
Modeling and Analyzing Asynchronous Real-Time Systems∗

Victor Pollex, Steffen Kollmann, Frank Slomka
Department of Embedded Systems / Real-Time Systems

Ulm University
{firstname}.{lastname}@uni-ulm.de

Abstract

Distributed embedded hard real-time systems consist
of various components where each of them may operate on
a different time base. For the response-time analysis it is
important to model the stimulation of a task correctly. So
far the response-time analysis does not consider the dif-
ferent time bases explicitly. In this paper we introduce an
abstract clock model to consider the different time bases.
Furthermore we will show how to adapt the response-time
analysis to include the introduced clock model.

1 Introduction

The size of networked electronic control units (ECU)
used in the automotive industry grew rapidly in recent
years. Not only the number of ECUs increased but also
the number of buses used e.g. CAN, LIN, FlexRay. In
particular the latter one specifies its own time-base inde-
pendent from the other time-bases that might be used in
the ECUs. Such a network constitutes an asynchronous
distributed real-time system.

Assuming constant frequencies of the clocks the time-
triggered protocol [3] proposes the usage of the fault tol-
erant average algorithm to establish a global time-base for
a system. Although the precision of the global time-base
is known, the clocks in the system will always deviate [4].
Even if it is possible to choose resynchronization periods
short enough that the deviations of the clocks are negligi-
ble, there are cases where establishing a global time-base
is not possible. This is the case when clocks with variable
frequencies are used. For instance a combustion engine
where ignition times have to be computed for each revolu-
tion. The task that computes the ignition times is triggered
several times per revolution depending on the amount of
cylinders the task is responsible for. In case that one en-
gine control unit is not enough, all engine control units
have to able to communicate with each other. Is this done
through FlexRay, an additional time-base is added to the
system and an acceptable global-time base can no longer
be established, because the engine as a mechanical system
cannot be synchronized.

Münzenberger et al. [6] introduced a time model which
was designed to model the behaviour of actual imple-

∗Supported by the Carl Zeiss Foundation

mented clocks. This model allows to determine the time of
a clock at a given point in time of the reference time-base.
In contrast to this model, we need to be able to model the
number of clock cycles that have elapsed for a clock in a
certain time interval. Therefore we propose a new abstract
clock model.

During the design stage of a distributed real-time sys-
tem its real-time requirements have to be verified. With
a simulation the system’s real-time behaviour can be ob-
served. Due to the rarity of corner cases a simulation can
only verify the real-time requirements with a certain prob-
ability. A formal analysis however is performed on guar-
anteed bounds. This leads to guaranteed assertions about
the real-time behaviour of the system.

A widely known formal analysis is the response-time
analysis as described by Joseph and Pandya [2]. Lehoczky
[5] extended this analysis for the case of arbitrary dead-
lines. Tindell and Clark introduced the holistic schedu-
lability analysis [8] to analyze distributed systems with
the response time analysis. We will adapt this response-
time analysis to include our proposed clock model to ver-
ify asynchronous systems.

We start by introducing the different models which are
used. Section 3 shows how to adapt the response-time
analysis in order to include the proposed clock model. We
finish with a conclusion in section 4.

2 Models

2.1 Clock Model
Assume that every component operates on a clock or

something that can be considered as a clock e.g. an en-
gine. This clock represents the time base the component
is working on. A cycle of the clock is the granularity of the
time base. The clock model establishes the link between
the real time and the time base of the clock.

Definition 1 (Clock Function). Let ω(t,∆t) denote the
number of clock cycles that have ended in the interval
[t, t+ ∆t) of the reference time-base.

ω : R× R+
0 → N0, (t,∆t) 7→ ω(t,∆t)

To be able to use the clock model in the response-time
analysis, we define the following bound:

Definition 2 (Clock Function Bound). Let ω+(∆t) de-
note a subadditive upper bound for the number of clock



cycles that have ended in any interval of length ∆t.

ω(t,∆t) ≤ ω+(∆t) (1)

holds for all t ∈ R,∆t ∈ R+
0 and

ω+(∆t1 + ∆t2) ≤ ω+(∆t1) + ω+(∆t2) (2)

holds for all ∆t1,∆t2 ∈ R+
0 . Furthermore let ω+(∆t) be

monotonically non-decreasing.

