
Digital Hardware Projects:
A New Tool for Automated Complexity Analysis

Benjamin Menhorn, Lukas Brix and Frank Slomka
Ulm University

Institute of Embedded Systems/Real-Time Systems
Ulm, Germany

benjamin.menhorn@uni-ulm.de, lukas.brix@outlook.com, frank.slomka@uni-ulm.de

Abstract—This papers introduces a new tool for an automated
complexity analysis of digital hardware projects. This analytical
tool parses hardware implementations written in VHDL and
calculates their complexity. The design entropy is used as a
complexity metric. This allows to obtain complexity figures of
hardware projects, useful for developers as well as project
managers.

I. INTRODUCTION

In 1965 Gordon Moore published an article [1], in which
he predicted an annual doubling of the amount of transistors
which can be placed inexpensively on integrated circuits for
the next 10 years. The interval in which the amount of
transistors doubles was later corrected to 18 to 24 months,
depending on the source [2] [3] [4]. Moore’s observation is
known as Moore’s Law. Figure 1 charts the trend of integrating
transistors on a single chip over the past two decades. As for
today, Moore’s Law is still valid and it may also be for the
next decades [5].

Tr
an

si
st

or
 C

ou
nt

 (M
ill

io
ns

)

1

10

100

1000

10000

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Figure 1. Chip complexity development (from [6])

The significance of this development for planning and
implementing hardware designs is enormous. With a constant
chip area and an increasing number of components, complexi-
ties of chips are growing due to more and more are components
placed on the same chip area. And this development is not
linear but exponential as expressed in Moore’s Law.

In most classical engineering disciplines it is key to have
well-defined models and methods to evaluate, control and
manage projects. In order to do so, it is necessary to know the
project size. This allows to give statements about resources and
optimizations during the development process as well as allows

to compare different implementations and projects [7] [8].
For both, project managers and engineers themselves, it is
important to know about the hardware complexity of a project.
During the project, it is useful to always carry a current
complexity estimate. Finally, a follow-up assessment is im-
portant in order to assess and compare actual results. The
use of hardware description languages provides new ways to
analyze hardware projects. With help of a suitable metric,
complexity of hardware projects can be expressed in figures.
For an expressive and profitable applicability of a complexity
measure, the evaluation has to be automated, especially for
larger projects.

In this paper we introduce a new tool, which calculates
complexity figures for hardware designs. We focused on
designs which are implemented in VHDL. Our tool itself
is written in Java and is platform-independent. The design
entropy concept [9] serves us as complexity measure. This
measure is based on abstract states.

In the following, the main aspects of the development and
implementation of our analytical tool are documented. The key
contributions of this paper are:

• The introduction of our complexity analyzing tool for
VHDL implementations.

• Show how this tool development is supported by a
compiler-compiler.

• Illustrate how our tools works.
• Show first results of or tool.

This paper is organized as follows: The next sections
introduces our implementation approach with a compiler,
a grammar description of VHDL and a compiler-compiler.
Section three explains our methodology including the used
complexity measure and the integration of the measurement
within the compiler-compiler. Section four shows, how our
tool calculates the complexity of VHDL designs. This paper
closes with a conclusion and future work.

II. IMPLEMENTATION APPROACH

In this section, we describe how we used a compiler, the
Extended Backus-Naur Form (EBNF) and a compiler-compiler
to parse VHDL-code.

A. Compiler

A compiler is a software program that translates source
code written in a particular language into another language.

978-1-4799-0658-1/13/$31.00 c©2013 IEEE

Typically, a compiler is used to translate programs written in
a high level language (such as Java or C) into assembler or
machine languages, which can then be executed by a computer.
Some compilers require preprocessors that combine source
codes from individual modules and if necessary support macro
substitution and conditional compilation.

Scanner
(lexical analyzer)

Parser
(syntax analyzer)

Semantic analysis

Optional machine-
independent improvements

Target code generation

Machine-specific
code improvement

Character stream

Parse tree

Intermediate code

Modified intermediate code

Target code

Modified target code

Intermediate code generation

Modified parse tree

Token stream

Symbol
table

Figure 2. Phases of compilation (based on [10])

Figure 2 illustrated the different stages during a compila-
tion process. In the various stages the code is passed on to the
next stage in a specific representation form. Each phase has
access to a common symbols table. The symbol table holds
information for each identifier of the program regarding its
appearance and declaration in the source code. The structure
of the compiler can be roughly divided into two parts. In the
first part, the source code is analyzed. This part is indicated
by the gray background in the figure. In the second part of
a compiler, code is synthesized and translated into its target
language. In this work, we are only interested in the analytical
part. This part allows us to parse source code and analyze it
for its complexity. The complexity calculation will be placed
directly into the analysis phase of the compiler.

