
QUANTITATIVE ANALYSIS OF SOFTWARE CODE BY STATES

Benjamin Menhorn and Frank Slomka

Institute for Embedded Systems/Real-Time Systems

Ulm University

Albert-Einstein-Allee 11, Ulm, Germany

{benjamin.menhorn|frank.slomka}@uni-ulm.de

ABSTRACT
In software engineering the determination of software size
is a central issue. There have been numerous publications
about software size estimation methods. Although some of
these methods provide very good results in specific areas,
there is no method that is both abstract enough to be used
on different areas and at the same time addresses complex-
ity in an adequate way.

This work presents a new approach for analyzing soft-
ware code quantity by using states. Thereby states provide
an abstract variable to measure complexity and a mathe-
matical model calculates complexity. The mathematical
model is based on Shannon’s information entropy. This
method has successfully been applied in the field of hard-
ware engineering. We will now show, how this abstract
method can also be used to calculate the size of software.
With states it is possible to calculate complexity of software
which we call entropy. A system’s disorder is a property of
a system’s state. Therefore complexity is a measurement
for a system’s disorder. By changing the amount of possi-
ble states of a system, complexity varies.

KEY WORDS
Software engineering, software size estimation, complexity
measure.

1 Introduction

In most classical engineering disciplines it is key to have
well-defined models and methods to evaluate, control and
manage projects. In order to manage projects, it is nec-
essary to know about the project size. This allows to
give statements about resources and optimization during
the development process as well as allows the compari-
son if different implementations and projects [6] [8]. An
important challenge in software engineering is the deter-
mination of code quantity. During the planning stage of a
project, knowing about the complexity of a project allows
an adequate project management. It also allows to evalu-
ate alternative implementations. In safety-critical systems,
knowing the complexity of single modules enables to rank
the modules by their complexity. More complex modules
should then be verified in more detail. All these require
a software size estimation method, which addresses com-
plexity in an adequate way. For determining projects’ sizes
key challenge is to control complexity itself. This indicates

that complexity is a measure for software size/quantitative
analysis of software. The terms are used synonymously.

Compared with classical engineering disciplines
which can rely on long-term experience in planning and
managing projects, computer science can only rely on a few
decades of experience. But also developments and changes
happen very fast in computer science. If a project manage-
ment relies on empirical data from previous projects, trans-
ferring these data to current projects is hard and brings high
inaccuracies [11]. But today,

However, most cost estimation methods today use
empirical data, which are obtained through the analysis of
previous projects [10]. All methods have in common, that
key figures are used to determine the size of projects and
thus make projects comparable. Basically, it is the goal of
all these approaches to get complexity under control. Most
of these approaches only provide reasonably reliable results
for a specific technology, programming language or specifi-
cation language. But as computer science is subject to rapid
changes to technology, programming languages or speci-
fication languages, todays complexity estimation methods
reach their limitations of reliability very quickly. Thus it
would be desirable to have a complexity estimation method
that allows for changes in technology and developments, by
its very abstract formulation.

One approach is to be independent from design meth-
ods and abstraction layers. Therefore, the complexity mea-
surement has to be defined abstractly. Due to this fact,
changes in technology, programming languages or speci-
fication languages as well as developments could be con-
sidered by the measurement itself. If the complexity given
by an implementation/realization itself could be measured,
comparisons between different projects could be possible.

Measuring software size is historically based on
Source Lines of Code (SLOC). This method is often subject
of criticism for many reasons [6] [1]. The biggest issues are
the high dependency on the style, how code is written and
that results from different programming field are not com-
parable.

Albrecht had presented an approach to use standard-
ized function points [1], which has gained wide popular-
ity to estimate software size [2]. Function points can be
applied early on SLOC but it is complicated to get com-
plexity under control [7] [9] [17]. Therefore an objec-
tive and comparable measurement of software size is diffi-
cult. Even widespread models as COCOMO (COnstructive

COst MOdel) [4] or COCOMO 2.0 [3] are depending on
the determination of software complexity.

The paper is organized as follows: the following sec-
tion will give a brief overview of some of the most used
project/software size estimation methods. Afterwards we
will introduce the concept of states and the related com-
plexity measure. Section four will then show, how the mea-
surement is applied on software code. This work closes
with the conclusion.

2 Complexity measure

Complexity itself needs to be understood to develop an ad-
equate complexity model [5]. In [14] a measurement was
proposed which doesn’t rely on empirical data. This con-
cept bases its calculations on an abstract variable: states.
“A state is a situation in which a system or system’s com-
ponent may be at a certain point of time. It refers to the
interior of a system and ignores external influences such as
input and output. The set of states is the abstraction of a
real system” [15]. This method was used to calculate the
complexity of in hardware designs [14] [13]. Thereby, the
complexity was not estimated anymore, but calculated [14].
Also, the complexity method has been used to obtain key
variables of projects [12]. In [15] the authors of [14] de-
scribed why their approach with states is capable of ad-
dressing complexity in different fields.

