
Project Management through States
Benjamin Menhorn

Department of Embedded Systems/Real-Time Systems
Ulm University

89069 Ulm, Germany
benjamin.menhorn@uni-ulm.de

Frank Slomka
Department of Embedded Systems/Real-Time Systems

Ulm University
89069 Ulm, Germany

frank.slomka@uni-ulm.de

Abstract—Looking at computer science, rising complexities,
durations and costs for software and hardware development
make it necessary to employ a new holistic model to manage
those development processes. This paper introduces a new model
which is based on abstract states in order to calculate a project’s
complexity. Based on this complexity it is now possible to estimate
key variables such as costs, duration and progress. An abstract
definition of states allows users to adjust this model to their
project and to their specific requirements.

I. INTRODUCTION

A. Motivation
Project management has become a major issue for mod-

ernly organized companies. Most engineering disciplines exert
well defined methods and models to manage, control and
evaluate projects. But in computer science, the management
of hardware and software projects is still very weak. This
expresses not only in cost and time overruns but also in a high
cancellation rate of such projects. For hardware development it
is not enough to simply count transistors on integrated circuits
anymore [1].

The most common cost model in software development
COCOMO (COnstructive COst MOdel) is based on lines of
code [2]. Costs and duration of a project are adjusted by a
questionnaire which determines its complexity. An empirical
study of Chris Kemerer analyzed the accuracy of cost models
on 15 large completed business data processing projects and
has shown a mean error of 600% for projects planned with
COCOMO [3].

A better model enables project managers to set a tighter
framework to a project. A good project management has to
cover three basic purpose fields: a project should a) fulfill its
requirements (appropriate), b) in the given time (in time) and
c) with the given budget (cost effective) [4]. To achieve those
goals, mathematical methods will be presented in the next
sections which allow the determination of a project’s relevant
variables by using states.

Furthermore, this model reduces the demand for empirical
data. Today, most models base their estimations on empirical
data [5]. Gathering this data is expensive and challenging. With
fast changes in technology as well as with new abstraction
layers, a data comparison from different projects is difficult
[6].

B. Contribution
This model is not limited to hardware and software devel-

opment but has to proof itself primarily in these areas. The

demand for a good model in computer science is high in
order to get more and more complex projects under control
and keep them within certain cost and duration bounds. But
the definitions made in the following are based on abstract
formulations and can also be used in other development fields.

The primary output of this model is a calculation of a
project’s complexity. The complexity then allows the deter-
mination of costs, duration and progress of a project.

Complexity can often be considered to be a measure of a
project’s disorder, which is a property of a system’s state. It
varies with changes made at possible states of a system. Look-
ing at physics, especially at thermodynamics and statistics, the
measurement of complexity comes along with entropy [7]. But
entropy is not unknown in computer science. C. E. Shannon
also used this term to describe information in a transmitted
signal or message [8].

With knowledge of the amount of possible states as well as
in- and outputs of a project the complexity of this project
can be calculated. As in thermodynamics and information
technology the term entropy is used to describe complexity.
Altogether, states enable one to calculate entropy and with
changes on the project and therefore on its states the entropy
can be influenced.

II. STATES

States as a key variable of this model will be now explained
in detail. It is important to note that the term ”states” represents
the amount of possible states in terms of inputs, outputs or
states of a module, component or elementary part. For different
projects, states have to be defined by their purpose. Different
examples will be explained in the section about working with
states.

A. Elementary modules

By adding the complexity of several modules, the complex-
ity of an overlaying module can be determined. This leads
to the ability to calculate the complexity of a whole project.
Figure 1 illustrates the steps. Module A is an elementary
module which can not be subdivided. Module A and the three
B modules form a submodule (grey). This submodule and the
modules C form together the whole project. The C modules
can also have submodules on their own.

The approach to divide a project/module into submodules is
similar to other project management methods (e.g. [9]). But it
is essential that it has to be mentioned here. The particularty

C

C

C

C C

BB

B
A

Fig. 1. Calculation a project’s complexity

is that also connections and interactions between modules are
taken into consideration. This will express in the definitions
presented in the next section.

B. Calculating the complexity

The theory of calculating a project’s complexity through
states has been presented in [10]. The two equations necessary
for this paper are given in the following.

Definition 1 (Behavior entropy)
The behavior complexity of a module or project is given by
the number of inputs n, the number of outputs m and the
number of possible states z and is called behavior entropy SB .

SB = m · ln (zn) (1)

Definition 2 (Structure entropy)
A project/module consisting of k modules/elementary modules
with ni inputs and mi outputs i = 1, . . . , k has a structure
entropy SS which can be seen as the complexity of this
project/module.

SS =
k∑

i=1

miz
ni ln (zni) (2)

It was already mentioned that this model also takes relations
between modules, submodules and elementary modules into
account. This can be found in the equations. They clearly
show that the behavior entropy is different from the structure
entropy. The structure entropy can not be determined by just
adding the behavior entropy of single submodules.

