
Generalizing Response-Time Analysis
Victor Pollex, Steffen Kollmann and Frank Slomka

Institute of Embedded Systems / Real-Time Systems
Ulm University

{firstname}.{lastname}@uni-ulm.de

Abstract—In real-time theory, basically two approaches for
the computation of response-times exist. One of them is the busy
window method, the other is the real-time calculus, an extension
of the network calculus. While both can be used to compute
the bounds of response-times, they have different properties
that make them suitable for different system architectures. The
busy window approach on the one hand is able to obtain tight
bounds for scheduling policies like round-robin. It is also capable
of considering offsets, therefore delivering better results in the
relevant cases. Hierarchical scheduling on the other hand can
be better accounted for by the real-time calculus, where this is
an inherent feature of the underlying concept. The approach we
present in this paper takes the theory of hierarchy from the real-
time calculus and uses it to generalize the response-time analysis.
This is implemented as an extension of the busy window method,
which enables it to analyze scheduling hierarchies of an arbitrary
depth.

I. INTRODUCTION

The complexity of embedded systems has grown rapidly
in the last years e. g. in the automotive industry where many
functions and applications are distributed across several elec-
tronic control units (ECUs). This is among other things due to
the layout of the sensors and actuators, for instance in electro-
hydraulic brake systems or driver assistance systems.

The ECUs communicate over several busses like
FlexRay [1]. This bus uses basically a time division
multiple access (TDMA) policy for its arbitration. A cycle
consists of various consecutive segments which can include
a static segment and a dynamic segment. Both segments are
divided into slots. In the static segment these slots are of fixed
size, whereas they can dynamically expand in the dynamic
segment, up to its complete length. Spontaneous or sporadic
messages are usually sent over the dynamic segment which
basically follows a fixed-priority non-preemptive policy as
its arbitration. Therefore the arbitration of FlexRay can be
treated as a hierarchical scheduling policy.

The automotive domain is only one field where hierarchical
scheduling is encountered. Other examples are real-time sys-
tems using one of the various server models, like the periodic
server or the deferrable server [2]. These are used to handle
both strict periodic and spontaneous tasks. More examples are
described in [3, p. 3].

This work is supported in part by the Carl Zeiss Foundation.

To verify that a system meets the real-time constraints, a
schedulability analysis is performed. Many approaches used
for the analysis are based on the the busy window introduced
by Lehoczky [4]. To the best of our knowledge none of
those approaches use a general method to handle hierarchical
scheduling. The main challenge is coping with all the possible
combinations of scheduling policies.

A different approach is the real-time calculus, which is
based on the network calculus. By considering each task
independently, the real-time calculus is capable of handling
hierarchical scheduling. However, the schedulability analysis
is not as good as the approaches based on the busy window
when e.g. a round robin scheduling policy or offset relations
are involved. It is therefore desirable that the approaches based
on the busy window are capable of handling hierarchical
scheduling with a general method. We will achieve this by
deriving from the real-time calculus a more general form of the
response-time analysis that was introduced by Lehoczky [4].

The paper is organized as follows: in section II an overview
of the related work is presented. The computational model and
the assumptions are introduced in section III. In section IV the
generalized response-time analysis is developed, followed by
various scheduling policies in section V which can be used in
the analysis. After an example in section VI, the work closes
with a conclusion.

II. RELATED WORK

The methods for exact real-time analysis of distributed
systems can be mainly divided into two groups. One is the
real-time calculus [5] based on the network calculus [6], and
the other one is the holistic analysis by Tindell and Clark [7]
based on the response-time analysis introduced by Lehoczky
[4]. Since then, many improvements have been achieved.

The SymTA/S approach [8] based on the response-time
analysis is one of the established methodologies. Especially,
offsets between tasks [9] and the round-robin policy [10] can
be handled very well by this methodology.

The consequent advancement of the response-time analysis
has lead to an expressive analysis which can handle many
different system architectures. Special approaches were devel-
oped to model hierarchical scheduling: Seawong et al. have
shown in [11] how hierarchical preemptive scheduling can be

The Sixteenth IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/10 $26.00 © 2010 IEEE

DOI 10.1109/RTCSA.2010.36

203

The Sixteenth IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/10 $26.00 © 2010 IEEE

DOI 10.1109/RTCSA.2010.36

203

modeled for a limited number of scheduling policies. Almeida
has described in [12] how to derive the response time for
deferrable servers by using capacity functions. Additionally,
Davis et al. [13] have shown how the classical response time
analysis can be used to model sporadic and periodic servers.
But all those approaches are only solutions for special cases.
A more general approach has been used by Naedele et al. [14].
In this paper, a simple schedulability test is derived from the
real-time calculus. But this approach is also not appropriate for
general hierarchical scheduling, because only strict periodic
tasks with fixed priorities are considered.

The real-time calculus [15] is based on arrival and service
curves. These are used via the min-/max-plus algebra [6] in
order to determine the worst-case response times in distributed
systems. The concept of service curves allows to handle the
different scheduling policies. A good overview is given in [5].
This is done by providing the bounding tasks’ capacity for
each task. Describing hierarchical scheduling is very simple,
because service curves are an integral part of the model. In [16]
it was shown how the hierarchical policy of a deferrable server
can be described by the real-time calculus. But not all schedul-
ing policies can be analyzed exactly. For example, round-robin
can only be approximated by TDMA [17]. Furthermore, task
contexts like offsets between tasks can not be included.

