
Design Entropy Concept

A Measurement for Complexity

Benjamin Menhorn and Frank Slomka
Institute for Embedded Systems/Real-Time Systems

Ulm University, Germany
{benjamin.menhorn|frank.slomka}@uni-ulm.de

ABSTRACT

In general, this work will deal with measuring complexity.
The focus question is towards addressing complexity in an
adequate way. This work concentrates on digital circuits
and digital hardware. For this field of computer science the
complexity for circuits will be calculated.
Therefore, a new complexity measure will be introduced,

called design entropy. It allows a mathematical calculation
of complexity resulting in figures. These allow a direct eval-
uation and comparison between different systems and real-
izations. The application and important capabilities of this
measurement will be demonstrated on different examples.

Categories and Subject Descriptors

B.6.m [Hardware]: LOGIC DESIGN—Miscellaneous

General Terms

Design, Measurement, Theory, Verification

Keywords

Complexity, Measurement, Entropy, Abstract, Model, States

Paper organization

This paper is organized as follows. Section 1 identifies a
general need for a new and different measurement for com-
plexity. The following section 2 describes the approach and
the goals of the design entropy concept. Section 3 analyzes
the origins for complexity and can deduce the formulas for
the design entropy. Before section 5 presents the formulas
of the concept section 4 will clarify some terminology. The
final section 6 will apply the formulas on some different ex-
amples.

1. INTRODUCTION
Most engineering disciplines exert well defined methods

and models to manage, control and evaluate projects. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

determination of project size makes it possible to give state-
ments such as needed resources for development, how devel-
opment processes can be optimized and to compare different
projects and implementations [3] [6]. For determining sizes
of projects the main challenge is to get complexity under
control.

Computer science especially digital circuit design is a very
young science with only a few decades of experience. Addi-
tionally computer science is subjected to fast changes and
developments in technology. Therefore empirical data from
recent projects is hard to transfer to new projects and brings
high inaccuracies [9].

Today, most methods for estimating project size use em-
pirical data, by analyzing previous projects [8]. They try to
find key figures with which project sizes can be estimated
and compared. All those approaches are basically trying to
get complexity under control. But most of these approaches
only work for one certain technology, programming language
or description language. This indicates a need for an ab-
stract measurement, which can be used even with changes
in technology and new developments.

For digital circuits, simply counting transistors was suffi-
cient for an adequate estimation of project size in the be-
ginning of micro electronics. Today, with rising complexities
and sizes it is not enough to count transistors anymore [5].
In hardware design it is still possible to count transistors
and maybe connections. But it wouldn’t address complex-
ity in an adequate way. With hardware description lan-
guages additional abstraction layers are introduced. This
makes transistor counts very less significant as a complexity
measurement. Hardware design today gets more and more
equivalent to methods used in software engineering. If it
would be possible to give funded complexity estimations, at
the best represented by figures, project management models
from other engineering disciplines could be used.

One way to achieve this goal, is to become independent
from design methods and abstraction layers. Changes in
technologies and new inventions would then still allow to
use this model. And even more, a comparison between new
and previous projects would still be possible. This calls for
an abstract measurement.

2. DESIGN ENTROPY CONCEPT
It is important to have a model which can deal with dif-

ferent key aspects. For some projects key aspects are timing
constraints, for others design costs and even others concen-
trate on optimization. But it would not be possible to have
an applicable measurement for all concerns right away.

Therefore, this projects concentrates on digital circuits.
Always in mind, that the developed formulas and appli-
cations methods should be also applicable within different

computer science disciplines. But even concentrating on dig-
ital circuits leaves a huge field for measuring complexity.
As an important first step, the measurement of the cir-

cuit’s complexity was identified. At the beginning, this mea-
surement could then be applied on small and midscale ex-
amples in order to review its success.
The goal is to have an abstract measurement, which could

be applied on different abstraction levels. This would allow
the concept to be applied on an early development stage.
Projects could be planed using the complexity calculations.
But for the first step, the analysis starts with given circuits
or implementation codes.

Figure 1: General approach

Figure 1 shows this concepts approach. For a given circuit,
key variable values are determined. With these figures the
complexity for this circuit can be calculated, which is called
design entropy. The final concept will base statements about
project specific figures such as duration, costs, progress and
quality on the complexity values. But for now it should be
sufficient to calculate complexity values for circuits.
The core of the model are states. Complexity can be con-

sidered to be a measure of a system’s disorder which is a
property of a system’s state. Complexity varies with changes
made at the amount of possible states of a system. This in-
dicates that entropy can be used to measure project size by
using states. States are abstract variables which depend on
the analyzed property of a project. They can be used for
describing properties of hardware systems but also in other
contexts. For example with software or embedded systems.
States are abstract and do not directly depend on technolo-
gies, architectures and abstraction layers. These factors have
an influence on the amount of possible states.

3. ORIGIN AND DEDUCTION
In order to understand why a model with abstract states

as key variables could be able to address complexity in an
adequate way, this section will discuss the origins of com-
plexity. In particular the difference between regular and ir-
regular structures. This will allow a conclusive explanation
for using abstract states. The second half of this section
introduces one part of Shannon’s information theory. His
formula provides the starting point for the design entropy
formulas, which can be directly derived.

