
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Avalon Interface Specifications

Document Version: 1.2
Document Date: © April 2009

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

MNL-AVABUSREF-1.2

 © April 2009 Altera Corporation
Contents
Chapter 1. Introduction
1.1. Avalon Properties and Parameters . 1-4
1.2. Signal Types . 1-4
1.3. Interface Timing . 1-4
1.4. Related Documents . 1-4

Chapter 2. Clock Interfaces
2.1. Clock Input (Sink) . 2-1

2.1.1. Properties . 2-1
2.1.2. Signal Types . 2-1
2.1.3. associatedClock Interfaces . 2-2

2.2. Clock Output (Source) . 2-2
2.2.1. Properties . 2-2
2.2.2. Signal Types . 2-2

Chapter 3. Avalon Memory-Mapped Interfaces
3.1. Introduction . 3-1
3.2. Slaves . 3-2
3.3. Slave Interface Properties . 3-5
3.4. Slave Timing . 3-6

3.4.1. Synchronous Interface . 3-6
3.4.2. Performance . 3-6
3.4.3. Electrical Characteristics . 3-7

3.5. Slave Transfers . 3-7
3.5.1. Typical Slave Read and Write Transfers . 3-7
3.5.2. Slave Read and Write Transfers with Fixed Wait-States . 3-8
3.5.3. Pipelined Transfers . 3-9

3.5.3.1. Slave Pipelined Read Transfer with Variable Latency . 3-10
3.5.3.2. Slave Pipelined Read Transfer with Fixed Latency . 3-11

3.5.4. Burst Transfer . 3-11
3.5.4.1. Slave Write Bursts . 3-12
3.5.4.2. Slave Read Bursts . 3-13
3.5.4.3. Line–Wrapped Bursts . 3-14
3.5.4.4. Flow Control . 3-14

3.6. Address Alignment . 3-15
3.6.1. Avalon-MM Slave Addressing . 3-15
3.6.2. Avalon-MM Tri-State Slave Addressing . 3-16
3.6.3. Native Addressing . 3-17

3.7. Masters . 3-17
3.8. Master Signal Types . 3-18
3.9. Master Interface Properties . 3-21
3.10. Master Transfers . 3-21

3.10.1. Master Pipelined Read Transfer . 3-22
3.10.2. Burst Transfers . 3-23

3.10.2.1. Master Write Bursts . 3-24
3.10.2.2. Master Read Bursts . 3-25
Avalon Interface Specifications

iv
Chapter 4. Interrupt Interfaces
4.1. Interrupt Sender . 4-1

4.1.1. Signal Types . 4-1
4.1.2. Interrupt Sender Properties . 4-1

4.2. Interrupt Receiver . 4-1
4.2.1. Interrupt Receiver Properties . 4-2
4.2.2. Signal Types . 4-2
4.2.3. Interrupt Timing . 4-2

Chapter 5. Avalon Memory-Mapped Tri-state Interfaces
5.1. Tri-state Slave Signal Types . 5-1

5.1.1. address Behavior . 5-3
5.1.2. outputenable and read Behavior . 5-3
5.1.3. write_n and writebyteenable Behavior . 5-3
5.1.4. Interfacing to Synchronous Off-Chip Memory . 5-3

5.2. tri-state Slave Properties . 5-4
5.3. Slave Transfers . 5-5

5.3.1. Asynchronous Transfers . 5-5
5.3.1.1. Setup Time . 5-6
5.3.1.2. Hold Time . 5-6
5.3.1.3. Example Read and Write Using Setup, Hold and Wait Times . 5-6