One approach to cope with this problem is to combine
the real-time calculus and the response time analysis. This is
done by modeling hierarchical scheduling with the real-time
calculus, round-robin systems with the classical task system
used by the response-time analysis as introduced in [17]. But
the disadvantage of this concept is the conversion of the event
models from one model into the other, which results in a loss
of accuracy.

III. COMPUTATIONAL MODEL

In this section we restate the computational model used in
real-time calculus [5] and we introduce some additional func-
tions. The model mainly consists of different mathematical
functions having certain properties which will be described in
the following.

A. General Curves

The real-time calculus models certain aspects of the system
by bounding them through lower and upper curves. All lower
and upper curves have common properties, respectively. We
extend these properties as introduced in [15] by following
definitions:

Definition 1 (Lower Curve). A lower curve is a function
f− : A → B with A,B ⊆ R+

0 that vanishes at the origin,
is monotonically non-decreasing and is superadditive. For all

a1, a2 ∈ A and w.l.o.g. a1 < a2 a lower curve f− satisfies:

f−(0) = 0

f−(a1)≤ f−(a2)

f−(a1 + a2)≥ f−(a1) + f−(a2)

Definition 2 (Upper Curve). An upper curve is a function
f+ : A→ B with A,B ⊆ R+

0 that vanishes only at the origin,
is monotonically non-decreasing and is subadditive. For all
a1, a2 ∈ A and w.l.o.g. a1 < a2 an upper curve f+ satisfies:

f+(0) = 0

f+(a2)> 0

f+(a1)≤ f+(a2)

f+(a1 + a2)≤ f+(a1) + f+(a2)

B. Specific Curves

The first aspect that is modeled are the arrival curves which
are defined as follows:

Definition 3 (Event-Based Arrival Curves). Let R[s, t) denote
the number of events that arrive on an event stream in the time
interval [s, t). Then the corresponding lower and upper arrival
curves are denoted as α− : R+

0 → N0 and α+ : R+
0 → N0,

respectively, and satisfy ∀s, t ∈ R+
0 where s ≤ t:

α−(t− s) ≤ R[s, t) ≤ α+(t− s)

A specific event model used in literature is the periodic
model with jitter and minimum distance [8]. This model can
be easily described by arrival curves. Given the parameters
(p, j, d), where p is the period, j the jitter and d the mini-
mum distance of events, the corresponding arrival curves are
specified as follows:

α−(∆) = max

{⌊
∆− j
p

⌋
, 0

}
(1)

α+(∆) = min

{⌈
∆ + j

p

⌉
,

⌈
∆

d

⌉}
(2)

where ∆ is the length of the interval considered.
The next aspect that is modeled are the available resources.

They are modeled with service curves:

Definition 4 (Resource-Based Service Curves). Let C[s, t)

denote the amount of demand that a resource can process in the
time interval [s, t). Then the corresponding lower and upper
service curves are denoted as β− : R+

0 → R+
0 and β+ : R+

0 →
R+

0 , respectively, and satisfy ∀s, t ∈ R+
0 where s ≤ t:

β−(t− s) ≤ C[s, t) ≤ β+(t− s)

It is assumed that the image of both the lower and upper
service curve is the set R+

0 .

Note that β is defined in resource units, whereas α is defined
in event units. Therefore α describes a requested computation

204204

demand. It is commonly assumed, that the resource used is
an unit processor. For every unit of time an unit of resource
is available. This can be easily described by service curves as
follows:

β−(∆) = ∆ (3)

β+(∆) = ∆ (4)

The arrival curves have been defined in event units and the
service curves in resource units, therefore a transformation
between both units is needed. This can be achieved by using
workload curves:

Definition 5 (Workload Curves). Let W (u) denote the total
resource demand created on a component by u consecutive
events of an incoming event stream. Then the corresponding
lower and upper workload curves are denoted as γ− : N0 →
R+

0 and γ+ : N0 → R+
0 , respectively, and satisfy ∀u, v ∈ N0

where u ≤ v:

γ−(v − u) ≤W (v)−W (u) ≤ γ+(v − u)

Using the workload curves the event-based arrival curves
can now be transformed into resource-based arrival curves as
follows:

α−(∆) = γ−(α−(∆)) (5)

α+(∆) = γ+(α+(∆)) (6)

A common notion in literature is to specify the best-case
execution demand c− (BCED) and the worst-case execution
demand c+ (WCED) an event causes. It is then assumed that
in the best case every event only causes a demand of c− and
likewise in the worst case it is assumed that every event causes
a demand of c+. This behavior can be easily described by
workload curves as follows:

γ−(k) = k · c− (7)

γ+(k) = k · c+ (8)

where k ∈ N0 is the number of consecutive events.
Up to this point, the curves introduced are the same as those

used in the real-time calculus. Additional definitions of curves
are needed for the generalized response-time analysis. First the
pseudo-inverse of the upper arrival curve is defined. This curve
denotes the length an interval has to be at least in size for a
given amount of events to occur in it.