With these two definitions a project’s complexity can be
calculated. Therefore the structure entropy of modules is
calculated. The structure entropy of all modules is a project’s
entropy. The behavior entropy is used when other modules
refer to other modules in a project. In this case the referred
module is used and not created. The usage of a module that
is already created is less complex than the creation of it.
Therefore the behavior entropy is always less or equal to the
structure entropy SB ≤ SS . In the following section it is
explained how states in general and their amount in particular
can be determined.

C. Working with States

In this section some examples of states and the possible
amount of states for a variable are given. As the first example
a boolean logic is used. In digital circuits connections can
either be set to ”low” or ”high” expressing a digital ”0” or
”1”. Hence a connection and therefore an input or output of a
gate on a chip can have two possible states. In the equations
z would then be two (z = 2).

If boolean logic is extended to standard logic used in
modeling circuits with VHDL (Very-High-Speed Integrated
Circuits Description Language) there can be nine different
states, z = 9 (IEEE Standard 1164 1993) [11]. But the number
of states depends on the purpose. The nine states can also be
grouped according to their effect on the circuit. For example
could states be also grouped by their synthesizeable values
”1”, ”0” and ”Z”.

It’s becoming more clearly when looking at software vari-
ables. An integer value, for example, can have (depending on
the architecture) 28 possible states. While most of the states
lead to the same action, it doesn’t make sense to set z to
28. Allow for the use of a variable, different states can be
identified: for example in loops those could be: lower out of
bounds, lower loop limit, lower inside loop, higher inside loop,
higher loop limit and higher out of bounds. For example with
an loop for(int i = 0; i <10; i++){} this would
be -1,0,1,9,10,11.

In further publications standard cases for setting up states
will be discussed. Here the idea of states was given in order
to understand how it looks like to apply a state based model
on practical examples.

III. PROJECT MANAGEMENT

A. From states to the key values

The key values of this model are states. In the previous
section it was already shown how states can be used to
determine the complexity of a project. But also a project’s
progress, costs and duration can be determined by using states.
Figure 2 shows that states allow to determine the complexity
of a project, while complexity then allows to determine a
project’s progress, costs and duration. Costs and duration are
written in italic, because of the human influence. As soon
as human beings have to be taken into account an exact
calculation of variables is impossible. There are more and
less talented workers, faster and slower workers and also
unexpected events like illnesses, crashes or machine failures.
These influence factors can’t be determined in advance.

This model enables a user to determine the ratio between
complexity and costs or duration very easily. The complexity
of a completed project has to be determined and the total
costs can be divided by the entropy. As it can also be done
for the duration. The more projects are analyzed the better
the average value gets. But basically one previous project is
enough to determine how much the realization of one state
costs and how long it will take. This leads to the claim of
linearity discussed in the next section.

States

Complexity

ProgressCosts Duration

Fig. 2. Model Purpose

B. Linearity

Using states and calculating the entropy enables a linear
calculation of cost, duration and progress. Costs per entropy
unit (CPU) and duration per entropy unit (DPU) determined
from previous projects can now be multiplied with the entropy
in order to the determine the currents projects costs C and
duration D. The entropy used is the structure entropy of the
project plus the behavior entropy of the project.

C = (SS + SB) · CPU (3)

D = (SS + SB) · DPU (4)

The progress P of a project is the ratio between realized
structure entropy units and a project’s total entropy units.

P =
SS(realized)

SS(total)
(5)

IV. EXAMPLE

In this section an example project is discussed. The task is
to design a half adder. This example is used in order to easily
follow the theory of managing the project through states. It is
assumed that there are previous completed projects that can
be used to find out the costs and duration for the realization
of one state. We assume that the realization of an entropy of
ln (2) costs two monetary units (MU) and five time units (TU).
As mentioned above, these are the only empirical data needed
from previous projects in order to plan the next project.

A. Three kinds of realization

Figure 3 shows the specification of a half adder. It has two
inputs labeled x and y and outputs sum s and carry c. There are
different kinds of realizing a half adder. Three are shown here.
The most simple design would be implementation A shown in
figure 4 with an XOR and an AND gate. Implementation B
from figure 5 only consists of NAND gates. It has the same
amount of gates as implementation C illustrated in figure 6. It
will now be shown that the different implementations lead to
different complexities, progresses, development durations and
costs.

y

x

s

c
+

x y s c
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Fig. 3. Specification of a half adder

y
x

c

s= 1

&

Fig. 4. Half adder with an AND and a XOR Gate (A)

B. Planing the project

First of all the number of possible states needs to be
determined. In case under consideration a boolean logic leads
to two possible states ”1” and ”0” or ”high” and ”low” and
therefore z in equation 1 and 2 is two (z = 2). For the whole
implementation of a half adder two inputs (x and y) as well as
two outputs (s and c) can be found. They lead to a behavior
complexity of:

SB(HA) = mHA ln (2nHA) = 2 ln (22) = 4 ln (2) (6)

It gets more interesting when taking single gates into
account. AND, OR, NAND and XOR gates are each identified
by two inputs and one output. Therefore the complexity of
those gates is the same and according to formula 1:

SB(Gate) = mGate ln (2nGate) = 1 ln (22) = 2 ln (2) (7)

Inverters have only one input and one output. Therefore the
behavior entropy becomes:

y

x

c

s

&

&

&
&

&

&

Fig. 5. Half adder with NAND gates (B)

y
x

c

s

&

&

&
≥ 1

Fig. 6. Half adder with AND, inverter and OR gates (C)

SB(Inv) = mInv ln (2nInv) = 1 ln (21) = 1 ln (2) (8)

It looks logic that all gates have the same complexity. All of
them have two inputs and one output, furthermore their logic
tables have the same amount of entries. While an inverter has
only one input and one output the complexity has to be less
then the gates’ complexity. Comparing formula 7 with formula
8, the gates’ complexity is twice the inverters’ complexity.