The main statements from the works of [14] are sum-
marized in the following in order to apply the method on
software in the following. The approach of the design
entropy bases on Shannon’s information entropy. Shan-
non’s information theory [16], developed by Claude El-
wood Shannon, gives mathematical statements about trans-
mitted information. The design entropy concept identifies
the single components of a design as sources and drains of
information. Connections between components are chan-
nels and information are symbols transmitted from a pool
of available symbols. In digital hardware connections are
normally implemented by wires. The available symbols
are “high” and “low” signals in the simplest model. For
instance an assignment a:=b between two components
would be identified as: The information (=signal level)
from component (=source/sender) b is transmitted (=as-
signed) to component (=drain/receiver) a.

The design entropy concept bases its calculations for
complexity on states. A system’s disorder is a property of
a system’s state. Therefore the measurement of a system’s
disorder is complexity. Changing the amount of possible
states of a system, complexity varies. “Complexity can be
considered to be a measure of a system’s disorder which
is a property of a system’s state. Complexity varies with
changes made at the amount of possible states of a sys-
tem.” [15]. Therefore, states allow to measure project size
by the measurement of its entropy. Because states are vari-
ables, defined very abstractly. They only depend on the
analyzed project’s property. It becomes possible to calcu-
late the effect of introducing design tools to a development
process by calculating complexity on different abstraction
levels and comparing them.

H = −K
N∑
i=1

pα log pα (1)

Equation (1) shows Shannon’s theorem. Comparing
the formula to formulas in statistical mechanic, it can be
recognized as that of entropy (e.g. [18]). pα is the likeli-
hood that a system is in cell α of its phase space. H is the
same as Boltzmann’s H theorem. K is a constant, which
”‘merely amounts to a choice of unit of measure [16].”’
H in formula (1) is the information entropy. Because the
mathematical method to calculate complexity is based the
idea of information interchange and the formulas can di-
rectly be derived from Shannon’s information entropy, the
complexity measure is also called entropy. Equation (1)
can be rewritten as (2) and leads to definition 1 [14] [13].

Definition 1 (Behavior Entropy). c is a component of
a system, with component’s sources (inputs) ni(c), i =
{1, . . . , n(c)} and component’s drains (outputs) mj(c),
j = {1, . . . ,m(c)}. The amount of inputs to c is given by
n(c). The amount of outputs of c is given by m(c). The
amount of possible states for n1(c) . . . nn(c)(c) is given
by z(ni(c)), i = {1, . . ., n(c)}. The amounts of pos-
sible states for m1(c) . . .mm(c)(c) is given by z(mj(c)),
j = {1, . . . ,m(c)}. HB(c) ∈ R+

0 is the behavior entropy
of component c and given by:

HB(c) = log

n(c)∏
i=1

z(ni(c)) ·
m(c)∏
j=1

z(mj(c))

 (2)

The make statements about the complexity to use a
component, the behavior entropy is used. One can also
speak of a black box or outer look on a component. The be-
havior entropy does not consider the actual implementation
of a component. Therefore the structure entropy has to be
used, because this entropy considers the actual implemen-
tation of a component by looking at the sub-components
used to build up the component. The structure entropy is
defined in definition 2. The structure entropy is similar to a
white box or an inner view on a component.

Definition 2 (Structure Entropy). c is a component. cb are
instances of c. cs are implemented sub-components of c.
HS(c) ∈ R+

0 is the structure entropy for component c.
HS(c) is defined by the sum of all structure entropies of
all implemented sub-components cs and the sum of all be-
havior entropies of all instances cb:

HS(c) =
∑
i∈cb

HB(i) +
∑
j∈cs

HS(j) (3)

The structure entropy considers a component based
approach. With components consisting of sub-components
itself, it is necessary to consider the entropy of those sub-
components also.

Altogether, the model is derived from fundamental re-
lations. Especially from the information theory, which has
proven itself for a long time. Due to the abstract definition

of the measurement it can be applied on different abstrac-
tion levels. With introducing new tools in development the
amount of possible states is influenced. This makes the
model interesting for the domain of design automation and
project management. New tools and abstraction layers can
be considered without the need of a huge amount of experi-
ence from previous projects (empirical data). In the follow-
ing section the measurement will be applied on software.

3 Software size measurement

The following two examples show the usage of the above
described method to determine software size. They are re-
duced to functions, written in C. The first example shows
two different implementations for a conditional expression
(example 1a and example 1b).