Definition 6 (Pseudo-Inverse Upper Arrival Curve). Let
α+(∆) be an upper arrival curve, then the pseudo-inverse
curve α+−1

(k) is defined as follows:

α+−1
(k) = inf

∆∈R+
0

{
∆
∣∣k ≤ α+(∆)

}

If the periodic model with jitter and minimum distance
(p, j, d) is given, the inverse of the upper arrival curve is given
by:

α+−1
(k) =

{
0 if k = 0

max {(k − 1)p− j, (k − 1)d} if k > 0

Second the pseudo-inverse of the lower service curve is
described. This curve denotes the length an interval has to
be at most in size for a given amount of resource units to be
available in it.

Definition 7 (Pseudo-Inverse Lower Service Curve). Let β−

be a lower service curve, then the pseudo-inverse curve β−−1

is defined as follows:

β−
−1

(c) = inf
∆∈R+

0

{
∆
∣∣c ≤ β−(∆)

}
C. Processing Component and Scheduling Domain

Next the greedy processing component is introduced, an
abstract component used in real-time calculus to model the
execution of a task on a resource as given in [18].

Definition 8 (Greedy Processing Component). Let τ denote a
greedy processing component (GPC).

τ = ((α−, α+), (β−, β+), (γ−, γ+))

Whenever an event occurs, described by the corresponding
arrival curves α−τ and α+

τ , a job of the task the GPC represents
is created to process the event. Events are processed in a first-
in first-out order. The demand created by the events, described
by the corresponding workload curves γ−τ and γ+

τ , is processed
according to the availability of resources described by the
corresponding service curves β−τ and β+

τ . After an event is
processed, a new event is created which possibly triggers any
succeeding component.

The relation between the arrival curve, the service curve and
the outgoing service curve is given by:

β
′−
τ (∆) = sup

0≤λ≤∆

{
β−τ (λ)− α+

τ (λ)
}

Now two characteristic values are introduced, the utilization
and the capacity of a GPC τ . The utilization Uτ denotes the
average amount of resource units the GPC τ demands per time
unit, whereas the capacity Cτ denotes the average amount of
resource units available per time unit to process the demand
caused by the GPC τ .

Uτ = lim
∆→∞

α+
τ (∆)

∆
Cτ = lim

∆→∞

β−τ (∆)

∆

It is assumed that the utilization of a GPC is less than
the capacity available for it. This guarantees that the delay
experienced by an event is bounded.

Uτ < Cτ (9)

205205

Definition 9 (Scheduling Domain). Let Γ denote a scheduling
domain consisting of a set of GPCs and resource-based service
curves

Γ = ({τ1, . . . , τn} , (β−, β+))

A scheduling domain is an instance of a scheduling policy. The
set of GPCs which comprises the scheduling domain are those
that are scheduled by said instance. The scheduling domain
distributes the available resources, described by the service
curves β−Γ and β+

Γ , accordingly to its policy.

Each scheduling domain may be embedded in another
scheduling domain, forming scheduling hierarchies. For a
parent scheduling domain the embedded scheduling domain
is treated as a GPC which is given resources accordingly to
the parents scheduling policy.

IV. RESPONSE-TIME ANALYSIS

Using the models introduced in section III, we will now
derive the equations representing a more general response-time
analysis. We start by restating the bound of the delay a job of
a task rτ can experience according to the network calculus.
This is described by the greatest horizontal deviation between
the upper arrival curve α+

τ and the lower service curve β−τ [6,
p. 28]:

rτ ≤ sup
λ∈R+

0

{
inf
µ∈R+

0

{
µ
∣∣α+
τ (λ) ≤ β−τ (λ+ µ)

}}
(10)

Using the pseudo-inverse of the service curve, the horizontal
deviation in (10) can also be expressed as follows [6, p. 155]:

sup
λ∈R+

0

{
β−τ
−1

(α+
τ (λ))− λ

}
(11)

We will now rewrite (11) to represent a more general form
of the response-time analysis by the following theorem:

Theorem 1. The response time rτ of task τ is bounded from
above by:

rτ ≤ sup
k∈N0

{
β−τ
−1

(γ+
τ (k))− α+

τ
−1

(k)
}

(12)

Proof: Let Ak be the preimage of α+
τ at k:

Ak =
{
λ ∈ R+

0

∣∣α+
τ (λ) = k

}
∀k ∈ N0

Due to α+
τ being monotonically non-decreasing, the preimages

are disjoint and the union of all preimages Ak is the set R+
0⋃

k∈N0

Ak = R+
0

therefore (11) can be rewritten as follows:

sup
k∈N0

{
sup
λ∈Ak

{
β−τ
−1

(α+
τ (λ))− λ

}}
(13)

Obviously α+
τ (λ) = k for all λ ∈ Ak therefore α+

τ (λ) =

γ+
τ (α+

τ (λ)) = γ+
τ (k). Because α+

τ is monotonically non-
decreasing and the interval considered is a left-closed, right-
open interval, the preimage Ak of α+