3.1 Regular and irregular structures
In context with integrated circuits, Moore’s Law is often

used to describe the development of complexity over time
[10]. Originally complexity was measured by Gordon Moore
in number of components per integrated function[11]. Later,
transistors per chip were counted instead of components.
The productivity measurement is related to transistors per
day in the ITRS 2007 edition [2]. Figure 2 plots productiv-
ity and complexity over time. According to the ITRS 1999
edition the complexity has an annual growth rate of 58%
while productivity has only a growth rate of 21% [1]. The
diverge is called design gap. A common opinion found in
literature bases the design gap on missing tools, abstraction

layers and design possibilities (e.g. [7]: “system-level design
and extensible processors can bridge the gap between sili-
con technology and actual SoC complexities”). This works
advances the view that the design gap is originally caused
by the difference between regular and irregular structures
itself.

log

Year

19
80

20
10

19
90

19
95

20
00

20
05

20
15

19
85

Technology capabilities
(Moore's Law)

Design gap

Hardware design
capabilities

Gates/Chip
Gates/Day

Figure 2: Design gap (Data from [4])

Memory, for example, is a regular structure for most parts.
Figure 3 illustrates an eight-bit wide memory. Each square
describes one memory cell and can hold one bit. With the
development of only one (elementary) memory cell the ba-
sic component for a memory is designed. This cell can be
copied in any quantity and put together to a grid. This grid
and a separately developed control logic composes a whole
memory. A simple control unit is only a (de-)multiplexer
and displayed on the left hand side of figure 3. The ideas of
developing one elementary cell and copying it in any quan-
tity comes together with the idea of reusing components. It
reduces the design complexity drastically.

8

8

x

Data in

Enable

Address

Data out

Write

Figure 3: Memory

In contrast to memory, processors are at most irregu-
lar structures. Of course, processors are not completely
irregular structures. For instance, adders can be reused
and processor internal cache also consists of single memory
cells. Processor control logics are a highly irregular structure
which is harder to design. There is no elementary cell that
can be copied in any quantity. By adding regular structures,
for example by increasing the processor’s memory (cache),
the throughput can be increased. By reducing the complex-
ity of irregular structures at the same time, e.g. by using
RISC (Reduced Instruction Set Computer) architectures,
the ratio between regular and irregular structures can be
enhanced in favor of less complex designs.

Smaller elements allow a higher gate (transistor) density.
The same chip area then comprises more elements. Having
more elements on the same chip area leads to more con-
nection possibilities for the same area. Filling an area with
regular structures in less complex. Filling the same area
with irregular structures requires more time and effort.

Moor’s Law describes the technical possible or in other
words the highest gates/transistors density. The highest

gate density can be found in memories, an highly regular
structure. But chip design comprises more than adding regu-
lar structures together. Designing irregular structures leads
to a slower productivity growth because of the higher com-
plexity.
Defining complexity over connections and states allows

to consider this divergence. Building memory cells reduces
the connection possibilities of the including gates. Only the
cells have to be connected. There are less possible states
the system (in this case the chip design) can presume. When
building a processor control unit there are almost no elemen-
tary cells. Therefore, there are many possibilities to connect
gates. This increases complexity by having a larger amount
of possible states.
Additional abstraction layers and design tools shorten the

gap between technology capabilities and design capabilities.
Those approaches reduce the decision possibilities for design-
ers and engineers. Thereby the amount of possible states of
a system is reduced. But the cause of the design gap is due
to the difference between regular and irregular structures
itself.

3.2 Shannon’s information entropy
The formulas for the design entropy concept can be de-

rived from Shannon’s information entropy. Signals between
components can be seen as a transmission of information.
Connections are the channel and information is symbols
transfered from a pool of available symbols. Connections
allow to interchange information. In digital hardware con-
nections are normally realized by wires. In software infor-
mation interchange can happen through assignments, calls
or statements, for instance. But it is still transmission of in-
formation between components. For instance an assignment
between two variables: a := b: The information (=value)
from component (=variable) b is transmitted (=assigned) to
component (=variable) a.
In order to give mathematical statements about transmit-

ted information, Claude Elwood Shannon developed a model
which became famous as Shannon’s information theory [12].
The form of his theorem (see (1)) is recognized as that of
entropy as defined in certain formulations of statistical me-
chanics (e.g. [13]), where pα is the probability of a system
being in cell α of its phase space. H is from Boltzmann’s
famous H theorem and the constant K merely amounts to
a choice of a unit of measure [12]. According to C. E. Shan-
non, J. W. Tukey suggested to call the information content
I = 1 bit for devices with two stable positions. This work
doesn’t assign a unit to the calculated entropy.

H = −K
N∑

i=1

pα log pα (1)

For calculating complexity only the maximum entropy is
relevant. Entropy is used as a measurement for complex-
ity. Intuitively, complexity is larger in uncertain situations.
Therefore it is only of interest, what the maximal complexity
for a component is. The entropy becomes maximal in case
all possibilities are uniformly distributed. Figure 4 plots the
entropy as a function of p in case of two possibilities with
probabilities p and q = 1 − p. The entropy is given by:
H = −(p log p + q log q). As expected the entropy becomes
maximal when p = q = 0.5 holds. In this case the possibili-
ties are uniformly distributed.
In (1) pα is the probability that the elementary event α

occurs. H has its maximum, if every elementary event can
occur with the same probability. Then all pα are uniformly
distributed and pα = 1/N holds. Equation (1) can be rewrit-

H

p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4: Entropy for two possibilities

ten to (2).