B. EBNF

Source code can be of any length and have infinite
combinations of allowed language constructs. Therefore, a
representation of the underlying language is needed. It has to
represent the complete set of words over a given alphabet of
a language without being infinitely large. Grammars are used
to derive a complete language with aid of a starting symbol
and a finite number of substitution rules. The EBNF is a

meta-language which allows grammar definitions. In our case,
hardware descriptions/implementations are given in VHDL.
The official IEEE standard [11] describes VHDL in EBNF.
This grammar will be used as basis for our compiler and
complexity analysis. The EBNF description from the IEEE
standard has to be implemented in such a way that it can serve
as input grammar for a compiler-compiler.

C. ANTLR

To make development of our analysis tool more efficient
and to avoid sources of errors in programming, we base
our tool generation on a so-called compiler-compiler. Such
compiler-compilers generate parsers, interpreters or compilers
from a formal language description. As mentioned above, we
only need the analytical part of a compiler. Thus, we could use
almost any compiler-compiler to develop our tool. Here, our
choice fell on ANTLR1. ANTLR stands for ANother Tool for
Language Recognition. It is a parser generator and published
under the BSD License. ANTLR is written in Java, but it
supports a variety of other programming languages.

We decided to use ANTLR for several reasons: first of
all, ANTLR is very well documented. Secondly, the generated
compiler code remains readable and clearly arranged. Also,
ANTLR allows to attach actions to grammar elements directly
with in the grammar source. These actions, written in Java,
are then embedded into the source code of the parser at the
appropriated points. We use this actions for our complexity
calculations. Last, there are several plugins for the Eclipse
development environment and a IDE, called ANTLR-Works,
which make development more efficient, especially grammar
rule definitions.

III. METHODOLOGY

In this section, we give a brief introduction on the used
complexity measurement. We also describe, how we integrated
the complexity measure into our compiler.

A. Complexity measure

We use the design entropy concept from [9] as our com-
plexity measure. The design entropy bases on Shannon’s infor-
mation entropy. Shannon’s information theory [12], formulated
by Claude Elwood Shannon, provides mathematical statements
about transmitted information. The basic idea behind the
design entropy concept is the transmission of information
between components. These components can be sources and
drains of information. Connections, usually realized by wires
in a hardware design, are channels, which transmit information.
Information are symbols from a pool of available symbols
transmitted over a channel. As a basic model, available sym-
bols can be modeled as “high” and “low” signals. But the
available symbols can also be more complex.

With this understanding of transmission of information,
a VHDL assignment a <= b could be identified as: the
information (=signal level) from component (=source/sender)
b is transmitted (=assigned) to component (=drain/receiver)
a. This transmission of information is illustrated in figure 3.

As the compiler has the ability to go through the VHDL
code and identify such assignments, we can calculate the

1http://www.antlr.org/

A B

Figure 3. Transmission of information between two components

complexity of a VHDL implementation by parsing the im-
plementation code. Therefore, the EBNF grammar has to be
annotated at the corresponding expressions, where any kind of
information interchange happens.

This complexity measurement, the design entropy concept,
bases its calculations on states, which are a pool of available
symbols. “Complexity can be considered to be a measure
of a system’s disorder which is a property of a system’s
state. Complexity varies with changes made at the amount of
possible states of a system” [13]. Therefore, states allow to
measure project size by the measurement of its entropy.

H = −K
N∑
α=1

pα log pα (1)

In information theory, Shannon represented the entropy by
the theorem given in equation (1). pα is the likelihood that a
system is in cell α of its phase space. This basic formula can be
rewritten to the design entropy equations as shown in [9]. This
leads to definition 1 for the general behavior entropy from [9].