5.3.2. Synchronous Transfers . 5-8
5.3.3. Pipelined Slave Read Transfers . 5-8

5.4. Master Transfers . 5-10

Chapter 6. Avalon Streaming Interfaces
6.1. Introduction . 6-1

6.1.1. Features . 6-2
6.1.2. Terms and Concepts . 6-2

6.2. Avalon-ST Interface Signals . 6-3
6.2.1. Signal Polarity . 6-4
6.2.2. Signal Sequencing and Timing . 6-4

6.2.2.1. Synchronous Interface . 6-4
6.2.2.2. Clock Enables . 6-4

6.3. Avalon-ST Interface Properties . 6-4
6.4. Typical Data Transfers . 6-4

6.4.1. Signal Details . 6-5
6.4.2. Data Layout . 6-6

6.5. Data Transfer without Backpressure . 6-6
6.6. Data Transfer with Backpressure . 6-7
6.7. Packet Data Transfers . 6-9

6.7.1. Signal Details . 6-9
6.7.2. Protocol Details . 6-10

Chapter 7. Conduit Interfaces
7.1. Properties . 7-1
7.2. Signals . 7-2

Additional Information
Document Revision History . Info-1
How to Contact Altera . Info-1
Typographic Conventions . Info-2
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
1. Introduction
Avalon® interfaces simplify system design by allowing you to easily connect
components in an FPGA. The Avalon interface family defines interfaces for use in
both high-speed streaming and memory-mapped applications. These standard
interfaces are designed into the components available in the SOPC Builder and the
MegaWizard® Plug-In Manager. You can also use these standardized interfaces in
your custom components.

This specification defines all of the Avalon interfaces. After reading it, you should
understand which interfaces are appropriate for your components and which signal
types are used for which desired behaviors. There are six different interface types:

■ Avalon Memory Mapped Interface (Avalon-MM)—an address-based read/write
interface typical of master–slave connections.

■ Avalon Streaming Interface (Avalon-ST)—an interface that supports the
unidirectional flow of data, including multiplexed streams, packets, and DSP data.

■ Avalon Memory Mapped Tristate Interface—an address-based read/write
interface to support off-chip peripherals. Multiple peripherals can share data and
address buses to reduce the pincount of an FPGA and the number of traces on the
PCB.

■ Avalon Clock—an interface that drives or receives clock and reset signals to
synchronize interfaces and provide reset connectivity.

■ Avalon Interrupt—an interface that allows components to signal events to other
components.

■ Avalon Conduit—an interface that allows signals to be exported out at the top
level of an SOPC Builder system where they can be connected to other modules of
the design or FPGA pins.

A single component can include any number of these interfaces and can also include
multiple instances of the same interface type. For example, in Figure 1–1, the Ethernet
Controller includes four different interface types: Avalon-MM, Avalon-ST, clock, and
conduit.

1 This specification supersedes the previous specifications published separately for the
Avalon-MM interface and the Avalon-ST interfaces.

Figure 1–1 and Figure 1–2 illustrate the use of each of the Avalon interfaces.
Avalon Interface Specifications

1–2 Chapter 1: Introduction
In Figure 1–1, the Nios® II processor accesses the control and status registers of
on-chip components using an Avalon-MM interface. The scatter gather DMAs send
and receive data using Avalon-ST interfaces. Four components include interrupt
interfaces that are serviced by software running on the Nios II processor. A PLL
accepts a clock via a clock sink interface and provides two clock sources. Finally, two
components include conduit interfaces to access off-chip resources.

Figure 1–1. Avalon Interfaces in a System Design with Scatter Gather DMA Controller and Nios II Processor

IRQ1 IRQ2

C1 C1

Conduit

Avalon-MM

C2

Avalon-ST

C1C1

Avalon-ST

Avalon-ST Avalon-ST

C2

C2C2

C1

C2
Ref Clk

FlashSRAM DDR

Avalon-MM
Tristate Conduit

Altera FPGA

Printed Circuit Board

IRQ3

IRQ4

IRQ3

IRQ4

Avalon-MM
Master

Avalon-MM
Slave

Avalon-MM
Master &

Slave

Avalon-MM
Master &

Slave

Avalon-MM
Slave

Timer

Avalon-MM
Slave

UART
Nios II

Avalon-MM
Slave

Tristate Bridge

PLL

Avalon-MM
Slave

DDR Controller

Ethernet
Controller

Scatter
Gather
DMA

Scatter
Gather
DMA
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 1: Introduction 1–3
In Figure 1–2, an external processor accesses the control and status registers of on-chip
components via an external bus bridge with an Avalon-MM interface. The PCI
Express root port controls the printed circuit board and the other components of the
FPGA by driving an on-chip PCI Express endpoint with an Avalon-MM master
interface. Five components include interrupts that are handled by the external
processor. As in Figure 1–1, a PLL accepts a reference clock via a clock sink interface
and provides two clock sources. Finally, the flash and SRAM memories use an
Avalon-MM tristate interface to share FPGA pins.