1 i n t Comp(i n t a , i n t b)
2 {
3 a = (a >= b) ? 100 : 200 ;
4 re turn a ;
5 }

Example 1a

1 i n t Comp(i n t a , i n t b)
2 {
3 i f (a >= b)
4 a = 100 ;
5 e l s e
6 a = 200 ;
7 re turn a ;
8 }

Example 1b

Looking at the functions, the behavior entropy can be
determined by counting inputs, outputs and states of the
function. There are two inputs (int a and int b) and
one output (return a). There are two possible states for
the output (either 100 or 200). Therefore the behavior en-
tropy can be calculated in equation (4) using equation (2).

HB(Example 1) = log

n(c)∏
i=1

z(ni(c)) ·
m(c)∏
j=1

z(mj(c))

= log

(
22 · 21

)
= log

(
23
)

= 3 · log (2) (4)

Because the number of inputs and outputs, as well as
the number of states is the same for example 1a and 1b,
the behavior entropy is the same. As stated before, the be-
havior entropy does not allow for the actual implementa-
tion. In order to determine the complexity of the actual
implementation, the structure entropy has to be used. The
equation for the structure entropy is given by equation (3).

Therefore, the entropy for the single implementation con-
tents have to be analyzed. The calculation of the structure
entropy for example 1a is given in table 1 and for example
2a in table 2. A condition (if or case) has two inputs, the
comparison parameters, and one output (”true” or ”false”)
and therefore two states. A return statement has one in-
put (the return variable), one output (the return value) and
therefore only one state. Lines that are not shown in the
tables don’t have to be considered because their lack of in-
fluence to the complexity calculation.

The result of both calculations is a structure entropy
of HS(Example 1a/b) = 10 · ln (2). The result is inde-
pendent from the actual implementation. It represents the
complexity given by the code itself.

In the following, there are two other examples, which
show that the measurement can determine the complex-
ity given by the code itself. Therefore we have chosen to
compare a switch statement in example 2a with an if –
else if statement in example 2b. To calculate the be-
havior entropy, equation (2) is used. As in the example
before, the behavior entropy has to be the same for ex-
ample 2a and example 2b, because the number of inputs,
outputs and states is the same for the whole component.
The components only differ by their (inner) implementa-
tion. The behavior entropy of example 2 a/b is then given
by equation (5). The components have one input (int j),
one output (return) and four possible states (0, 10, 100
and 1000). The structure entropy for example 2a and ex-
ample 2b is given in table 3 and table 4 respectively.

1 i n t Log (i n t j)
2 {
3 sw i t ch (j)
4 {
5 case 1 : re turn 1 0 ;
6 case 2 : re turn 100 ;
7 case 3 : re turn 1000 ;
8 }
9 re turn 0 ;

10 }

Example 2a

1 i n t Log (i n t j)
2 {
3 i f (j ==1)
4 re turn 1 0 ;
5 e l s e i f (j ==2)
6 re turn 100 ;
7 e l s e i f (j ==3)
8 re turn 1000 ;
9 re turn 0 ;

10 }

Example 2b

Line Code n m z Entropy

3 (a >= b) 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
? 100 1 1 1 1 · 11 · ln (11) = 0

: 200 1 1 1 1 · 11 · ln (11) = 0

7 return a 1 1 2 1 · 21 · ln (21) = 2 · ln (2)

HS(Example 1a) = 10 · ln (2)

Table 1. Analysis of example 1a in order to determine its structure entropy

Line Code n m z Entropy

3 if(a >= b) 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
4 a = 100 1 1 1 1 · 11 · ln (11) = 0

6 a = 200 1 1 1 1 · 11 · ln (11) = 0

7 return a 1 1 2 1 · 21 · ln (21) = 2 · ln (2)

HS(Example 1b) = 10 · ln (2)

Table 2. Analysis of example 1b in order to determine its structure entropy

HB(Example 2) = log

n(c)∏
i=1

z(ni(c)) ·
m(c)∏
j=1

z(mj(c))

= log

(
41 · 41

)
= log

(
42
)

= 2 · log (4) (5)

Comparing the results, a higher entropy for the sec-
ond example was found. Even though example 2b has
only two lines of code more than example 1b, the struc-
ture entropy is 2.4 times the entropy of example 1. If new
lines with braces inside the if-statements had been added
the entropy wouldn’t change, but the lines of code would.
Therefore the entropy does not change with the program-
ming style and neither does it with the kind of implemen-
tation. It only depends on input, outputs and amount of
possible states. This makes not only a comparison of dif-
ferent programmers possible, but also comparing different
programming languages. If entropy changes with the lan-
guage, it is an indication that certain methods are more or
less difficult to implement in this language.