τ can also be stated as
follows:

Ak =

{
{0} if k = 0

(α+
τ
−1

(k), α+
τ
−1

(k + 1)] if k ∈ N

thus

sup
λ∈Ak

{
β−τ
−1

(α+
τ (λ))− λ

}
= sup
λ∈Ak

{
β−τ
−1

(γ+
τ (k))− λ

}
=β−τ

−1
(γ+
τ (k)) + sup

λ∈Ak

{−λ}

=β−τ
−1

(γ+
τ (k))− inf

λ∈Ak

{λ}

=β−τ
−1

(γ+
τ (k))− α+

τ
−1

(k)

Therefore (13) can also be expressed as follows:

sup
k∈N0

{
β−τ
−1

(γ+
τ (k))− α+

τ
−1

(k)
}

Using the terminology of Tindell et al. [19], β−τ
−1

(γ+
τ (k))

is the time when the k-th invocation finishes and α+
τ
−1

(k) is
the release time of the k-th invocation, thus the difference is
the response time of the k-th invocation. Therefore, (12) de-
scribes the supremum of the response times of all invocations
of task τ , which is a bound on the worst-case response time
that a job of task τ can experience.

To compute the worst-case response time according to (12)
an infinite amount of jobs has to be analyzed. This is neither
possible nor necessary as is shown with following theorem.

Theorem 2. The upper bound on the response time rτ of a
task τ is given by:

rτ ≤ max
k∈[1..m]

{
β−τ
−1

(γ+
τ (k))− α+

τ
−1

(k)
}

m= min
k∈N

{
k
∣∣∣β−τ −1

(γ+
τ (k)) ≤ α+

τ
−1

(k + 1)
}

Proof: According to lemma 4 the pseudo-inverse of the
lower service curve is an upper curve (definition 2). The com-
position of the pseudo-inverse of the lower service curve and
the upper workload curve is again an upper curve according
to lemma 5, see appendix, and is therefore positive except at
the origin. Thus β−τ

−1
(γ+
τ (1)) is positive. The pseudo-inverse

of the upper arrival curve vanishes at k = 1. Therefore the
difference β−τ

−1
(γ+
τ (k))− α+

τ
−1

(k) is positive at k = 1 and
k = 0 can be omitted.

Let fτ (λ) = β−τ
−1

(α+
τ (λ)) and let λ1 > 0 be a fix-point

of f . For all λ ∈ R+
0 where λ = kλ1 + λ2, k ∈ N0 and

206206

0 ≤ λ2 < λ1 it follows with lemma 3, 4 and 5:

fτ (λ)− λ
= fτ (kλ1 + λ2)− (kλ1 + λ2)

≤ fτ (kλ1) + fτ (λ2)− (kλ1 + λ2)

≤ kλ1 + fτ (λ2)− (kλ1 + λ2)

= fτ (λ2)− λ2

This means that for any λ after the fix-point λ1 there exists
a λ2 before the fix-point where the horizontal deviation is
greater. Therefore the supremum (11) lies in the range [0, λ1],
where λ1 > 0 is the smallest fix-point. Hence (11) can be
rewritten as follows:

sup
λ∈R+

0

{
β−τ
−1

(α+
τ (λ))− λ

}
= sup

0≤λ≤λ1

{
β−τ
−1

(α+
τ (λ))− λ

}
To apply this to (12), the smallest k has to be determined for
which the preimage Ak contains the smallest positive fix-point
of β−τ

−1 ◦ α+
τ .

m= min
k∈N

{
k
∣∣∣∃λ ∈ Ak : β−

−1
(α+(λ)) = λ

}
= min
k∈N

{
k
∣∣∣∃λ ∈ Ak : β−

−1
(γ+(k)) = λ

}
= min
k∈N

{
k
∣∣∣β−−1

(γ+(k)) ≤ α+−1
(k + 1)

}
Concluding (12) can now be rewritten as follows:

rτ ≤ max
k∈[1..m]

{
β−τ
−1

(γ+
τ (k))− α+

τ
−1

(k)
}

m= min
k∈N

{
k
∣∣∣β−−1

(γ+(k)) ≤ α+−1
(k + 1)

}
With theorem 2 we have obtained a more general form on

the bound of the worst-case response time. The main issue in
computing the bound of the worst-case response time is the
pseudo-inverse of the lower service curve β−−1. This strongly
depends on the scheduling policy applied to the tasks.

V. SCHEDULING POLICIES

In this section it is shown how the necessary pseudo-
inverse service curve of a GPC can be computed for various
scheduling policies.

A. Fixed-Priority Preemptive Scheduling (FPPS)

Let Γ be a scheduling domain which uses fixed priorities to
schedule the GPCs within its domain. Each GPC τ is assigned
a unique priority φτ within the scheduling domain and can be
preempted at any time. Let the set of GPCs {τ1, . . . , τn} be
ordered by decreasing priority. τ1 has the highest priority and
τn has the lowest priority.