Figure 1–2. Avalon Interfaces in a System Design with PCI Express Endpoint and External Processor

ConduitAvalon-MM
Tristate

Avalon-MM

C1

C1

C2
Ref Clk

Altera FPGA

Printed Circuit Board

Avalon-MM
Slave

PLL

SDRAM
Controller C2

IRQ4

Avalon-MM
 Slave

UART
C2

IRQ5

Avalon-MM
 Slave

Custom
Logic

C1C1

Avalon-MM
Master

Avalon-MM
Master

Ethernet
MAC

Custom
 Logic

Tristate
Slave

Tristate
Slave

C1
C1

IRQ2
IRQ1

IRQ3
IRQ4
IRQ5

IRQ1 IRQ2 IRQ3

External
CPU

PCI Express
Root Port

Avalon-MM
Master

External bus
protocol
bridge

Avalon-MM
Master

PCI Express
Endpoint

Flash
Memory

SRAM
Memory

SDRAM
Memory
© April 2009 Altera Corporation Avalon Interface Specifications

1–4 Chapter 1: Introduction
Avalon Properties and Parameters
1.1. Avalon Properties and Parameters
Avalon interfaces use properties to describe their behavior. For example, the
setupTime and holdTime properties of an Avalon-MM tristate interface specify the
timing of external memory devices. The maxChannel property of Avalon-ST
interfaces allows you to state the number of channels supported by the interface. The
specification for each interface type defines all of its properties and specifies the
default values. For a complete list of properties for each interface type, refer to the
following sections:

■ For Avalon-MM properties, refer to: “Slave Interface Properties” on page 3–5 and
“Master Interface Properties” on page 3–21

■ For Avalon-MM tristate properties, refer to: “tri-state Slave Properties” on
page 5–4

■ For Avalon-ST properties, refer to: “Avalon-ST Interface Properties” on page 6–4

■ For the properties of interrupts, refer to: “Interrupt Sender Properties” on page 4–1
and “Interrupt Receiver Properties” on page 4–2

1.2. Signal Types
Each of the Avalon interfaces defines a number of signal types and their behavior.
Many signal types are optional, allowing component designers the flexibility to select
only the signal types necessary. For example, the Avalon-MM interface includes
optional beginbursttransfer and burstcount signal types used only for
components that support bursting. The Avalon-ST interface includes the optional
startofpacket and endofpacket signal types for interfaces that support packets.

With the exception of conduit interfaces, each interface may only include one signal of
each signal type. Active-low signals are permitted for many signal types. Active-high
signals are generally used in this document.

1.3. Interface Timing
Subsequent chapters of this document include timing information that describes
transfers for individual interface types interfaces. There is no guaranteed performance
for any of these interfaces; actual performance depends on many factors, including
component design and system implementation.

Most Avalon interfaces must not be edge sensitive to signals other than the clock,
because the signals may transition multiple times before they stabilize. The exact
timing of signals between clock edges varies depending upon the characteristics of
the selected Altera device.

1.4. Related Documents
You can find additional information on related topics in the following documents:

■ Quartus II Handbook Volume 4: SOPC Builder

This volume includes information on memory-mapped and streaming interfaces,
Tcl scripting, designing memory sub-systems, and interconnect components.
Avalon Interface Specifications © April 2009 Altera Corporation

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Chapter 1: Introduction 1–5
Related Documents
■ Quartus II Handbook Volume 5: Embedded Peripherals

This volume includes documentation for the many embedded peripherals that are
available in SOPC Builder.