Hmax = −
N∑

i=1

1

N
log

1

N
= logN (2)

In (2), N is the amount of possible symbols which can be
transmitted. For the transmission of information between
components N is the number of possible states. The channel
between components are connections. Figure 5 shows two
components. These two components have three connections.
Each connection can transmit a certain number of different
states (z1, z2 and z3).

BA

z1

z2

z3

Figure 5: Channel between two components

The first channel has z1 possible input symbols (states).
Therefore the maximum of H(z1) is H(z1) = logN = log z1.
For determining the entropy of all connections between com-
ponent A and B, all three channels have to be considered.
The joint entropy is then the sum of the single entropies
H(z1), H(z2) and H(z3).

H(A → B) = H(z1) +H(z2) +H(z3)

= log(z1) + log(z2) + log(z3)

= log(z1 · z2 · z3)

zo1

zo2

zi1

zi2

Figure 6: Connections of a component

In order to calculate the entropy for one component, in-
and outputs have to be considered. Figure 6 illustrates a
component. The entropy for the whole component is then

given by the joint entropy of all in- and outputs.

H(component) =H(inputs) +H(outputs)

= log(zi1) + log(zi2) + . . .

+ log(zo1) + log(zo2) + . . .

= log(zi1 · zi2 · . . .

· zo1 · zo1 · . . .)

= log

(
∏

i∈inputs

zi ·
∏

j∈outputs

zj

)

With the annotation for inputs from definition 5, for outputs
from definition 6 and for states from definition 7 the general
formula for the behavior entropy from definition 8 follows in
(3).

HB(c) = log





n(c)
∏

i=1

z(ni(c)) ·

m(c)
∏

j=1

z(mj(c))



 (3)

4. TERMINOLOGICALCLARIFICATIONS
Since this work is addressed to an interdisciplinary and

heterogeneous audience, it seems advisable to pay attention
to some terminological clarifications. This ensures that cru-
cial terms which appear have the same sense through differ-
ent communities. These definitions are taken as a basis for
the following section, where the design entropy concept will
be defined.

4.1 Component, behavior and structure
The design entropy formulas are always applied on com-

ponents. Therefore definition 1 provides information about
the term component. Depending on the context, a com-
ponent can also be called entity, block, class, function or
procedure. The core of the definition about components is
that projects can be partitioned. Those parts are closed
projects for themselves and called components. Definitions
2 to 4 define the terms behavior, structure and verification
complexity.

Definition 1 (Component). A component is either the
highest part of a project (e.g. top-level entity or main class)
or a closed part of a project with a defined (non infinite)
number of in- and outputs.

Definition 2 (Behavior complexity). The behavior
complexity (also called behavior entropy) gives a statement
about the (usage) complexity of a component.

Definition 3 (Structure complexity). The structure
complexity (also called structure entropy) gives a statement
about the implementation/realization complexity of a com-
ponent.

The behavior complexity does not allow for the actual im-
plementation complexity of a component. It only provides
complexity information about the usage of a component. It
can be compared to an outer or black box view on a com-
ponent. In contrast to the behavior complexity the struc-
ture complexity provides information how complex the im-
plementation/realization of a component is. This is similar
to an inner or white box view on a component.
But the terms inner and outer view are not adequate. For

the entropy calculations states of components are consid-
ered. Therefore the behavior complexity does on a certain

scale allow also a look inside. Consequently it is not com-
pletely an outer look. Also an inner view does not com-
pletely dissolve all inner operations. Components can have
closed sub components inside which are only considered by
their behavior entropy. Using the terms black and white box
would lead to confusion with verification in software engi-
neering. Therefore, based on hardware design descriptions,
the terms behavior and structure are used. These terms
address the difference and intend in an adequate way.

In general, the behavior complexity is used for instances
of implemented components. The structure complexity is
used to compare different realizations or different projects.
In order to determine the structure complexity of a compo-
nent, all including parts have to be considered. These parts
are mainly sub components with an own behavior complex-
ity. If these sub components have also been implemented,
their structural complexity needs to be considered, too. In
summary: everything implemented within a project and
all instances of components, disregarding if implemented or
reused, are considered for the structure complexity.

This section provides its last definition for the verification
complexity. As the term verification already indicates, this
measurement provides information about the complexity to
verify a component.

Definition 4 (Verification complexity). The ver-
ification complexity (also called verification entropy) gives a
statement on the complexity to verify all possible states of a
component and its parts.

Before giving the formulas for the design entropy in section
5, the following short part completes the preliminary defini-
tions.

4.2 Inputs, outputs and states
A component can have inputs, annotated with n. n(c) is

the amount of inputs of component c. A subscript indicates
the single inputs. For instance n1(c) is the first input from
component c. Considering n(c) inputs, nn(c)(c) is the name
for the last input. Outputs are defined analog with the letter
m instead of n.

This leads to three definitions: definition 5 for the inputs,
definition 6 for the outputs and definition 7 for the states of
the in- and outputs of a component.