Now the structure entropy for the three different realizations
of a half adder is calculated:

SS(A) = 1 · 22 · ln (22)︸ ︷︷ ︸
XOR

+ 1 · 22 · ln (22)︸ ︷︷ ︸
AND

= 8 ln (2) (9)

SS(B) =6 · 1 · 22 · ln (22)︸ ︷︷ ︸
NAND

= 48 ln (2) (10)

SS(C) =2 · 1 · 21 · ln (21)︸ ︷︷ ︸
Inv

+3 · 1 · 22 · ln (22)︸ ︷︷ ︸
AND

+ 1 · 22 · ln (22)︸ ︷︷ ︸
OR

= 36 ln (2)
(11)

Now costs and durations can easily be calculated by multi-
plying the structure plus behavior entropy of each realization
with the assumed 2 MU respectively 5 TU. It is exemplarily
shown for realization A. The results of all three realizations
are shown in figure 7.

C(A) = (16 ln (2) + 4 ln (2)) · 2 MU = 40 MU (12)
D(A) = (16 ln (2) + 4 ln (2)) · 5 TU = 100 TU (13)

0

50

100

150

200

250

300

A B C

Costs
Duration

Realization

MU/ TU

Fig. 7. Project’s costs and duration

As equations 3 and 4 already indicate, costs and duration
are linear to a projects complexity. Figure 7 illustrates this
very well. The project progress is also illustrated by plotting
the progress in percent on the y-axis and the relative amount
of realized modules on the x-axis. Thereby it is assumed that
in project A the inverters are realized at the end of the project.
Figure 8 shows the characteristics of the different realizations.

Because inverters have a lower entropy than the other gates
the implementation of the two inverters of realization C leads
to a lower complexity raise and therefore to a lower progress
raise. Comparing realization A and B, the implementation of

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,2 0,4 0,6 0,8 1

Realization A and B

Realization C

Realized modules
of total modules

Progress

Fig. 8. Project’s progress

one gate results in a 50% progress raise for A while in B it
is only 16.7%.

V. CONCLUSION

This paper has shown a new approach to manage the
development progress based on states. A project needs to be
subdivided into elementary modules, which enables a user to
determine the structure and behavior entropy of those modules.
A project’s costs, duration and progress can now be derived
from its complexity (entropy). The use of entropy has the
advantage that costs and duration are linear to the complexity.
And also the progress of a project is rising linear.

Further publications will test the new model against com-
monly used models in software and hardware development.
Also states should be defined more clearly in standard applica-
tions and for commonly used variables and factors in hardware
and software development. Remaining are field studies to show
the advantage of this model in praxis.

REFERENCES

[1] V. Ermolayev and W.-E. Matzke, “Towards industrial strength business
performance management,” in HoloMAS ’07: Proceedings of the 3rd
international conference on Industrial Applications of Holonic and
Multi-Agent Systems. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
387–400.

[2] B. W. Boehm, Software Engineering Economics. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1981.

[3] C. F. Kemerer, An empirical validation of software cost estimation
models. New York, NY, USA: ACM Press, May 1987, vol. 30, no. 5.

[4] H. Kerzner, Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, 8th ed. Wiley, February 2003.

[5] N. Hinrichs, P. Leppelt, and E. Barke, “Building up a performance
measurement system to determine productivity metrics of semiconductor
design projects,” in IEEE International Engineering Management Con-
ference (IEMC), Austin TexasErmolayev2007, IEEE, Ed. IEEE, 2007.

[6] P. Leppelt, A. Hassine, and E. Barke, “An approach to make semi-
conductor design projects comparable,” in 7th Asia Pacific Industrial
Engineering and Management Systems Conference (APIEMS 2006).
Asian Institute of Technology, 2006, pp. CD–ROM.

[7] K. Stowe, An Introduction to Thermodynamics and Statistical Mechan-
ics, 2nd ed. Cambridge University Press, 2007.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, 1948.

[9] T. DeMarco, Controlling Software Projects: Management, Measurement,
and Estimates. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1986.

[10] B. Menhorn and F. Slomka, “Entwurfsentropie: Ein Maß im Schal-
tungsentwurf,” in 7. GI/GMM/ITG-Workshop ”Multi-Nature-Systems”,
Ulm University, Department of Embedded Systems/ Real-Time Systems.
VDE, January 2009.

[11] K. L. Short, VHDL for Engineers. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 2007.