The relation between incoming and outgoing service curves
in a FPPS domain is as follows:

β−τi =

{
β−Γ if i = 1

β
′−
τi−1

if i > 1

The lower service curve of the GPC with the highest priority
equals the lower service curve of the scheduling domain. For
any GPC τi with a lower priority the lower service curve
equals the outgoing lower service curve of the GPC with
the next higher priority. Using both relations it is possible
to describe the lower service curve for any GPC of a FPPS
domain as stated by following lemma:

Lemma 1. Let Γ be a FPPS domain. The lower service curve
of GPC τi is given by:

β−τi(∆) = sup
0≤λ≤∆

β−Γ (λ)−
i−1∑
j=1

α+
τj (λ)

 (14)

Proof: Let i = 1, then (14) holds:

β−τ1(∆) = sup
0≤λ≤∆

{
β−Γ (λ)

}
= β−Γ (∆)

Assume (14) holds for some i ≥ 1, then it follows that (14)
holds for i+ 1:

β−τi+1
=β

′−
τi

= sup
0≤λ≤∆

{
β−τi(λ)− α+

τi(λ)
}

= sup
0≤λ≤∆

 sup
0≤µ≤λ

β−Γ (µ)−
i−1∑
j=1

α+
τj (µ)

− α+
τi(λ)


= sup

0≤λ≤∆

 sup
0≤µ≤λ

β−Γ (µ)−
i−1∑
j=1

α+
τj (µ)− α+

τi(λ)




= sup
0≤µ≤∆

 sup
µ≤λ≤∆

β−Γ (µ)−
i−1∑
j=1

α+
τj (µ)− α+

τi(λ)




= sup
0≤µ≤∆

β−Γ (µ)−
i−1∑
j=1

α+
τj (µ) + sup

µ≤λ≤∆

{
−α+

τi(λ)
}

= sup
0≤µ≤∆

β−Γ (µ)−
i−1∑
j=1

α+
τj (µ)− α+

τi(µ)


= sup

0≤µ≤∆

β−Γ (µ)−
i∑

j=1

α+
τj (µ)


Thus (14) holds for every i.

With lemma 1 the pseudo-inverse lower service curve of a
GPC τi is derived by following theorem:

Theorem 3. Given the lower service curve β
−
Γ of a FPPS

domain and the upper arrival curve of all GPCs α+
τ1 , . . . , α

+
τn

scheduled by the FPPS, the length of the interval in which d
resource units are available for the GPC with i-highest priority
is bounded by

β−τi
−1

(d) = min
∆∈R+

0

∆

∣∣∣∣∣∣β−Γ (∆) = d+
i−1∑
j=1

α+
τj (∆)

 (15)

207207

Proof:

β−τi
−1

(d)

= inf
∆∈R+

0

{
∆
∣∣d ≤ β−τi(∆)

}
= inf

∆∈R+
0

∆

∣∣∣∣∣∣d ≤ sup
0≤λ≤∆

β−Γ (λ)−
i−1∑
j=1

α+
τj (λ)




= inf
∆∈R+

0

∆

∣∣∣∣∣∣d ≤ β−Γ (∆)−
i−1∑
j=1

α+
τj (∆)


= inf

∆∈R+
0

∆

∣∣∣∣∣∣β−Γ (∆) ≥ d+
i−1∑
j=1

α+
τj (∆)


Due to the assumption that the image of β−Γ is the set R+

0 ,
the inequality can be replaced by an equality and the infimum
can be replaced by a minimum.

= min
∆∈R+

0

∆

∣∣∣∣∣∣β−Γ (∆) = d+
i−1∑
j=1

α+
τj (∆)


Equation (15) describes a fix-point which can be computed

with following recurrence relation:

ϑ#n
τi =


β−Γ
−1

(d) if n = 0

β−Γ
−1

(d+
i−1∑
j=1

α+
τj (ϑ#n−1

τi)) if n > 0
(16)

With theorem 2 and 3 and by chosing the corresponding
functions for the arrival and service curves, the equations to
find the worst-case response times as described by [20], [21],
and [19] can be obtained.

Example. We will now exemplarily derive the analysis given
by Tindell et al. in [19]. The functions to represent the strict
periodical model, the unit processor, and the execution demand
are as follows:

α+
τ (∆) =

⌈
∆

pτ

⌉
α+
τ
−1

(k) = (k − 1) · pτ

β−Γ (∆) = ∆ β−Γ
−1

(d) = d

γ+
τ (k) = k · c+τ

Using theorem 2 and 3 we obtain the following equations:

rτi ≤ max
k∈[1..m]

{
ϑτi(k)− α+

τi

−1
(k)
}

m= min
k∈N

{
k
∣∣∣ϑτi(k) ≤ α+

τi

−1
(k + 1)

}
where

ϑτi(k) =β−τi
−1

(γ+
τi(k))

= min
∆≥0

∆

∣∣∣∣∣∣∆ = k · c+τi +
i−1∑
j=1

(⌈
∆

pτj

⌉
· c+τj

)

which is equivalent to the analysis given in [19].

