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ABSTRACT
This paper presents a passive method to calculate the dis-
parity of stereoscopic images. A probabilistic approach
is adopted, where two different criteria are used to find a
probability density function (PDF) from which the final re-
sult can be calculated. The first criterion is a dissimilarity
function used to compare the images pixel by pixel. The
second is a “sharpness” criterion: Both images are over-
lapped with an offset in direction of the axis separating the
two recording devices. As the objects in both images align
better, edges overlap. The energy of the high frequency
band increases while the energy in the low frequency band
decreases. Due to differences in the perspective, this is only
valid locally and therefore only applied to a given neigh-
borhood. The results of both criteria are merged to a final
PDF providing the final disparity. The main advantage of
our approach is the parallelization ability, and thus a scal-
able implementation, achieving a compromise between ac-
curacy and ease of realization. Furthermore, with minor
adjustments our approach can also be used for software re-
focusing.
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1 Introduction

With a pair of two-dimensional (2D) images from two dif-
ferent perspectives of the same object or scene a stereo-
scopic illustration can be created. This pair of images is
called a stereogram. It is assumed that the images are
aligned vertically, and that the images are taken with par-
allel lines of sight to assure that corresponding pixels lie
on the same horizontal line. Therefore the terms first and
second image are equivalent to left and right image. The
slightly different images of the same scene can not only
be used for a stereoscopic illusion but also to create a dis-
parity map. A (stereo) disparity map shows the difference
between two views. A depth map can be obtained from the
disparity map by an inversion (depth ∝ 1/disparity). The
depth map is an image with information about the relative
distance of the scenes’ objects. It is common to represent
the distance from the cameras’ viewpoint either in a gray or
color image. If the size of the object is known, its absolute
position from the viewpoint can also be determined. Depth
maps are especially useful for navigation. At our institute,
a depth map from two cameras will be used together with

a sonar to control an autonomous underwater vehicle. Our
requirements for processing image data are towards robust-
ness and reliability of the data. But we also require the data
to be processed in real-time. All those requirements will be
fulfilled by the here presented approach.

Our submarine is equipped with several field-
programmable gate arrays (FPGA), which provide the
hardware platform. In order to process the camera data in
real-time on our platform, we developed the here presented
approach. Almost the whole disparity calculation can be ef-
ficiently implemented in hardware. Furthermore, the core
calculations can run completely in parallel, making FPGAs
a perfect target platform.

2 Related Work

A series of algorithms to calculate disparity of stereoscopic
footage have been developed [6]. There are search algo-
rithms [15] which usually don’t show a straightforward
concurrent implementation. Other algorithms rely on spec-
tral properties of the images [10]. Those algorithms lead
to strong dependencies on the calculation parameters and
image properties. This is a huge disadvantage for the ro-
bustness. Iterative approaches [8] are not able to run in
real-time on limited resources, such as microprocessors and
field-programmable gate arrays. Another approach is an
energy estimation as part of the matching criteria [2]. It
has its disadvantage with real-time estimations. A proposed
fast algorithm uses a normalized squared error and a (fixed)
penalty for its local cost function [5]. But this algorithm is
limited to images where the corresponding points are nor-
mally distributed around a common true value. Especially
in underwater scenarios, this requirement isn’t fulfilled. A
presented real-time approach uses pipelined structures and
condensed logic blocks [4]. But their matching criteria dif-
fers from the one chosen in this paper. They only con-
sider intensity and not the spectral content of images. Also,
their considered neighborhood only consists of horizontal
single-row blocks, while our approach uses a circular win-
dow which allows a consideration in all directions..

3 Disparity Map Generation Algorithm

3.1 Approach

This paper intends to show an algorithm that is both ro-
bust and easy to put in a real-time implementation. Our ap-
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proach combines two known criteria to our new PDF. The
first criterion calculates disparity of pixels from the first
image and pixels from the second image using Birchfield’s
dissimilarity function [3]. The second criterion provides an
energy ratio measurement (which corresponds to the sharp-
ness) of both images overlapped with a certain offset δ ad-
justing the ’high to band pass frequency content ratio’ from
[14]. Our approach uses the intensity space instead of the
Fourier space and applies the criterion to a given neigh-
borhood instead of doing it globally. The results from the
dissimilarity function and the high to low frequency energy
ratio are combined in our probability density function. The
maximum of the PDF is our disparity for a certain point
in the image. Applying our algorithm to all pixels creates
the disparity map for the whole image. The results of our
implemented algorithm are shown at the end of the paper.