■ Building a Component Interface with Tcl Scripting Commands.

This is a reference for a programmatic interface that you can use to define SOPC
Builder components.

You can also complete a one-hour online course, Using SOPC Builder, that is available
on the Altera web site.
© April 2009 Altera Corporation Avalon Interface Specifications

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/quartus2/lit-qts-peripherals.jsp
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/education/training/courses/OEMB1115?GSA_pos=3&WT.oss_r=1&WT.oss=sopc%20builder

1–6 Chapter 1: Introduction
Related Documents
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
2. Clock Interfaces
Clock interfaces are used to define the clock and resets used by a component. Typical
components have one or more clock inputs; they rarely have clock outputs. A phase
locked loop (PLL) is an example of a component that has both a clock input and clock
outputs. Figure 2–1 is a simplified illustration showing the most important inputs and
outputs of a PLL component.

2.1. Clock Input (Sink)
A clock input interface provides synchronization and reset control for a component. A
typical component has a clock input to provide a timing reference for other interfaces
and internal logic.

All reset inputs are connected to the logical OR of all system reset requests. Reset
inputs are always asserted asychronously. If the clock input interface has a clock input
and a reset input, the reset is deasserted synchronously to the clock input.

2.1.1. Properties
There are no properties for the clock sink interface.

2.1.2. Signal Types
Table 2–1 lists the clock input signals.

Figure 2–1. PLL Core Clock Outputs and Inputs

PLL Core

altpll Megafunction

ref_clk inclk

Clock Output
Interface1

Clock
Input

 Interface

Clock Output
Interface2

Clock Output
Interface_n

c0

c1

aresetreset
Avalon Interface Specifications

2–2 Chapter 2: Clock Interfaces
Clock Output (Source)
2.1.3. associatedClock Interfaces
All synchronous interfaces have an associatedClock property that specifies which
clock input on the component is used as a synchronization reference for the interface.
This property is illustrated in Figure 2–2.

2.2. Clock Output (Source)
A clock source interface, or clock output interface, is an interface that drives a clock
signal out of a component. Clock output interfaces cannot have reset signals.

2.2.1. Properties
There are no properties for clock source interfaces.

2.2.2. Signal Types
Table 2–2 lists the clock source signals.

Table 2–1. Clock Input Signal Types

Signal Type Width Direction Required Description

clk 1 Input No A clock signal. Provides synchronization for internal logic and for
other interfaces.

reset

reset_n

1 Input No Reset input. Resets the internal logic of an interface or component to a
determined state.

reset is synchronized to the clock input in the same interface.

Figure 2–2. associatedClock Property

Dual Clock FIFO

rx_clk

ST
Sink

Clock
Sink

tx_clk

ST
Source

associatedClock = "rx_clk" associatedClock = "tx_clk"

Clock
Sink

rx_data tx_data

Table 2–2. Clock Source Signal Types

Signal Type Width Direction Required Description

clk 1 Output Yes An output clock signal.
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
3. Avalon Memory-Mapped Interfaces
3.1. Introduction
Avalon Memory-Mapped (Avalon-MM) interfaces are used for read/write interfaces
on master and slave components in a memory-mapped system. These components
include microprocessors, memories, UARTs, and timers, and have master and slave
interfaces connected by a system interconnect fabric. Avalon-MM interfaces can
describe a wide variety of components, from an SRAM which supports simple,
fixed-cycle read/write transfers to a more complex, pipelined interface capable of
burst transfers. Figure 3–1 shows a typical system, highlighting the Avalon-MM slave
interface connection to the system interconnect fabric.