B. Fixed-Priority Non-Preemptive Scheduling (FPNP)

For a FPNP domain, the same assumptions as for a FPPS
domain are made, except that the GPCs cannot be preempted.
Due to the similarity between FPPS and FPNP, the lower
service curve and the inverse of the lower service curve are
also similar as described by following lemma and theorem:

Lemma 2. Given the lower service curve β
−
Γ of the scheduling

domain and the upper arrival curves of all higher priority
GPCs α+

τ1 , . . . , α
+
τi−1

, the lower service curve for GPC τi is
given by:

β−τi(∆) = max

0, sup
0≤λ≤∆

β−Γ (λ)−
i−1∑
j=1

α+
τj (λ)

− bi

(17)

with
bi = max

i<j≤n

{
γ+
τj (1)

}
Proof: The proof is given in [18].

Theorem 4. Given the lower service curve β
−
Γ of a FPNS

domain and the upper arrival curve of all GPCs α+
τ1 , . . . , α

+
τn

scheduled by the FPNS, the length of the interval in which d
resource units are available for the GPC with i-highest priority
is bounded by

β−τi
−1

(d) = min
∆∈R+

0

∆

∣∣∣∣∣∣β−Γ (∆) = d+ bi +
i−1∑
j=1

α+
τj (∆)


(18)

with
bi = max

i<j≤n
{γ+
τj (1)}

Proof:

β−τi
−1

(d)

= inf
∆∈R+

0

{
∆
∣∣d ≤ β−τi(∆)

}
= inf

∆∈R+
0

∆

∣∣∣∣∣∣d ≤ sup
0≤λ≤∆

β−Γ (λ)−
i−1∑
j=1

α+
τj (λ)

− bi


= inf
∆∈R+

0

∆

∣∣∣∣∣∣d ≤ β−Γ (∆)−
i−1∑
j=1

α+
τj (∆)− bi


= inf

∆∈R+
0

∆

∣∣∣∣∣∣β−Γ (∆) ≥ d+ bi +
i−1∑
j=1

α+
τj (∆)


= min

∆∈R+
0

∆

∣∣∣∣∣∣β−Γ (∆) = d+ bi +

i−1∑
j=1

α+
τj (∆)


A very similar recurrence relation like (16) can be used to

compute (18).

208208

CPU

TDMA
cycle = 10

FPPS

τ1

τ2

FPNP

τ3

τ4

Figure 1. Example System

C. Time Division Multiple Access (TDMA)

Let Γ be a scheduling domain which uses a TDMA policy to
schedule the GPCs within its domain. The amount of resources
which are available to the scheduling domain is limited by a
lower service curve β−Γ . The cycle length that the scheduler
uses is given by c. Each GPC τ within the scheduling domain
has a slot of length sτ assigned. If a GPC demands an amount
of d resource units, the total amount of resources needed is
given by [8]: ⌈

d

sτ

⌉
(c− sτ) + d

Therefore the inverse of the lower service curve of a GPC τ

is given by:

β−τ
−1

(d) = β−Γ
−1
(⌈

d

sτ

⌉
(c− sτ) + d

)
(19)

VI. EXAMPLE

In this section we will show how to use the generalized
worst-case response-time analysis given by theorem 2. In [17]
an example of a distributed system was given in which one
resource uses hierarchical scheduling. To be able to perform
a response-time analysis, the resource using the hierarchical
scheduling had to be substituted by resources with a single
scheduling domain. These scheduling domains had to be
chosen carefully, because they had to have the same behavior
as the original scheduling domains. The example that will be
used to show the response-time analysis of the scheduling

Table I
PARAMETERS OF GPCS OF EXAMPLE SYSTEM

GPC p j d c+

τ1 150 450 0 20

τ2 150 370 8 20

τ3 250 125 0 15

τ4 250 281 5 3

policies discussed in section V is a modified version of the
example given in [17].

The example is shown in Fig. 1. The resource is a unit
processor, and therefore the service curves for the top most
scheduling domain Γ1 are obtained by using (3) and (4). The
inverse of the lower service curve β−Γ1

−1
is thus the identity

function. TDMA with a cycle of 10 resource units is used as
scheduling policy for the domain Γ1. The cycle is divided into
two slots. One with six resource units and another one with
four resource units.

Γ1 = {Γ2,Γ3}
β−Γ1

−1
(d) = d

c = 10, sΓ2
= 6, sΓ3

= 4

Inside the slot with six resource units, a scheduling domain
Γ2 with a FPPS policy is used. In the other slot, a scheduling
domain with FPNP policy is used. Both domains consist of
two GPCs.

Γ2 = {τ1, τ2} Γ3 = {τ3, τ4}

The inverse of the lower service curve for the scheduling
domains Γ2 and Γ3 can be obtained by using (19).

β−Γ2

−1
(d) = β−Γ1

−1
(⌈

d

sΓ2

⌉
(c− sΓ2) + d

)
=

⌈
d

6

⌉
4 + d

β−Γ3

−1
(d) = β−Γ1

−1
(⌈

d

sΓ3

⌉
(c− sΓ3

) + d

)
=

⌈
d

4

⌉
6 + d

To describe the event streams of the GPCs, the periodic model
with jitter and minimum distance is used. The corresponding
upper arrival curve can be obtained with (2). For workload
transformation the notion of worst-case execution demand
c+ is used. The corresponding upper workload curve can be
obtained by using (8). The parameters for each GPC are listed
in table I. Now the worst-case response times of the GPCs τ1,
τ2 and τ3 will be computed. The scheduling domain of τ1 and
τ2 uses a FPPS policy and the scheduling domain of τ3 uses a
FPNP policy, therefore (15) and (18) are used to compute the
inverse of the lower service curve. Let ϑτi(k) be the length
of the interval in which the demand caused by k consecutive
events of τi is guaranteed to be available.