ω+(∆t1) ≤ ω+(∆t2) (3)

holds for all ∆t1,∆t2 ∈ R+
0 where ∆t1 < ∆t2.

The clock function bound can be derived from the fre-
quency of the clock in the component and its maximum
deviation. Assume a clock with a frequency of 1 kHz and
a maximum deviation of 5 ppm then for any interval of
length ∆t at most

ω+(∆t) =
⌈
(1 + 5 · 10−6) · 1000 ·∆t

⌉
cycles would have ended, where the length of the interval
∆t is given in seconds.

2.2 Event Model
The amount of cycles that have ended in an interval of

given length is needed, because it is assumed that events
only occur at cycle boundaries. Therefore the event model
describes the relationship between an amount of consecu-
tive cycles and the amount of events that occurred during
those cycles. The event model is an abstract model which
is defined similar to the arrival curves of the real-time cal-
culus [1].

Definition 3 (Event Function). Let η(c,∆c) denote the
number of events that occurred in the cycle interval [c, c+
∆c).

η : Z× N0 → N0, (c,∆c) 7→ η(c,∆c)

For the response-time analysis a bound for the event
function is also needed, defined analogously to the clock
function bound.

Definition 4 (Event Function Bound). Let η+(∆c) denote
a subadditive upper bound for the number of events that
occurred in any cycle interval of length ∆c.

η(c,∆c) ≤ η+(∆c) (4)

holds for all c ∈ Z,∆c ∈ N0 and

η+(∆c1 + ∆c2) ≤ η+(∆c1) + η+(∆c2) (5)

holds for all ∆c1,∆c2 ∈ N0. Furthermore let η+(∆c) be
monotonically non-decreasing.

η+(∆c1) ≤ η+(∆c2) (6)

holds for all ∆c1,∆c2 ∈ N0 where ∆c1 < ∆c2.

The event function bound can be derived from the ac-
tual application of the clock. Assume a timer which pro-
duces an event e.g. an interrupt every 100 cycles then for
∆c consecutive cycles at most

η+(∆c) =
⌈

∆c
100

⌉
events could have been produced.

2.3 Task Model
Each task is mapped to exactly one resource and

each resource uses a fixed priority preemptive scheduling
scheme. Furthermore each task is event triggered where
the events are generated by a source e.g. a sensor or an-
other task. Whenever a task is triggered by an event, a
job of the task is generated which is then executed by the
resource the task is mapped to.

Definition 5 (Task). Let τ denote a task consisting of a
clock function upper bound ω+, an event function upper
bound η+, a worst-case execution time c+ and a priority
φ.

τ := (ω+, η+, c+, φ)

ω+ specifies the upper bound of cycles of the clock
which is used in the source that triggers the task. The
amount of events that can occur is bounded by η+. The
worst-case execution time c+ specifies the maximum
amount of time that a job of the task needs for it to be
completely executed by the resource it is mapped to with-
out any interference of the other tasks. φ is the priority of
the task.

Definition 6 (Task set). Let Γ denote the set of tasks,
which are mapped to the same resource. Let the tasks be
sorted in decreasing order by their priority, meaning that
τ1 is the task with the highest priority, τ2 with the second
highest priority and so on.

Γ := {τ1, . . . , τn}

3 Response-Time Analysis

The response time rτi,k of the k-th job of task τi

rτi,k := ϑτi,k −∆tτi,k

is the length of the interval from its request time ∆tτi,k up
to its completion time ϑτi,k. For the worst-case response
time of a job

r+
τi,k

:= ϑ+
τi,k
−∆t−τi,k

the earliest possible request time ∆t−τi,k
and the latest pos-

sible completion time ϑ+
τi,k

is assumed. The worst-case
response time of task τi is the maximum of the worst-case
response times of its jobs. To compute it only the jobs in
the busy window have to be considered as shown in [5].

r+
τi

:= max
k∈[1,m]

{
r+
τi,k

}
m := min

k∈N

{
k|ϑ+

τi,k
≤ ∆t−τi,k+1

}
3.1 Request time

First we will show the bound for the number of events
that can occur in an interval of length ∆t with following
lemma:

Lemma 1. Given the clock function bound ω+ of the clock
that generated the event sequence which is bounded by
the event function bound η+ then the maximum number
of events that can occur in an interval of length ∆t is
bounded by η+(ω+(∆t)).

∀c ∀t ∀∆t η(c, ω(t,∆t)) ≤ η+(ω+(∆t))



Proof.