Definition 1 (Behavior Entropy). Let c be a component with
inputs (component sources) ni(c), i = {1, . . . , n(c)} and
outputs (component drains) mj(c), j = {1, . . . ,m(c)}, where
n(c) is the amount of inputs of c and m(c) the amount of
outputs of c. Let z(ni(c)), i = {1, . . ., n(c)} be the amount of
possible states of the inputs n1(c) . . . nn(c)(c) and z(mj(c)),
j = {1, . . . ,m(c)} be the amounts of possible states of the
outputs m1(c) . . .mm(c)(c). Then the behavior entropy HB(c)
∈ R+

0 of component c is defined as:

HB(c) = log

n(c)∏
i=1

z(ni(c)) ·
m(c)∏
j=1

z(mj(c))

 (2)

As most projects, hardware projects are also split into
components. These components allow reusability. Therefore
the complexity measure as well as our tool need to allow
for component based approaches. But the complexity for an
instance of a component is not the same as the complexity
to build such a component. Therefore, there is a second
complexity calculation provided, the structure entropy.

The behavior entropy, given in the definition before, gives
statements about the usage complexity of a component. Or
in other words the complexity to instance a component. One
can also speak of a black box or outer look on a component.
The structure entropy, given in the following definition, allows
for the actual implementation of a component. Or in other
words the complexity to actually build this component. The
structure entropy is similar to a white box or an inner view
on a component. The structure entropy is given in definition 2
from [9].

Definition 2 (Structure Entropy). Let c be a component with
instances cb and implemented sub components cs. Then the
structure entropy HS(c) ∈ R+

0 for component c is given by
the sum of all behavior entropies of all instances cb and the
structure entropy of all implemented sub-components cs:

HS(c) =
∑
i∈cb

HB(i) +
∑
j∈cs

HS(j) (3)

With the two different complexity measures, the tool has to
distinguish between components, that are implemented within
the project and components only used in the project. If a
component was implemented within the project, its complexity
for the development has to be added to the complexity of the
whole project. If the component is just instanced in the project,
only the complexity to use to component adds up to a project’s
complexity.

B. Integration

Apart from the compiler itself, an executable program is
required which makes the call. This program consists of a
main-method and a calculate-method. A global memory holds
the results of already analyzed components. The main-method
includes a query of those components, that have to be analyzed
as well as their results. These results are determined by calling
the calculate-method. In VHDL, the name of a component also
serves as file name for this files. As listing 1 shows, the name
of a component (id) is passed to a recursive call of the main-
method (Run.calculate) where the file name equals the name
of this component (id.text). The listing also shows, how actions
can be directly embedded into grammar files in ANTLR, such
as the recursive call here. These actions are within the braces
(curly brackets).

Before results are calculated, the calculation-method
checks, whether the desired result has already been calculated
and is included in the cache. For the calculation, the source
code of a component is read line-by-line and packed into a
string. At this step, all comments are removed and all letters are
converted to lowercase. This allows a more efficient analysis
and doesn’t effect the results due to VHDL does not distinguish
between uppercase and lowercase. Then, this string is used to
call the lexer, the parser, and finally the calculated complexities
are returned. We always consider the input code to our tool as
grammatically correct and we do not check for error.

1 c o m p o n e n t _ d e c l a r a t i o n :
2 ’ component ’ i d = IDENT (’ i s ’) ?
3 (g e n e r i c _ c l a u s e) ?
4 (p o r t _ c l a u s e) ?
5 ’ end ’ ’ component ’ (IDENT) ? ’ ; ’
6 {
7 / / r e c u r s i v e c a l l f o r a sub−component
8 R e s u l t T r i p l e r t = Run . c a l c u l a t e ($ i d . t e x t) ;
9 / / save t o c o m p l e x i t y f i g u r e s

10 $ d e s i g n _ f i l e : : memory . p u t ($ i d . t e x t , r t) ;
11 }
12 ;

Listing 1. Component declaration with an action

IV. EXPERIMENTAL RESULTS

Figure 4 shows the terminal in-/output of our tool. After
the start of the tool, it asks for the name of the top-level-entity.
As a small example we analyze a ripple-carry-adder. This

0 2 4 6 8 10 12 14 16 18 20
H [log(9)]

A

B

C

Realization HB
HS

Figure 6. Entropy of three half-adder realizations

Figure 4. Tool in the terminal

ripple-carry-adder consists of full-adders, as figure 5 illustrates.
As the full-adders were also implemented, the tool needs to
analyze them, too. The full-adders consist of two half-adders
and one OR-gate. These half-adders are build by NAND-gates.
The OR-Gate used in the full-adder and the NAND-gates used
in the half-adders are basic gates. Therefore, those gates are not
considered as implemented components. For the complexity
calculation only their behavior entropy has to be calculated. As
the output of the tool in figure 4 shows, the single components
are hierarchically analyzed. After the complexity has been
calculated for all components, the complexity for the top level
entity is calculated and print out. The tool can also analyze
more complex implementations with several sub-components.