Definition 5 (Inputs). For a given component c, n(c)
∈ N0 is the amount of inputs (sources) of component c. The
inputs are enumerated and entitled ni(c), i = 1, . . . , n(c) for
a component c with n(c) inputs.

Definition 6 (Outputs). For a given component c,
m(c) ∈ N0 is the amount of outputs (drains) of compo-
nent c. The outputs are enumerated and entitled mj(c), j =
1, . . . ,m(c) for a component c with m(c) outputs.

Every in- and output needs to have a defined, non zero and
not infinite number of states. Each state has to be differ-
entiable from each other state of the same in- or output.
Figure 7 illustrates how states for each in- and output are
annotated1. In this example the first input n1(c) and the
first output m1(c) have each two possible states: 0 or 1 (also
called true or false). The second input n2(c) and the second
output m2(c) have four possible states: in this example 00,

1Allocations of in- and outputs with the component have
been skipped in figure 7 in interest of readability. The com-
plete annotation should be n1(c) . . . nn(c)(c) instead of only
n1 . . . nn. Same for outputs of c with m.

01, 10 or 11. It is not important how single states look like,
only the amount of possible states is important. This leads
to definition 7 about the amount of possible states.

Definition 7 (States). For a given component c with
n(c) inputs and m(c) outputs, the amount of possible states
for the inputs is given by z (ni(c)) ∈ N, i = 1, . . . , n(c) and
for the outputs by z (mj(c)) ∈ N, j = 1, . . . ,m(c). The
amount of states has to be not infinite: z (ni(c)) < ∞ and
z (mj(c)) < ∞.

c
n1

n2

n3

nn-1

nn

m1

m2

m3

mm-1

mm

{0|1}

{00|01|10|11}

z(n3)

z(nn-1)

z(nn)

{0|1}

{00|01|10|11}

z(m3)

z(mm-1)

z(mm)

Figure 7: States of the in- and outputs from compo-
nent c

5. DESIGN ENTROPY DEFINITIONS
The following definitions provide the framework for the

design entropy concept. Using the defined (key-)variables
from the previous section 4, all necessary information for
calculating the behavior, structur and verification entropy
is given. The most abstract and general statement about
a component is provided by the behavior entropy in defini-
tion 8. It is the same formula as deduced from Shannon’s
information entropy in equation (3).

Definition 8 (General Behavior Entropy). Let c
be a component with inputs (component sources) ni(c), i =
{1, . . . , n(c)} and outputs (component drains) mj(c), j =
{1, . . . ,m(c)}, where n(c) is the amount of inputs of c and
m(c) the amount of outputs of c. Let z(ni(c)), i = {1,
. . ., n(c)} be the amount of possible states of the inputs
n1(c) . . . nn(c)(c) and z(mj(c)), j = {1, . . . ,m(c)} be the
amounts of possible states of the outputs m1(c) . . .mm(c)(c).

Then the behavior entropy HB(c) ∈ R
+
0 of component c is

defined as:

HB(c) = log





n(c)
∏

i=1

z(ni(c)) ·

m(c)
∏

j=1

z(mj(c))



 (4)

In case a component has a constant number of states for all
in- and outputs (z(c) = z(ni(c)) = z(mj(c)) ∀i ∈ {1, . . . , n(c)}

&∀j ∈ {1, . . . ,m(c)}), equation (4) can be rewritten:

HB(c) = log






n(c)
∏

i=1

z(ni(c))
︸ ︷︷ ︸

=z(c)

·

m(c)
∏

j=1

z(mj(c))
︸ ︷︷ ︸

=z(c)






= log





n(c)
∏

i=1

z(c) ·

m(c)
∏

j=1

z(c)





= log










n(c)
∏

i=1

z(c)

︸ ︷︷ ︸

=z(c)n(c)

·

m(c)
∏

j=1

z(c)

︸ ︷︷ ︸

=z(c)m(c)










= log
(

z(c)n(c)+m(c)
)

= (n(c) +m(c)) · log (z(c))

Rewriting the equation leads to definition 9. This equation
for the behavior entropy can be applied in case all connec-
tions (in- and outputs) have an equal amount of states. Es-
pecially in hardware and integrated circuit designs, this for-
mula becomes dominating. Most connections between com-
ponents will have only two states: high or low. Therefore
in- and outputs will also have only two possible states.

Definition 9 (Behavior Entropy). Let c be a com-
ponent with n(c) inputs (component sources) and m(c) out-
puts (component drains). Each in- and output has z(c) pos-
sible states. Then the behavior entropy HB(c) ∈ R

+
0 of a

component c is defined as:

HB(c) = (n(c) +m(c)) · log (z(c)) (5)

Equation (5) illustrates that the behavior entropy is the sum
of all in- and output states. This expresses the number of
states a component. Because the behavior entropy has an
outer look on components and describes the complexity for
using components. The structure entropy allows for the im-
plementation of components and has therefore an inner look.
This statement is also valid for the general calculation of
the behavior entropy from equation (4) but it seems more
clear with the reduced equation (5). The amount of states
a component can have is the source for a higher or lower
complexity. Influencing this amount of possible states al-
lows controlling complexity. But in order to calculate the
complexity of a whole project with sub components it is
necessary to have the ability to treat those sub components
adequately. Which means that it is necessary to distinguish
between implemented/realized components and instances of
components. With this distinction the structure entropy
from the following definition 10 provides the ability to cal-
culate the structure complexity of a component. This ex-
presses the complexity for realizing this component.