η(c, ω(t,∆t)) ≤ η+(ω(t,∆t)) ≤ η+(ω+(∆t))

η(c, ω(t,∆t)) ≤ η+(ω(t,∆t)) follows directly from (4)
and η+(ω(t,∆t)) ≤ η+(ω+(∆t)) follows from (1) and
(6).

With the bound given by lemma 1 we now show
the earliest possible request time ∆t−τi,k

with following
lemma:

Lemma 2. Given the clock function upper bound ω+ and
the event function upper bound η+, then the smallest pos-
sible interval in which k events can occur is bounded by:

∆t−τi
(k) := inf

∆t≥0

{
∆t
∣∣η+
τi

(ω+
τi

(∆t)) ≥ k
}

(7)

Proof. Assume a smaller interval than ∆t−(τi, k) exists
in which k events occur.

∃c0∃t0∃∆t0 < ∆t−τi
(k) : k ≤ lim

∆t→∆t+0

η(c0, ω(t0,∆t))

Due to ∆t−τi
(k) being the infimum of all intervals in which

at least k events occur, it follows that for any interval less
than ∆t−τi

(k) less than k events occur.

∀∆t0 < ∆t−τi
(k) lim

∆t→∆t+0

η+
τi

(ω+
τi

(∆t)) < k

It follows

k ≤ lim
∆t→∆t+0

η(c0, ω(t0,∆t))

≤ lim
∆t→∆t+0

η+
τi

(ω+
τi

(∆t)) < k

which is a contradiction.

3.2 Completion time
For the latest possible completion time of the k-th job

of task τi we first define:

fτi,k(∆t) := k · c+τi
+

i−1∑
j=1

ρ+
τj

(∆t)

where ρ+
τi

denotes the upper bound of the request func-
tion, the maximum amount of processing time which can
be requested in an interval of length ∆t. This is the max-
imum number of events that can occur in an interval of
length ∆t times the worst-case execution time c+τj

.

ρ+
τj

(∆t) := η+
τj

(ω+
τj

(∆t)) · c+τj

Since the response-time analysis belongs to the family of
busy window algorithms, the completion time of the k-th
job of task τi is the smallest fix-point of fτi,k(∆t)

ϑ+
τi,k

:= min
∆t≥0

{∆t |∆t = fτi,k(∆t)} (8)

s1

s2

τ1

τ2

CPU

p = 10, j = 5

p = 20, j = 0

c+ = 5

c+ = 5

Figure 1. Example system

Fix-point (8) can be calculated by following iterative pro-
cedure

∆t#n+1
τi,k

=

{
fτi,k(0) if n = 0
fτi,k(∆t#nτi,k

) if n > 0
(9)

Note that iteration (9) can be started with any value less
than or equal to fix-point (8). Furthermore note that (8)
is only valid for jobs within the busy window of τi as de-
scribed by Lehoczky [5]. A general proof that (8) exists
and that (9) converges to (8) can be found in [7].

3.3 Example
In the following example we will show the effect of an

asynchronous system on the response time. First we as-
sume the system to be synchronous and then we change
the speed of one clock to make it asynchronous. In both
cases we will perform a response-time analysis. The sys-
tem we will use is shown in Fig. 1. It consists of one pro-
cessor executing two tasks. τ1 has a higher priority than τ2
and both tasks have a worst-case execution time of 5 ms.
Each task receives events by its own source. Source s1

generates an event every 10 cycles and has a jitter of 5 cy-
cles. Source s2 generates events every 20 cycles and has
no jitter. Furthermore source s2 has a clock with 1 kHz
generating one cycle every millisecond.

For the synchronous case we assume that source s1 also
has a clock with 1 kHz. Every component operates syn-
chronous on the global time base. The task set we are
using is defined as follows:

Γ :=
{(⌈

∆t
1

⌉
,

⌈
∆c+ 5

10

⌉
, 5, 1

)
,(⌈

∆t
1

⌉
,

⌈
∆c
20

⌉
, 5, 2

)}
Now we compute the worst-case response time of τ2.

Table 1 shows the iteration for the first job of task τ2 as
given by (9). As can be seen, the fix-point is found at
15 ms. The request time of the second job is 20 ms. Be-
cause 15 ≤ 20 we are done and the worst-case response
time of τ2 is 15 ms. A gantt-chart for this worst-case sce-
nario is shown in Fig. 2.