Our approach has a number of advantages: First of all,
the designer can choose a trade-off between performance
or saving resources. Secondly, the processes can be paral-
lelized and pipelined as well as different shift values can
be calculated by concurrent computation. Both advantages
allow a scalability which allows to process image data in
real-time. Third of all, our PDF is also a measure for the
reliability of the calculated disparity. Finally, our proba-
bilistic approach can also be used in software refocusing.

3.2 Predefinition

The goal is to produce a mapping from the first image to
the other image or vice versa. In the following we con-
sider the first image to be the left image and the second
image to be the right image. Our approach also works the
other way round. This mapping contains information on
how many positions a pixel has to be shifted to the left or
right to be on the place of its corresponding pixel on the
other image. This shift is the disparity d. Finding the cor-
responding pixel is done using gray-scale intensity values.
In the following we consider 8-bit gray-scale pixels thus
intensity value from 0 to 255. For color images, the inten-
sity for each channel (red, green, blue) will be considered
separately. This implies that calculating the disparity map
for color images can be reduced to a disparity map calcula-
tion of (three or more) gray scale image. Our approach can
also be used for images with all kinds of color or gray-scale
depths. As from here, a mapping from the left image to the
right image will be assumed.

Definition 1 (Disparity range). The disparity range r =
[0, δmax] is the shift range for which the calculations are
done. As only stereoscopic images are regarded, pixels
from the left image can only find its correspondence by
shifting to the left. δmax limits the disparity range and is
determined by the designer. For objects close to the cam-
era larger shifts are expected.

Definition 2 (Starting pixel). A starting pixel has its coor-
dinates at (xL, y) in the left image, whose corresponding
pixel in the right image has to be found.

Definition 3 (Matching set). The matching set consists of
those pixels from the right image with which the starting
pixel is compared to. This set has δmax + 1 elements with
coordinates ((xL, y), (xL + 1, y), . . . , (xL + δmax, y)).

Definition 4 (Matching pixel). A matching pixel has its co-
ordinates at (xR, y) from the matching set which is com-
pared with the starting pixel. The resulting disparity is
d ∈ r.

3.3 Birchfield’s Dissimilarity Function

Birchfield’s dissimilarity function [3] compares each pixel
from the first image (starting pixel) to one pixel (matching
pixel) out of a set of pixels on a corresponding horizontal
line from the second image (matching set). This process is
repeated for every pixel in the first image. Hence the func-
tion works at pixel resolution. The starting pixel is com-
pared to the pixels from the matching set using Birchfield’s
dissimilarity function [3]. Birchfield’s algorithm finds the
minimum distance between the intensity value of the start-
ing pixel I0

L = I(xL, y) and the linearly interpolated inten-
sity curve in an interval [− 1

2 ,
1
2 ] around the matching pixel

xR. The main steps for calculating the dissimilarity are ex-
plained in the following paragraphs. Detailed information
can be found in Birchfield’s article [3]. Figure 1 illustrates
Birchfield’s dissimilarity calculation. The gray curves are
the intensity curves from one line of the left image (IL) and
its corresponding line from the right image (IR). The black
dots represent those pixels considered for the calculation.

In order to calculate the dissimilarity, the first step is
to interpolate the values:

I−R ≡
1

2

(
I0
R + I−1

R

)
and I+

R ≡
1

2

(
I0
R + I+1

R

)
(1)

Within equation 1, I−1
R = I(xR − 1, y) and I+1

R =
I(xR + 1, y) are those pixels left and right of the matching
pixel. The second step computes the minimum intensity
value IRmin

and the maximum intensity value IRmax
:

IRmin
≡ min{I0

R, I
−
R , I

+
R} (2)

IRmax ≡ max{I0
R, I

−
R , I

+
R} (3)

The last step performs a symmetric computa-
tion D̄(I0

L, I
0
R, I

−
R , I

+
R ), which leads to the dissimilarity

D(xL, xR, y) ∈ N0:

D̄ = max{0, I0
L − IRmax

, IRmin
− I0

L} (4)

D = min{D̄(I0
L, I

0
R, I

−
R , I

+
R ), D̄(I0

R, I
0
L, I
−
L , I

+
L )} (5)

3.4 High to Low Frequency Energy Ratio

In order to obtain the high to low frequency energy ratio,
first the left and right images are overlapped (averaged)
with a horizontal offset δ ∈ N0, starting with δ = 0 to
δmax. This composed image is convolved with a Gaus-
sian kernel to obtain its low-pass image LP . Subtracting
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Figure 1. An example of Birchfield’s dissimilarity function. In this case, I0
L lies between I+

R and I0
R, thus D = 0

this low-pass image from the composed image obtains its
high-pass image HP . The high to low frequency energy
ratio (HTLR) for a given pixel at the position (x, y) and
a given offset δ is defined as the sum of all squared inten-
sity values in the high frequency band divided by the sum
of all squared intensity values in the low frequency band as
shown in equation (6).

HTLR(x, y, δ) =

∑
xi,yi∈η

HP 2(xi, yi, δ)∑
xi,yi∈η

LP 2(xi, yi, δ)
(6)

This summation is performed for every pixel inside a
neighborhood η of the considered pixel, in our case a round
window. Our calculation in equation (6) bases on the ’high
to band pass frequency content ratio’ explained in [14]. The
difference is that our calculation is in the intensity space in-
stead of the Fourier space. According to Plancherel’s the-
orem the result is the same and a Fourier transformation is
avoided [9]. The theorem, which was proven by Michel
Plancherel, states that the Fourier transformation within L2

of a quadratically integrable function is an isometry. In
other words, a function and its Fourier transformation have
the same norm in L2.

Figure 3 shows how the HTLR varies within the
neighborhood of the starting pixel from figure 2 depending
on the offset δ. The first column shows the overlapped im-
ages with a offset of δ. The second column shows the cor-
responding low-pass image and the third column the cor-
responding high-pass image. The high-pass image is the
difference of the composed image and its low-pass image.
In the top row, the right image is overlapped with a shift
δ = 3 pixels to the left image. Objects are not aligned and
the sharpness HTLR equals 4.5 · 10−6. In the middle row
the shift is δ = 12 pixels. The portion of the head is aligned
and a higher value is obtained, HTLR = 2.6 · 10−2. The
bottom row uses a shift of δ = 16. The HTLR is again
lower, as most of the edges don’t match. The maximum is
reached for a shift of δ = 12. This is the correct shift and
therefore the disparity for the starting pixel.

3.5 Objective Function

The lower the dissimilarity D the more likely the chosen
pixels correspond to the same point in both images. This
is, however, susceptible to noise and also won’t work well

Figure 2. Original left image from [7] with the starting
pixel (red dot) and its neighborhood (blue circle) with 75
pixels of diameter.

Overlapped
image

Low
Pass

High
Pass

δ = 3

δ = 12

δ = 16

Figure 3. Comparison of the HTLR with different offsets
δ.
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Figure 4. HTLR, dissimilarity D and disparity d for the starting pixel from figure 2 within a offset δ ∈ [1, 17].

either with plain surfaces or with patterns with frequencies
higher than the inverse of the disparity range. On the other
hand, HTLR is very stable, but will fail when most of the
window is occupied with objects not in the plane of the
central pixels and gives wrong results at object edges. A
formula that can fuse the two former criteria is needed us-
ing them as probability density functions P (x, y, δ). It is
assumed, that both criteria are independent.

P (x, y, δ) =
HTLR (x, y, δ)

D (x, x+ δ, y) + 1
(7)

P (x, y, δ) gives the probability of a starting pixel in
the coordinates (x, y) in the left picture matching a pixel in
the coordinates (x+δ, y) in the correspondent picture. The
probability P (x, y, δ) is directly proportional to HTLR
and inversely proportional to the dissimilarity D between
the two pixels, as given in equation (7). HTLR is in an
interval (0,∞) and D ∈ N0 → D ≥ 0. In order to avoid a
zero value in the denominator +1 is added. ThusD+1 ≥ 1
and the not normalized probability P in an interval (0,∞).
If required, P (x, y, δ) can be normalized by equation (8).