Definition 10 (Structure Entropy). Let c be a
component with instances cb and implemented sub compo-
nents cs. Then the structure entropy HS(c) ∈ R

+
0 for com-

ponent c is given by the sum of all behavior entropies of all
instances cb and the structure entropy of all implemented
sub-components cs:

HS(c) =
∑

i∈cb

HB(i) +
∑

j∈cs

HS(j) (6)

Formula (6) realizes the recursive approach. The analysis
of a project normally starts at the highest level. The struc-
ture entropy sums up the structure entropy of all direct sub

components. Those sub components can have sub compo-
nents with structure entropies, too. In order to determine
the structure entropy of the whole project it is necessary go
through the project and calculate all structure entropies.
This is similar to tree traversals. The project has to be

parsed from the ”root node” to all ”leaves”. All components
with only a behavior entropy build leaves and all components
with structure entropies build the notes of the tree.
This recursive approach expressed in (6) is the modular

part of the design entropy concept. It allows to partition the
project. Reusability is supported by the difference between
behavior and structure entropy.
In order to give a measurement for the verification com-

plexity, the following formula is proposed. Theoretical re-
sults have shown that complexity in model-checking is expo-
nential proportional to the amount of properties to verified.
There are many publications, models and proposals about
the verification of a system. Therefore, the verification en-
tropy proposed here is an idea how to calculate the com-
plexity of a verification. It bases on the idea of the design
entropy concept but does not belong to the core concept. It
is assumed that components have only to be checked once
for their working correctness. More instances of the same
component do not have to be checked again. It is there-
fore sufficient to verify that all distinct sub components are
working correctly. Finally only the connections have to be
checked, which is done by verifying the component which
contains the sub components.

Definition 11 (Verification Entropy). Let c be a
component with different sub components cd. Then the ver-
ification entropy HV (c) ∈ R

+
0 for component c is given by

the sum of all behavior entropies of all different (distinct)
instances cd and the behavior entropy of the components c:

HV (c) =
∑

i∈cd

HB(i) +HB(c) (7)

Figure 8 illustrates how definition 11 applies to an abstract
project. Components which have to be verified are gray col-
ored in the figure. The white colored components don’t need
to be verified, because another component, which is an in-
stance of the same component, was already verified. The

Project

Figure 8: Verifying components of an abstract
project

projects from figure 8 includes two components C1 and C2

which have sub components A1, A2, A3 and B1. For verify-
ing C1 it is necessary to verify A1, B1 and the component
C1 itself. A1, A2 and A3 are instances of the same compo-
nent. Therefore it is sufficient to verify only one instance.
This assures that the component is working correctly and
all instances, too. It can happen that connections between

components are wrong. A correct connection can be veri-
fied by verifying the component C1 itself. Because C1 has
already been verified C2 doesn’t need to be verified again be-
cause it is a copy of C1. In order to verify the whole project
the following parts have to be verified: A1, B1, C1, D1, E1,
F1 and the project itself.

6. CAPABILITY DEMONSTRATION
For a better understanding of the design entropy con-

cept this sections gives an example how to analyze a ripple-
carry-adder and demonstrates the capabilities of the design
entropy concept. This example was chosen ensuring every
reader is able to follow the approach and calculations. First,
different realizations of half-adders are analyzed and com-
pared. Half-adders can then be used to build full-adders.
By having four instances of a full-adder, a ripple-carry-adder
can be designed. For each design step, complexity state-
ments will be given. This component based approach shows
the modularity, capability and the ability to reuse compo-
nents.

This section will directly show that the design entropy
concept is able to calculate complexity and express it in fig-
ures. Most of the results are those expected, because most
readers will have a sense for complexity. But instead of mak-
ing complexity statements based on sense or experience, the
design entropy concept is able to express complexity in fig-
ures. This allows a direct comparison of different realiza-
tions and projects. For more complex designs a statement
about complexity based on a designer’s sense or experience
becomes more and more impossible. Therefore an example
was chosen which can be followed by all readers.

6.1 Half-adder
There are several ways to realize a half-adder. Within this

example, three different realizations are analyzed and com-
pared. For each implementation, the structure, the behavior
and the verification entropy are calculated. This allows a
comparison of all three implementations.

It can be assumed that logic gates are already implemen-
ted/provided. According to definition 10, for the structure
entropy only instances of those gates have to be considered in
order to calculates the structure entropy of the half-adders.
All in- and outputs from the logic gates and the half-adders
have the same amount of states. It is sufficient to use the
behavior entropy calculation for components with an equal
amount of states from equation (5). Except for inverters, all
basic gates have two inputs and one output. Therefore the
behavior entropy for all those gates is the same and can be
calculated according to equation (5):

k ∈ {AND|NAND|OR|NOR|XOR|XNOR}

HB(k) = (n(k) +m(k)) · log(z(k))

= (2 + 1) · log(2)

= 3 · log(2)

Inverters have only one input and one output. Compared to
gates with two inputs, inverters are less complex and have
a lower behavior entropy.