Features of the Avalon-MM interface include:

■ Definition of a point-to-point connection between a component and an
interconnect fabric

■ Freedom to implement only the required subset of signals

■ Variable data widths: 8, 16, 32, 64, . . . 1024

■ Automatic interconnect generation

Figure 3–1. Focus on Avalon-MM Slave Transfers

RS-232

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

Avalon
Slave Port

Avalon-MM
Slave

Avalon-MM
Slave

RAM
Memory

Chip

Avalon-MM
Master

Processor

Flash
Memory

Chip

Tristate
Slave

SRAM
Memory

Chip

Tristate
Slave

Avalon-MM
Master

Avalon-MM
Master

Ethernet MAC Custom Logic

RAM
Controller

UART Custom
Logic

Avalon-MM
Slave
Avalon Interface Specifications

3–2 Chapter 3: Avalon Memory-Mapped Interfaces
Slaves
Avalon-MM components typically include only the signals required for the
component logic. The 16-bit general-purpose I/O peripheral shown in Figure 3–2
only responds to write requests, therefore it only includes the slave signals required
for write transfers.

Each signal in an Avalon-MM slave corresponds to exactly one Avalon-MM signal
type. An Avalon-MM port can use only one instance of each signal type.

3.2. Slaves
Table 3–1 lists the signal types that constitute the Avalon-MM slave. This specification
does not require all signals to exist in an Avalon-MM slave. The minimum
requirements are readdata for a read-only interface or writedata and write for a
write-only interface.

Figure 3–2. Example Slave Component

Avalon-MM
 Interface

(Avalon-MM
 Slave Port)

Application-
Specific
Interface

writedata[15..0]

write

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

Table 3–1. Avalon-MM Slave Port Signals (1) (Part 1 of 4)

Signal Type Width Dir Req’d Description

Fundamental Signals

read

read_n

1 In No Asserted to indicate a read transfer. If present, readdata is
required.

write

write_n

1 In No Asserted to indicate a write transfer. If present, writedata
is required.

address 1-32 In No Specifies an offset into the slave address space. Each slave
address value selects a word of slave data. For example,
address= 0 selects the first <slave data width> bits of slave
data; address=1 selects the second <slave data width> bits of
slave data.

readdata 8,16,32,
64,128,
256,512,
1024

Out No The readdata provided by the slave in response to a read
transfer.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–3
Slaves
writedata 8,16,32,|
64,128,|
256,512,
1024

In No Data from the system interconnect fabric for write transfers.

The width must be the same as the width of readdata if both
are present.

byteenable

byteenable_n

1,2,4,8,
16, 32, 64,
128

In No Enables specific byte lane(s) during transfers.

Each bit in byteenable corresponds to a byte in
writedata and readdata. During writes, byteenables
specify which bytes are being written to; other bytes should be
ignored by the slave. During reads, byteenables indicates which
bytes the master is reading. Slaves that simply return
readdata with no side effects are free to ignore byteenables
during reads.

When more than one bit is asserted, all asserted lanes are
adjacent. The number of adjacent lines must be a power of two,
and the specified bytes must be aligned on an address boundary
for the size of the data. The following values are legal for a 32-bit
slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

begintransfer 1 In No Asserted by the system interconnect fabric for the first cycle of
each transfer regardless of waitrequest and other signals.

Wait-State Signals

waitrequest

waitrequest_n

1 Out No Asserted by the slave when it is unable to respond to a read or
write request. When asserted, the control signals to the slave,
with the exception of begintransfer and
beginbursttransfer, remain constant, as is illustrated by
Figure 3–7 on page 3–13. An Avalon-MM slave may assert
waitrequest during idle cycles. An Avalon-MM master may
initiate a transaction when waitrequest is asserted. The
design of Avalon-MM slaves must take these possibilities into
account.

Table 3–1. Avalon-MM Slave Port Signals (1) (Part 2 of 4)

Signal Type Width Dir Req’d Description
© April 2009 Altera Corporation Avalon Interface Specifications

3–4 Chapter 3: Avalon Memory-Mapped Interfaces
Slaves
arbiterlock

arbiterlock_n

1 In No arbiterlock ensures that once a master wins arbitration, it
maintains access to the slave for multiple transactions. It is
de-asserted coincident with read or write and with the
deassertion of the last locked transaction read or write
signal. Arbiterlock assertion does not guarantee that
arbitration will be won, but after the arbiterlock-asserting master
has been granted, it retains grant until it deasserts
arbiterlock, whether or not it is making an access.