Full Adder

NAND Gate

Half Adder OR Gate

Ripple Carry Adder

Figure 5. Structural design hierarchy of a ripple carry adder

Complexity figures of different designs allow to compare
these designs with each other. Especially, different designs for

the same task can be directly compared by numbers. As an
example, the following box shows the complexity calculation
results for three different half-adder designs:

B e h a v i o r En t ropy f o r t h e top−l e v e l−e n t i t y h a l f _ a d d e r _ a : 4 ∗ l o g (9)
S t r u c t u r e En t ropy f o r t h e top−l e v e l−e n t i t y h a l f _ a d d e r _ a : 16 ∗ l o g (9)

B e h a v i o r En t ropy f o r t h e top−l e v e l−e n t i t y h a l f _ a d d e r _ b : 4 ∗ l o g (9)
S t r u c t u r e En t ropy f o r t h e top−l e v e l−e n t i t y h a l f _ a d d e r _ b : 6 ∗ l o g (9)

B e h a v i o r En t ropy f o r t h e top−l e v e l−e n t i t y h a l f _ a d d e r _ c : 4 ∗ l o g (9)
S t r u c t u r e En t ropy f o r t h e top−l e v e l−e n t i t y h a l f _ a d d e r _ c : 18 ∗ l o g (9)

Figure 6 charts the values for the behavior and structure
entropy of all three realizations. As all designs describe a half-
adder with two inputs and two outputs, the behavior entropy for
all realizations is the same. Due to the difference in design, the
structure entropy varies. The figures allow to give statements
about the relative complexity of the three designs.

V. CONCLUSION AND FUTURE WORK

We have introduced a tool, which is capable of analyzing
hardware projects for their complexity. With this tool, it is
possible to automatically calculate the complexity of VHDL
implementations. The tool is written in Java and therefore plat-
form independent. With this tool, we can now start to compare
larger projects with each other. With these results, we can
also evaluate the quality of the complexity measure method.
As for now, our tool covers structural descriptions based on
basic gates. We are working on a complete annotated grammar,
which covers VHDL completely. Due to the enormous extent
of the VHDL standard, we can only implement the syntax and
the complexity calculation methods step by step. In this paper
we were already able to show the beneficial influence of our
tool for complexity calculations in digital hardware projects.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, 1965.

[2] Intel Corporation, “Excerpts from A Conversation with
Gordon Moore: Moore’s Law,” 2005. [Online]. Avail-
able: ftp://download.intel.com/museum/Moores_Law/Video-transcripts/
Excepts_A_Conversation_with_Gordon_Moore.pdf

[3] M. Kanellos, “Moore’s law to roll on for another decade,” http://news.
cnet.com/2100-1001-984051.html, 2003.

[4] G. E. Moore, “Progress in digital integrated electronics,” vol. 21, 1975.
[5] R. Cavin, P. Lugli, and V. Zhirnov, “Science and Engineering Beyond

Moore’s Law,” Proceedings of the IEEE, vol. 100, 2012.
[6] International Solid-State Circuit Conference, “Isscc 2013 trends report,”

2013. [Online]. Available: http://isscc.org/doc/2013/2013_Trends.pdf
[7] T. DeMarco, Controlling Software Projects: Management, Measure-

ment, and Estimates, 1986.
[8] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and

Practical Approach, Revised. Course Technology, 1998.
[9] B. Menhorn and F. Slomka, “Design entropy concept,” in ESWEEK

2011 Compilation Proceedings (CODES+ISSS ’11), 2011.
[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, and Tools, 2nd ed., 2006.
[11] “IEEE standard VHDL language reference manual,” IEEE Std 1076-

2008 (Revision of IEEE Std 1076-2002), 2009.
[12] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, 1948.
[13] B. Menhorn and F. Slomka, “States and complexity,” in Coping with

Complexity COPCOM 2011, 2011.