HB(Inverter) = (n(Inverter) +m(Inverter)) · log(z(Inverter))

= (1 + 1) · log(2)

= 2 · log(2)

6.1.1 Realization A
One way to realize a half-adder is with two inverters, three

AND gates and one OR gate. Figure 9 illustrates this real-
ization. This allows the calculation of the behavior entropy
according to formula (5), the structure entropy according to
formula (6) and the verification entropy according to formula
(7) of realization A:

HB(half-adderA) =(n(half-adderA) +m(half-adderA))

· log(z(half-adderA))

=(2 + 2) · log(2)

=4 · log(2)

HS(half-adderA) =2 ·HB(Inverter) + 3 ·HB(AND)

+HB(OR)

=2 · 2 · log(2) + 3 · 3 · log(2) + 3 · log(2)

=16 · log(2)

HV (half-adderA) =HB(Inverter) +HB(OR)

+HB(AND) +HB(half-adderA)

=2 · log(2) + 3 · log(2) + 3 · log(2)

+ 4 · log(2)

=12 · log(2)

x

y

&

s

c

&

&

Figure 9: Realization A of a half-adder with AND,
OR and Inverter gates

6.1.2 Realization B
Some occasions make it necessary to have realizations with

only one type of gate, for instance when working with pro-
grammable NAND or NOR logic arrays. A half-adder with
only NAND gates could be realized as shown in figure 10.
This leads to the following entropies:

HB(half-adderB) =(n(half-adderB) +m(half-adderB))

· log(z(half-adderB))

=(2 + 2) · log(2)

=4 · log(2)

HS(half-adderB) = 6 ·HB(NAND)

= 6 · 3 · log(2)

= 18 · log(2)

HV (half-adderB) = HB(NAND) +HB(half-adderB)

= 3 · log(2) + 4 · log(2)

= 7 · log(2)

x

y

&

s

c

&

&

&
&

&

Figure 10: Realization B of a half-adder with six
NAND gates

6.1.3 Realization C
The simplest way with the least amount of gates is a real-

ization with one AND and one XOR gate. Both gates have
two inputs and one output. Figure 11 illustrates this real-
ization. Now calculating the behavior, structure and verifi-
cation entropy of realization C:

HB(half-adderC) =(n(half-adderC) +m(half-adderC))

· log(z(half-adderC))

=(2 + 2) · log(2)

=4 · log(2)

HS(half-adderC) = HB(AND) +HB(XOR)

= 3 · log(2) + 3 · log(2)

= 6 · log(2)

HV (half-adderC) =HB(AND) +HB(XOR)

+HB(half-adderC)

=3 · log(2) + 3 · log(2) + 4 · log(2)

=10 · log(2)

&

=1

x

y
s

c

Figure 11: Realization C of a half-adder with one
AND and one XOR gate

6.1.4 Comparison of realization A,B,C
Figure 12 charts the values for the behavior, structure

and verification entropy of all three realizations. It is not
surprising that the behavior entropy is the same for all. All
three realizations have the same amount of in- and outputs

as well as the same amount of states for each connection.
Therefore the behavior entropy has to be the same.

0 2 4 6 8 10 12 14 16 18 20
H [ln(2)]

A

B

C

Realization
HB

HS

HV

Figure 12: Entropy of the three half-adder realiza-
tions

The structure and verification entropy is directly influ-
enced by the amount and behavior entropy of the used gates.
The easiest way from the given choice to implement a half-
adder is realization C with only one XOR and one OR gate.
This is plausible and the design entropy concept was able
to express it through a mathematical calculation resulting
in figures. While realization B only uses NAND gates, real-
ization C needs two different gates and realization A three
different gates. Therefore A has the highest verification en-
tropy. Both, realization A and B, have the same amount of
gates. But inverters, which are used in realization A, have a
lower behavior entropy than the other gates with two inputs.
Therefore A has a lower structure entropy then B.

6.2 Full-adder
There are several goals for the management of a project.

An often quoted one is saving development time. A short
product development cycle allows an early market entry.
A project can be developed faster when the complexity is
lower: there are less decision possibilities and less errors to
make. In order to accomplish this goal realization C from
figure 11 with one AND and one XOR gate is used to build a
full-adder. This realization had the lowest structure entropy.
A full-adder consists of two half-adders and one OR gate,

as illustrated in figure 13. This allows the calculation of
the behavior entropy and the structure entropy of the half
adder.

