event stream model during a design space exploration can
lead to improved response times and thus a slower processor can be used eventually reducing
energy consumption and costs.
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Fig. 5: Comparison of the runtimes of the different models

An overview of the average runtime that was needed by the reference and the variation using
both bounds of each event model is shown in figure 5a. It can be clearly seen, that the event
stream model needs more time than the other models. This is due to the fact that event streams
are able to describe the event density more accurately. In contrast both periodic models need
considerable less time due to their simpler model. Nonetheless reducing the number of jobs that
have to be considered in the analysis by the introduced bounds has a big impact on the runtime
of all three models. Especially when the utilization of the system is very high the runtime is
reduced significantly.

For a better understanding of the job reduction from section 5 we have considered the lower
and upper bound separately. In figure 5b the PJ-model is considered. By using only the lower
bound, the runtime is reduced to about 60 percent of the reference at medium utilization levels.
With increasing utilization of the system the runtime converges to the runtime of the reference.
Using only the upper bound on the other hand leads to a converse behavior. At medium utilization
levels the runtime reduction is rather low, but with increasing utilization the upper bound leads to
a significantly reduced runtime. A similar impact of the bounds can be seen for the PJD-model
in figure 5c.

Using the lower bound with the event stream model depicted in figure 5d has nearly to no
impact on the runtime. The upper bound, however, has again a big impact, leading to a reduction
of the runtime to about 5 percent of the reference at very high utilization levels. Using both
bounds leads to a slightly improved runtime compared to using only the upper bound.

7. Conclusion
In order to avoid oversized processors during a design space exploration for an embedded

system architecture it is necessary to determine the worst-case response time of the tasks exactly



when evaluating the real-time constraints. In this paper we have used the holistic real-time
analysis introduced in [15] and adapted it for the expressive event stream model of Gresser
[6]. By means of this model it is possible to calculate the worst-case response times of the
tasks more precisely. In the experiments we have up to 56% better response times versus the
PJ-Model from Tindell and Clark and up to 19% better response times versus the PJD-Model
from the SymTA/S approach. Due to improved response times resulting from the event stream
model slower processors can be used reducing energy consumption and costs.

During a design space exploration we need fast algorithms in order to calculate the response
times in a distributed system. For this we have shown how lower and upper bounds for the
number of jobs which have to be considered can be used to reduce the runtime of the analysis.
For this the improvements of [2], [11] and [13] are combined and extended to the event stream
model. The event stream model in conjunction with these bounds is an event model which
fulfills the constraints of fast runtime and exact response times very well. There is certainly
a trade-off between runtime and accuracy but we believe that only expressive event models
in combination with fast algorithms can cope with requirements of industrial companies in the
future. A limitation is that adaptive analysis techniques cannot be easily applied on the introduced
method.

The next step is to integrate this methodology into a design space exploration. The improved
worst-case response times lead presumably to better design solutions and the introduced runtime
improvements will cope the computation time complexity.
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