Pn(x, y, δ) =
P (x, y, δ)

δmax∑
∆=0

P (x, y,∆)

(8)

The +1 in equation (7) avoids the singularity, but also
distorts the relation between HTLR and D. Because only
the maximum of the probability P is relevant for the dis-
parity d, and both 1

x and 1
x+1 are both monotonically de-

creasing functions, the disorientation has no negative ef-
fect. Therefore, the probability P from equation (7) does
not need to be normalized according to equation (8). Fi-
nally, our disparity d(x, y) is given by equation (9).

d(x, y) = argmax
δ∈r

{P (x, y, δ)} (9)

Figure 4 shows the values for HTLR(x, δ),
D (x, x+ δ) + 1 and the resulting probability P (x, δ) for

the starting pixel (red dot) from figure 2 within a shift (off-
set) of δ ∈ [1, 17], The maximum and therefore according
to equation (9) the disparity d(x) is found at an offset of
δ = 12 with a non normalized probability P of 0.026.

In order to generate the disparity map for a color
scene, the single results from each color are averaged. Pix-
els with a probability below a predefined threshold are not
considered for averaging.

3.6 Reliability

Equation (7) not only expresses the probability but can also
be used as a measure for the reliability of the calculated
disparity. A threshold can be predefined and if there is not
enough information in this part of the picture to calculate
a reliable disparity value, the non-normalized probability
will be lower than the threshold. In this case there will be
no disparity value assigned to those pixels as they are con-
sidered unreliable. If the number of pixels with no value as-
signed exceeds a predefined limit, the whole disparity map
is unreliable. In our case the map will then not be used for
underwater navigation of our submarine.

3.7 Real-Time Implementation

With the here presented approach a real-time implemen-
tation is realized by parallelizing and pipelining the pro-
cesses. For our FPGA target platform, most of the blocks
can be realized in hardware. Figure 5 shows the proposed
architecture. From the left and right images, regions are
extracted and overlapped and stored in window buffers.
The low and high-pass filter, implemented as finite im-
pulse response filters, as well as the dissimilarity calcu-
lation can run in parallel. The Gaussian kernel is set to
the same size as the window w and a standard deviation of
0.05 · w. For each offset value δ these tasks can be further
parallelized, illustrated by the shaded blocks in the back-
ground. Because our filters are faster than the dissimilarity
calculation, the additional block for theHTLR calculation
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Figure 5. Data-flow model for real-time implementation.

doesn’t slow down the whole process. The last block pro-
vides the disparity calculation. Post-processing elements
can be added at the end of the pipeline. In our case, a me-
dian filter of 7 × 7 pixels, which can be also realized as
a parallel functional block. The whole task can be further
accelerated by adding concurrent computation for the dif-
ferent shift values. It is up to the designer what is more
important, performance or saving resources.

3.8 Software Refocusing

The same probabilistic approach can also be used for soft-
ware refocusing. A series of photographs of the same scene
are taken from exactly the same perspective. The only vari-
able is the depth of field. Starting at the closest point to the
camera, it is progressively shifted back for every consecu-
tive picture. To apply our method, the matching criteria and
the objective function have to be adapted. Pixel to pixel
comparison makes no sense, as the images already corre-
spond and their pixels are aligned. Therefore the dissimi-
larity function is not needed. To adjust the HTLR func-
tion the images won’t be shifted and overlaid. In order to
efficiently estimate the relation between low and high fre-
quency content the square of the magnitude of the gradient
is used. Leading to equation (10) for the high to low fre-
quency energy ratio HTLR(x, y, k) where k is the k-th
image because there is no δ shift.

HTLR =

(
∂I(x, y, k)

∂x

)2

+

(
∂I(x, y, k)

∂y

)2

(10)

P (x, y, k) = HTLR(x, y, k) (11)

d(x, y) = argmax
k∈r

{P (x, y, k)} (12)

Equation (11) shows the adjusted objective function
and equation (12) the disparity equation. In this case r is
not the disparity range, but the indexes of the progressive

depth of field pictures. The result is not disparity per se,
but as the disparity does, it carries information about the
depth of the scene. A real-time calculation of the gradient
calculation is of course possible.