HB(full-adder) =(n(full-adder) +m(full-adder))

· log(z(full-adder))

=(3 + 2) · log(2)

=5 · log(2)

HS(full-adder) =2 ·HB(half-adder) +HB(OR)

+HS(half-adder)

=2 · 4 · log(2) + 3 · log(2) + 6 · log(2)

=(8 + 3 + 6) · log(2)

=17 · log(2)

≥1HAx

y

HA
cin

s

cout

Figure 13: Full-adder

6.3 Ripple-carry-adder
Using the full-adder from figure 13 and having four in-

stances, a ripple-carry-adder can be implemented as illus-
trated in figure 14. The behavior and structure entropy is
then given by:

HB(rca) = (n(rca) +m(rca)) · log(z(rca))

= (9 + 5) · log(2)

= 14 · log(2)

HS(rca) = 4 ·HB(full-adder) +HS(full-adder)

= 4 · 5 · log(2) + 17 · log(2)

= (20 + 17) · log(2)

= 37 · log(2)

FA

x3 y3

s3

FA

x0 y0

s0

FA

x1 y1

s1

FA

x2 y2

s2

cout

cin

Figure 14: Ripple-carry-adder realized with full-
adders

This ripple carry-adder could now be used to build a whole
CPU, for instance. But for now, it was sufficient to analyze
the components of a ripple-carry-adder starting with logic
gates. Thereby this example was able to demonstrate the ca-
pabilities of the modular approach of this concept. The rest
of this section will calculate with different amounts of states
and show the effect of changing the design and partitioning.

6.4 Ripple-carry-adder with different amounts
of states

In the previous calculations of this example, it was al-
ways assumed that every in- or output has only two possi-
ble states. This short section will deal with connection that
have different amounts of states. This situation will become
standard when analyzing software. In order to demonstrate
(4) for the general behavior entropy, the ripple-carry-adder
from the previous section is used (figure 14). Digital cir-
cuits allow to write the amount of possible states at an in-
or output to a number to the power of two. This allows
a followable comparison between an approach with equal
amounts of states and different amounts of states at all in-
and outputs.

RCA

x3

y3

x2 x1 x0

y2 y1 y0

s3

s2

s1

s0

cin

cout

Figure 15: Ripple-carry-adder with one bit connec-
tions

For now, the ripple-carry-adder from the previous section
had in- and outputs with only two possible states. This
is illustrated in figure 15. In hardware design (languages)

RCAx

y

cin

s

cout

Figure 16: Ripple-carry-adder with one and four bit
connections

there is also the possibility to have logic vectors with more
than two states. For a ripple-carry-adder there could be two
vectors x and y with each four bits for the input, an one bit
input cin for carry in, a four bit output vector z for the sum
and an one bit output cout for carry out. Figure 16 illustrates
a ripple-carry-adder with vectors. Vectors x, y and z have
each 16 different states. In order to calculate the behavior
entropy now equation (4) is used. The reduced equation (5)
for the behavior entropy can’t be applied anymore.

HB(rca) = log





n(rca)
∏

i=1

zi(rca) ·

m(rca)
∏

j=1

zj(rca)





= log (16 · 16 · 2 · 16 · 2)

= log (16384)

= log
(
214
)

= 14 · log (2)

Calculating the behavior entropy of the same component
brought the same results. No matter if connections with
only two possible states are used or vectors with different
amounts of states. In most hardware design analyses the
number of states can be reduced to a number to the power
of two. In software design analyzes it is common to have
distinct amounts of states for all in- and outputs.

6.5 NAND ripple-carry-adder
It was already mentioned before that design decisions some-

times make it necessary to use only one certain type of gate.
For example when there is only a chip with programmable
NAND gates available. For demonstrating the influence of
design decisions, a ripple-carry-adder with only NAND gates
will be analyzed. Therefore the half-adder and the full-adder
design have to be adjusted. A half-adder with only NAND
gates has already been analyzed in section 6.1.2. The OR
gate within the full adder has to be replaced by three NAND
gates according to figure 17. This leads to the following en-
tropy for the full-adder and finally for the ripple-carry-adder.

HS(full-adder) =2 ·HB(half-adder) + 3 ·HB(NAND)

+HS(half-adder)

=2 · 4 · log(2) + 3 · 3 · log(2) + 18 · log(2)

=(8 + 9 + 18) · log(2)

=35 · log(2)

HS(ripple-carry-adder) = 4 ·HB(full-adder) +HS(full-adder)

= 4 · 5 · log(2) + 35 · log(2)

= (20 + 35) · log(2)

= 55 · log(2)

A ripple-carry-adder with only NAND gates has a higher
entropy, here 55 · log(2). The first realization of a ripple-
carry-adder had a structure entropy of 37·log(2) (see section
6.3). This increase is directly related to the higher number of

&

HAx

y

HA

cin

s

cout

Figure 17: Full-adder with NAND gates

used gates. Instead of total 20 gates, were 60 NAND gates
necessary. This increase of gates allows more connection
possibilities and therefore more possible states. It results in
a higher structure entropy. But the increase is not linear
because the project was partitioned. It was more complex
to built a half-adder with NAND gates. Therefore the half-
adder has a higher structure entropy. For the full-adder,
instances were used. Therefore the behavior entropy was
used, which is the same for all half-adder realizations from
section 6.1. The following section will show the impact on a
project’s complexity when turning down components.

6.6 Full-adder without components
Almost all hardware and software designer agree that par-

titioning a project in ”handable” and ”overlookable” parts is
a key for a successful project. This section demonstrates the
increase in complexity for a full-adder when no components
are used.

&

&

&

&

&
&

&

&

&

&

&

x

y

cin

s

cout

Figure 18: NAND Full-adder without components

Figure 18 illustrates a full adder, based on figure 17. In-
stead of using half-adders as components this realization
does not have any sub components and includes all gates
on the highest level.