ϑτ1(k) =β−τ1
−1

(γ+
τ1(k))

= min
∆∈R+

0

{
∆
∣∣β−Γ2

(∆) = k · c+τ1
}

=β−Γ2

−1
(k · c+τ1)

ϑτ2(k) =β−τ2
−1

(γ+
τ2(k))

= min
∆∈R+

0

∆

∣∣∣∣∣∣β−Γ2
(∆) = k · c+τ2 +

1∑
j=1

α+
τj (∆)


= min

∆∈R+
0

{
∆
∣∣β−Γ2

(∆) = k · c+τ2 + α+
τ1(∆)

}

209209

Table II
RESPONSE-TIME ANALYSIS FOR GPC τ1 OF EXAMPLE SYSTEM

k ϑτ1 (k) rτ1 (k) α+
τ1

−1
(k + 1)

1 36 36 0

2 68 68 0

3 100 100 0

4 136 136 150

ϑτ3(k) =β−τ3
−1

(γ+
τ3(k))

= min
∆∈R+

0

{
∆
∣∣β−Γ3

(∆) = k · c+τ3 + c+τ4
}

=β−Γ3

−1
(k · c+τ3 + c+τ4)

ϑτ1(k) and ϑτ3(k) can be computed directly, whereas for
ϑτ2(k) the recurrence relation (16) with d = k·c+τ2 can be used.
The response-time rτi(k) can then be described as follows

rτi(k) = ϑτi(k)− α+
τi

−1
(k)

The response-time analysis for GPC τ1, τ2 τ3 is shown in
tables II, III, and IV respectively. The first column of the tables
denotes the number of consecutive events k considered and the
corresponding response-time rτi(k) is denoted in the second
to last column. Due to the usage of the recurrence relation for
the response-time analysis of τ2, the columns 2-5 of table III
list the single steps in the recurrence relation.

VII. CONCLUSION

It has been shown how a hierarchical response-time analysis
can be directly derived from the theory of the real-time

Table III
RESPONSE-TIME ANALYSIS FOR GPC τ2 OF EXAMPLE SYSTEM

k n ϑ#nτ2 (k) α+
τ1 (ϑ

#n
τ2 (k)) ϑ#n+1

τ2 (k) rτ2 (k) α+
τ2

−1
(k + 1)

1 36 80 168

1 2 168 100 200 200 8

3 200 100 200

1 68 80 200

2 2 200 100 236 228 16

3 236 100 236

1 100 80 236

3 2 236 100 268 252 80

3 268 100 268

1 136 80 268

4 2 268 100 300 220 230

3 300 100 300

1 168 100 336

5 2 336 120 368 138 380

3 368 120 368

Table IV
RESPONSE-TIME ANALYSIS FOR GPC τ3 OF EXAMPLE SYSTEM

k ϑτ3 (k) rτ3 (k) α+
τ3

−1
(k + 1)

1 48 48 125

calculus. This new approach allows to consider hierarchical
scheduling in classical response time analysis in general.
In a detailed discussion it has been described how this
methodology can be used for different scheduling policies
as fixed-priority preemptive scheduling (FPPS), fixed-priority
non-preemptive scheduling (FPNP), and time division multiple
access (TDMA). The approach can easily be used to handle
other scheduling policies like round-robin and first-come first-
serve. The paper closes with a modified example from litera-
ture.

For advanced research in this area it is necessary to cover
different response-time analysis approaches by deriving new
analysis methods from the powerful mathematical approach of
the real-time calculus.

APPENDIX

Lemma 3. Let f be an upper curve and let a be a fix-point
of f , then the following inequality holds ∀k ∈ N0:

f(k · a) ≤ k · a (20)

Proof: Let k = 0, then (20) holds

0 = f(0) ≤ 0

Assume (20) holds for some k ≥ 0, then it follows that (20)
also holds for k + 1

f((k + 1) · a) = f(k · a+ a)

≤ f(k · a) + f(a) ≤ k · a+ a = (k + 1) · a

Therefore (20) holds ∀k ∈ N0.

Lemma 4. Given a lower curve f− : A → B, the pseudo-
inverse curve f−−1

: B → A is an upper curve.

Proof: The lower curve vanishes at the origin and is
monotonically non-decreasing, therefore it follows that the
pseudo-inverse also vanishes at the origin

f−
−1

(0) = inf
a∈A

{
a
∣∣0 ≤ f−(a)

}
= 0

Assume ∃b > 0 with

f−
−1

(b) = 0

then it follows

inf
a∈A

{
a
∣∣b ≤ f−(a)

}
= 0

210210

that ∀a > 0 f−(a) ≥ b. Assume a1, a2 > 0, then it must
satisfy

f(a1 + a2) ≥ f(a1) + f(a2) ≥ f(a1) + b

This is only possible if

f(a) =∞ ∀a > 0

which is not a valid lower curve, thus it follows that the
pseudo-inverse of a lower curves only vanishes at the origin.