For the asynchronous case we assume that the clock
of source s1 has changed to 1.25 kHz, generating one cy-
cle every 0.8 milliseconds. Everything else of the system



Table 1. Fix-point iteration for the first job of
task τ2 (synchronous case)

n ∆t#nτ2,1 ω+
τ1(∆t#nτ2,1) η+

τ1(ω+
τ1(∆t#nτ2,1)) ∆t#n+1

τ2,1

1 10 10 2 15
2 15 15 2 15

time [ms]

τ1

τ2

0 5 10 15 20

0 5 10 15 20

Figure 2. Gantt-chart of the worst-case sce-
nario (synchronous case)

stays unchanged. The task set we are using is defined as
follows:

Γ :=
{(⌈

∆t
0.8

⌉
,

⌈
∆c+ 5

10

⌉
, 5, 1

)
,(⌈

∆t
1

⌉
,

⌈
∆c
20

⌉
, 5, 2

)}

Again we compute the worst-case response time of τ2.
Table 2 shows the fix-point iteration for the first job of
task τ2 as given by (9). As can be seen, this time the fix-
point is found at 20 ms. With the same argument as in the
synchronous case, the worst-case response time of task τ2
is 20 ms. A gantt-chart for this worst-case scenario in the
asynchronous case is shown in Fig. 3.

The faster clock of source s1 causes more events to
occur in the same amount of time compared to the syn-
chronous case. Thus τ2 experiences more interference by
task τ1 leading to an increased worst-case response time.
Note that the increased number of events also increased
the worst-case response time of task τ1. It increased from
previously 5 ms in the synchronous case to 6 ms in the
asynchronous case.

Table 2. Fix-point iteration for the first job of
task τ2 (asynchronous case)

n ∆t#nτ2,1 ω+
τ1(∆t#nτ2,1) η+

τ1(ω+
τ1(∆t#nτ2,1)) ∆t#n+1

τ2,1

1 10 13 2 15
2 15 19 3 20
3 20 25 3 20

time [ms]

τ1

τ2

0 5 10 15 20

0 5 10 15 20

Figure 3. Gantt-chart of the worst-case sce-
nario (asynchronous case)

4 Conclusion

In this paper we have introduced a new abstract clock
model and adapted the response-time analysis for fixed-
priority preemptive systems to include this clock model.
With an example we have shown how a faster clock af-
fects the response times of tasks in a system. The example
also shows the importance of modeling the stimulation of
a task correctly. Assuming a synchronous system which
actually is asynchronous can lead to too optimistic asser-
tions with the response-time analysis.

In future work we will investigate the possibility of
transferring the introduced model to the case where the
used processors have different processing capabilities.
Furthermore we will investigate how the introduced clock
model can be used with the real-time calculus.

References

[1] S. Chakraborty, S. Künzli, and L. Thiele. A General Frame-
work for Analysing System Properties in Platform-Based
Embedded System Designs. In Design, Automation and Test
in Europe Conference and Exhibition, 2003.

[2] M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 29(5):390–395,
1986.

[3] H. Kopetz and G. Grünsteidl. TTP - A Time-Triggered Pro-
tocol for Fault-Tolerant Real-Time Systems. In Digest of
Papers: FTCS-23, The Twenty-Third Annual International
Symposium on Fault-Tolerant Computing, pages 524–533,
Jun 1993.

[4] H. Kopetz and W. Ochsenreiter. Clock Synchronization
in Distributed Real-Time Systems. IEEE Transactions on
Computers, 36(8):933–940, Aug 1987.

[5] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task
Sets with Arbitrary Deadlines. In Proceedings of the 11th
Real-Time Systems Symposium, pages 201–209, Dec 1990.

[6] R. Münzenberger, M. Dörfel, R. Hofmann, and F. Slomka.
A general time model for the specification and design of
embedded real-time systems. Microelectronics Journal,
34(11):989–1000, 2003.

[7] S. Stein, J. Diemer, M. Ivers, S. Schliecker, and R. Ernst.
On the Convergence of the SymTA/S analysis. Technical
report, Technical University Braunschweig, 2008.

[8] K. Tindell and J. Clark. Holistic Schedulability Analysis for
Distributed Hard Real-time Systems. Microprocessing and
Microprogramming, 40:117–134, April 1994.