HS(full-adder) = 15 ·HB(NAND)

= 15 · 3 · log(2)

= 45 · log(2)

With half-adder components the structure entropy was 35 ·
log(2). Working without components increases the structure
entropy by 10·log(2). It lend itself to work with components,
which can be reused, as long as they are not to small and
would increase the complexity.

6.7 8-bit processor
This last application will demonstrate that the concept

can also be applied to larger projects, in this case an eight
bit processor. Such a processor could look like the one in
figure 19. The processor has a separate instruction and data
memory. The instruction memory has the width of 16 bit
in order allow instructions to be wide enough for a com-
plete data memory address or to jump to an address in the
instruction memory.

8

8

8 8

1

8

8

8

8

16

1

1

1

8

1

1

2

Figure 19: 8-bit wide processor

The program counter is a simple 8 bit wide register which
can be loaded with the next addresses from the adder (+1)
or a direct jump address from the control unit. The reg-
isters before and after the ALU (Arithmetic Logic Unit)
are controlled by the control unit and can be loaded from
the data memory or with data from the control unit. This
source selection is done by the multiplexer (Mux). The tar-
get selection of register 1 or 2 is done by a de-multiplexer
(DeMux). The ALU result is written back to register 3 and
from there to the data memory. The result can also be used
to decide a conditional jump.
In order to calculate the entropy of the whole processor,

the entropy for the single components has to be summed up.
Applying (5) on every single component in conjunction with
(6) allows to calculate the entropy of the whole processor.

HS(processor) =
∑

i∈Components

HB(i)

= (32 · 8 + 21) · log(2) = 277 · log(2) (8)

7. CONCLUSION
This paper’s objectives were to introduce the design en-

tropy concept and demonstrate its capabilities. At the be-
ginning of this work it has been shown that the need for a
new complexity measure is motivated by the rapid progress
in computer science. Measurements, which are based on em-
pirical data, are hard to apply to current projects and bring
high inaccuracies. Furthermore, the new measure is placed
on the claim that it allows comparisons between projects,
which were implemented in different technologies and on dif-
ferent levels of abstraction. Considering that quite different
aspects of a project should be considered, implies the need
for an abstract model which uses an abstract key variable.
These general abilities were achieved by using states as one
key variable.
The formulas for calculating complexity could be derived

by resorting to Shannon’s information theory. In basis of his
work, the calculated complexity is called entropy and the
whole project design entropy concept. The concept com-
prises formulas for calculating a behavior, a structure and a
verification entropy.
The presented formalism and formulas were then applied

to the field of digital circuits and digital hardware. The

applications presented here provided comprehensible exam-
ples, which have shown the following possibilities of the con-
cept:

• Complexity can be calculated and expressed by figures.
• Implementations can be compared directly.
• The concept allows a project to be split into compo-

nents.
• The concept takes reusability of components into ac-

count.
• Changes in complexity can be seen directly when a

design is changed.
Future work will expand the concept further. It will not

only be applied to digital circuits but also to software projects
as well as to embedded systems. Furthermore, tools will al-
low an automated calculation of complexity. This will allow
larger case studies and comparisons of (larger) real world
projects.

8. REFERENCES
[1] Association, s. International technology roadmap for

semiconductors.
http://public.itrs.net/files/1999 SIA Roadmap/Home.htm,
1999.

[2] Association, s. International technology roadmap for
semiconductors.
http://www.itrs.net/Links/2007ITRS/Home2007.htm,
2007.

[3] DeMarco, T. Controlling Software Projects:
Management, Measurement, and Estimates. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1986.

[4] Ecker, W., Müller, W., and Dömer, R.
Hardware-dependent Software - Principles and
Practice. Springer, 2006.

[5] Ermolayev, V., and Matzke, W.-E. Towards
industrial strength business performance management.
In HoloMAS ’07: Proceedings of the 3rd international
conference on Industrial Applications of Holonic and
Multi-Agent Systems (Berlin, Heidelberg, 2007),
Springer-Verlag, pp. 387–400.

[6] Fenton, N. E., and Pfleeger, S. L. Software
Metrics: A Rigorous and Practical Approach, Revised.
Course Technology, February 1998.

[7] Henkel, J. Closing the soc design gap. Computer 36,
9 (2003), 119–121.

[8] Hinrichs, N., Leppelt, P., and Barke, E. Building
up a performance measurement system to determine
productivity metrics of semiconductor design projects.
In IEEE International Engineering Management
Conference (IEMC), Austin TexasErmolayev2007
(2007), IEEE, Ed., IEEE, pp. CD–ROM Proceedings.

[9] Leppelt, P., Hassine, A., and Barke, E. An
approach to make semiconductor design projects
comparable. In 7th Asia Pacific Industrial Engineering
and Management Systems Conference (APIEMS 2006)
(2006), Asian Institute of Technology, pp. CD–ROM.

[10] Mollick, E. Establishing moore’s law. IEEE Annals
of the History of Computing 28, 3 (2006), 62–75.

[11] Moore, G. E. Cramming more components onto
integrated circuits. Electronics 38, 8 (April 1965).

[12] Shannon, C. E. A mathematical theory of
communication. Bell System Technical Journal 27
(1948), 379–423, 623–656.

[13] Tolman, R. C. The principles of statistical
mechanics. Oxford Univ. Pr., London, 1938.