4 Results

In order to demonstrate our approach, the whole algorithm
including a median filter was implemented in Matlab. The
Matlab implementation allows to easily generate VHDL-
Code which can be programmed on out FPGA target plat-
form. Figures 6, 7 and 8 show some obtained results. The
sub-image (a) always shows the original left image. Be-
cause of the almost invisible differences in the right scene,
only the left image is shown here. The right image can be
found at the cited sources. Sub-image (b) shows the ground
truth, also obtained from the cited sources. (c) is our calcu-
lated disparity map. For the colored scenes of figure 6 and
7 the three color channels (red, green and blue) were re-
garded as independent gray-scale images, and the disparity
map was computed averaging the single previous results.
Pixels with a probability below the threshold (dark blue
pixels) are not considered for averaging. The sub-image
(d) is the result of applying a median filter of 7× 7 pixels.
Figure 9 shows the result for our implementation of soft-
ware refocusing. The first sub-image is the first image of
the scene. The second sub-image is our obtained disparity
map and the most right sub-image shows the disparity map
after applying the median filter.

We used Matlab 2010a, Version 7.20.0.499, 32-bit un-
der Windows XP 2002 with SP3 with an AMD Phenom II
X4 955 3.21 GHz processor and of 3.50 GB RAM. The fol-
lowing computations times were measured for figure 7. A
non parallelized and non pipelined implementation takes 4
seconds per channel. Thus the generation of the disparity
map need 12 seconds.

To estimate the computation time of a parallel and
pipelined implementation, we measured the time for each
individual block from figure 5. In order to load the 225x225

229



(a) (b) (c) (d)
Figure 6. Image set from the University of Tsukuba [7]. Window size is 75 pixels of diameter, disparity range is 16 pixels and
the threshold is set to 3.4 · 105.

(a) (b) (c) (d)
Figure 7. Image set also from the University of Tsukuba [13]. Window size is 75 pixels of diameter, disparity range is 50 pixels
and the threshold is set to 1.7 · 105.

(a) (b) (c) (d)
Figure 8. Image set from Microsoft Research [12]. Window size is 50 pixels of diameter, disparity range is 30 pixels and the
threshold is set to 3.4 · 105.

12

10

8

6

4

2

0

Figure 9. Image set from the University of Washington [1]. The threshold is set to 0.5.
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pixel images into the windows buffer, it took 285 µs. With
a pipelined windows buffer, the loading time was negli-
gible. The low and high pass filters took 38, 7 ms with-
out pipelining and 0, 138 µs with pipelining within the fil-
ters. The calculation of the disparity took 0.5 µs and the
HTLR calculation 0.03 µs. The disparity calculation took
0, 87 µs. With a completely parallelized and pipelined im-
plementation, the whole calculation would take as little as
1.538µs per pixel in hardware. With a pipeline like the one
in figure 5 only the first pixel takes 1.538µs, the rest would
only need as much as the slowest step (0.87µs) allowing a
15-fps display for a gray scale 320x240 image. A FPGA
implementation is expected to be a lot faster than Matlab,
thus allowing higher frame rates and RGB image process-
ing capabilities.

We compared our disparity results from figure 7 with
the benchmark tool Middlebury Stereo Evaluation [11].
Our result has an error of 18.9% in the non-occluded re-
gions, 20.8% errors in the whole image and 48% error in
the discontinuities. These results are more than satisfactory
for our purpose, especially the run-time for our calculation.
Our focus was towards a fully parallelizable architecture,
which was achieved.

5 Conclusion

This paper introduced a passive method to calculate the
disparity of stereoscopic footage. The probability density
function adopted Birchfield’s dissimilarity function. The
sharpness criterion was applied to the overlapping images
on a given neighborhood. Our approach is a stable and
deterministic solution to the disparity calculation problem.
Our probability measurement also serves as a reliability
measurement. Depending on the application, this measure-
ment can be adjusted by a threshold to get only usable
results. As shown, our method allows parallelizing and
pipelining. High frame rates can be obtained using graph-
ics cards or FPGAs for a parallel implementation. This al-
lows to obtain results in real-time. Furthermore, with slight
adjustments our approach can also be used for software re-
focusing. For future work, the probability density function
can be extended to include calculations from other methods
to improve results. If done adequately, the pipeline can be
extended and allows for real-time results.
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