The lower curve is monotonically non-decreasing, therefore
it follows that the pseudo-inverse is also monotonically non-
decreasing. Let b1 < b2 then

f−
−1

(b1) = inf
a∈A

{
a
∣∣b1 ≤ f−(a)

}
≤ inf
a∈A

{
a
∣∣b2 ≤ f−(a)

}
= f−

−1
(b2)

The proof that the pseudo-inverse of a superadditive function
is subadditive is given in [22].

Lemma 5. Upper curves are closed under composition. Given
two upper curves f and g then f ◦ g is an upper curve.

Proof: Let f : B → C and g : A → B be upper curves.
Furthermore, let a1, a2 ∈ A and without loss of generality let
a1 < a2.

First we show that the composition f ◦ g vanishes at the
origin

f(g(0)) = f(0) = 0

second the monotonicity is shown

a1 < a2 ⇒ g(a1) ≤ g(a2)⇒ f(g(a1)) ≤ f(g(a2))

and last the subadditivity is shown

f(g(a1 + a2)) ≤ f(g(a1) + g(a2)) ≤ f(g(a1)) + f(g(a2))

Since the composition has all three properties, it is an upper
curve.

REFERENCES

[1] FlexRay, http://www.flexray.com.
[2] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[3] J. D. Regehr, “Using Hierarchical Scheduling to Support Soft Real-Time
Applications in General-Purpose Operating Systems,” Ph.D. dissertation,
University of Virginia, 2001.

[4] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th IEEE Real-Time Systems
Symposium, December 1990, pp. 201–209.

[5] E. Wandeler, “Modular Performance Analysis and Interface-Based De-
sign for Embedded Real-Time Systems,” Ph.D. dissertation, Swiss
Federal Institute of Technology Zurich, 2006.

[6] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer Verlag, 2001.

[7] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, pp. 117–134, 1994.

[8] K. Richter, “Compositional Scheduling Analysis Using Standard Event
Models - The SymTA/S Approach,” Ph.D. dissertation, University of
Braunschweig, 2005.

[9] R. Henia and R. Ernst, “Context-aware scheduling analysis of distributed
systems with tree-shaped task-dependencies,” in DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe, 2005, pp.
480–485.

[10] R. Racu, L. Li, R. Henia, A. Hamann, and R. Ernst, “Improved response
time analysis of tasks scheduled under preemptive round-robin,” in
Proceedings of the International Conference on Hardware-Software
Codesign and System Synthesis, 2007, pp. 179 – 184.

[11] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis
of Hierarchical Fixed-Priority Scheduling,” Real-Time Systems, Euromi-
cro Conference on, p. 173, 2002.

[12] L. Almeida, “Response time analysis and server design for hierarchical
scheduling,” in proceedings of the IEEE Real-Time Systems Symposium
Work-in-Progress. Citeseer, 2003.

[13] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE
International, Dec. 2005, pp. 389–398.

[14] M. Naedele, L. Thiele, and M. Eisenring, “Characterizing Variable
Task Releases and Processor Capacities,” TIK-Report 45. Computer
Engineering and Networks Lab, Swiss Federal Instiute of of Technology,
Tech. Rep., 1999.

[15] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and P. Sagmeister,
“Performance evaluation of network processor architectures: combining
simulation with analytical estimation,” Comput. Netw., vol. 41, no. 5,
pp. 641–665, 2003.

[16] P. J. L. Cuijpers and R. J. Bril, “Towards budgeting in real-time calculus:
Deferrable servers,” in FORMATS, 2007, pp. 98–113.

[17] S. Kuenzli, A. Hamann, R. Ernst, and L. Thiele, “Combined ap-
proach to system level performance analysis of embedded systems,”
in CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis. New
York, NY, USA: ACM, 2007, pp. 63–68.

[18] W. Haid and L. Thiele, “Complex Task Activation Schemes in System
Level Performance Analysis,” in CODES+ISSS ’07: Proceedings of
the 5th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis. New York, NY, USA: ACM, 2007,
pp. 173–178.

[19] K. W. Tindell, A. Burns, and A. J. Wellings, “An Extendible Approach
for Analyzing Fixed Priority Hard Real-Time Tasks,” Real-Time Systems,
vol. 6, no. 2, pp. 133–151, March 1994.

[20] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time Sys-
tem,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986. [Online].
Available: http://comjnl.oxfordjournals.org/cgi/content/abstract/29/5/390

[21] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying New Scheduling Theory to Static Priority Pre-Emptive
Scheduling,” Software Engineering Journal, vol. 8, pp. 284–292, 1993.

[22] L. P. Østerdal, “Subadditive functions and their (pseudo-) inverses,”
Journal of Mathematical Analysis and Applications, vol. 317, no. 2,
pp. 724–731, 2006.

211211