4 Conclusion and outlook

In this paper we presented a new approach to determine
software size. The used methods, based on states and en-
tropy have already been used to determine complexity of
digital circuits. We have shown in this work, that it is pos-
sible to apply a abstract measurement on software. In the
next step, we will develop an automated analysis for soft-
ware code, containing a set of rules, how to apply this ab-
stract measurement on written code. Also analysis of com-

plete projects and comparisons with existing software met-
rics needs to be done.

We consider the here presented approach as a worth-
while starting point for addressing software complexity
in an adequate way and for finding a mathematical based
method to determine it.

References

[1] A. J. Albrecht. Measuring application development
productivity. In I. B. M. Press, editor, IBM Applica-
tion Development Symp., pages 83–92, October 1979.

[2] A. J. Albrecht and J. E. Gaffney. Software function,
source lines of code, and development effort predic-
tion: A software science validation. IEEE Trans.
Softw. Eng., 9(6):639–648, 1983.

[3] B. Boehm, B. Clark, E. Horowitz, C. Westland,
R. Madachy, and R. Selby. Cost models for future
software life cycle processes: Cocomo 2.0. Annals of
Software Engineering, 1(1):57–94, December 1995.

[4] B. W. Boehm. Software Engineering Economics.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981.

[5] C. N. Calvano and P. John. Systems engineering in an
age of complexity: Regular paper. Syst. Eng., 7:25–
34, March 2004.

[6] T. DeMarco. Controlling Software Projects: Man-
agement, Measurement, and Estimates. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1986.

Line Code n m z Entropy

5 case 1 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
return 10 1 1 1 1 · 11 · ln (11) = 0

6 case 2 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
return 100 1 1 1 1 · 11 · ln (11) = 0

7 case 3 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
return 1000 1 1 1 1 · 11 · ln (11) = 0

9 return 0 1 1 1 1 · 11 · ln (11) = 0

HS(Example 2a) = 24 · ln (2)

Table 3. Analysis of example 2a in order to determine its structure entropy

Line Code n m z Entropy

3 if(j == 1) 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
4 return 10 1 1 1 1 · 11 · ln (11) = 0

5 if(j == 2) 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
6 return 100 1 1 1 1 · 11 · ln (11) = 0

7 if(j == 3) 2 1 2 1 · 22 · ln (22) = 8 · ln (2)
8 return 1000 1 1 1 1 · 11 · ln (11) = 0

9 return 0 1 1 1 1 · 11 · ln (11) = 0

HS(Example 2b) = 24 · ln (2)

Table 4. Analysis of example 2b in order to determine its structure entropy

[7] N. E. Fenton. Software Metrics: A Rigorous Ap-
proach. Chapman & Hall, Ltd., London, UK, UK,
1991.

[8] N. E. Fenton and S. L. Pfleeger. Software Metrics:
A Rigorous and Practical Approach, Revised. Course
Technology, February 1998.

[9] T. Hastings. Adapting function points to contempo-
rary software systems: A review of proposals. In
In Proc. 2nd Australian Conference on Software Met-
rics. Australian Software Metrics Association, pages
103–114, 1995.

[10] N. Hinrichs, P. Leppelt, and E. Barke. Build-
ing up a performance measurement system to deter-
mine productivity metrics of semiconductor design
projects. In IEEE, editor, IEEE International En-
gineering Management Conference (IEMC), Austin
TexasErmolayev2007, pages CD–ROM Proceedings.
IEEE, 2007.

[11] P. Leppelt, A. Hassine, and E. Barke. An approach
to make semiconductor design projects comparable.
In 7th Asia Pacific Industrial Engineering and Man-
agement Systems Conference (APIEMS 2006), pages
CD–ROM. Asian Institute of Technology, 2006.

[12] B. Menhorn and F. Slomka. Entwurfsentropie: Ein
Maß im Schaltungsentwurf. In 7th GI/GMM/ITG-
Workshop, Multi-Nature-Systems, 2009.

[13] B. Menhorn and F. Slomka. Project Management
Through States. In IEMS 2009: International Con-
ference on Engineering Management and Service Sci-
ences, 2009.

[14] B. Menhorn and F. Slomka. Design entropy con-
cept. In ESWEEK 2011 Compilation Proceedings
(CODES+ISSS ’11), 2011.

[15] B. Menhorn and F. Slomka. States and complexity. In
Coping with Complexity COPCOM 2011, 2011.

[16] C. E. Shannon. A mathematical theory of communi-
cation. Bell System Technical Journal, 27:379–423,
623–656, 1948.

[17] C. R. Symons. Function point analysis: Difficulties
and improvements. IEEE Trans. Softw. Eng., 14(1):2–
11, 1988.

[18] R. C. Tolman. The principles of statistical mechanics.
Oxford Univ. Pr., London, 1938.