A master equipped with arbiterlock cannot be a burst
master. Arbitration priority values for arbiterlock-equipped
masters are ignored.

arbiterlock is particularly useful for read-modify-write
operations, where master A reads 32-bit data that has multiple
bitfields, changes one field, and writes the 32-bit data back. If
master B were to able to write between Master A’s read and the
write, master A’s write would undo what master B had done.

arbiterlock is also for tristate-pin sharing: an SDRAM
controller can use it to lock arbitration to execute an unbroken
sequence of commands to an SDRAM device.

Pipeline Signals

readdatavalid

readdatavalid_n

1 Out No Used for variable-latency, pipelined read transfers. Asserted by
the slave to indicate that the readdata signal contains valid
data in response to a previous read request. A slave with
readdatavalid must assert this signal for one cycle for
each read access it has received. There must be at least one
cycle of latency between acceptance of the read and assertion
of readdatavalid. Figure 3–5 on page 3–10 illustrates the
readdatavalid signal.

Burst Signals

burstcount 1-11 In No During the first cycle of a burst, burstcount indicates the
number of transfers the burst contains. A burstcount port of
width <n> can encode a max burst of size 2(<N> -1). The minimum
burstcount is 1.

beginbursttransfer 1 In No Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest. Refer to Figure 3–3
for an example of its use.

Flow Control Signals

readyfordata 1 Out No Used for transfers with flow control. Indicates that the
component is ready for a write transfer.

dataavailable 1 Out No Used for transfers with flow control. Indicates that the
component is ready for a read transfer.

Table 3–1. Avalon-MM Slave Port Signals (1) (Part 3 of 4)

Signal Type Width Dir Req’d Description
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–5
Slave Interface Properties
3.3. Slave Interface Properties
Table 3–2 describes the interface properties for an Avalon-MM slave interface.

Reset Signals

resetrequest

resetrequest_n

1 Out No Allows the component to reset the entire Avalon-MM system.
The system reset signal is the logical OR of all reset signals.

Notes to Table 3–1:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list a _n versions of the signal in the Signal Type column.

Table 3–1. Avalon-MM Slave Port Signals (1) (Part 4 of 4)

Signal Type Width Dir Req’d Description

Table 3–2. Avalon-MM Slave Interface Properties (Part 1 of 2)

Name
Default
Value Legal Values Description

readLatency 0 0–63 Read latency for fixed-latency slaves. Not used on
interfaces that include the readdatavalid
signal. Refer to Figure 5–5 on page 5–9 for an
timing diagram that uses this property.

timingUnits cycles cycles,
nanoseconds

Specifies the units for setupTime, holdTime,
writeWaitTime and readWaitTime. Use
cycles for synchronous devices and nanoseconds
for asynchronous devices. Almost all Avalon-MM
slave devices are synchronous. One example of a
device that requires asynchronous timing is an
Avalon-MM slave that reads and writes an off-chip
bidirectional port. That off-chip device might have
a fixed settling time for bus turnaround.

writeWaitTime 0 0–1000
cycles

For slave interfaces that don’t use the
waitrequest signal, writeWaitTime
indicates the number of cycles or nanoseconds
before the slave accepts a write. The timing is as if
the slave asserted waitrequest for
writeWaitTime cycles or nanoseconds. Refer
to Figure 5–4 on page 5–8 for a timing diagram
that uses this property.

readWaitTime 1 0–1000
cycles

For slave interfaces that don’t use the
waitrequest signal, readWaitTime
indicates the number of cycles or nanoseconds
before the slave responds to a read. The timing is
as if the slave asserted waitrequest for
readWaitTime cycles.

holdTime 0 0–1000
cycles

Specifies time in timingUnits between the
deassertion of write and the deassertion of
chipselect, address, and data. (Only
applies to write transactions.)

setupTime 0 0–1000
cycles

Specifies time in timingUnits between the
assertion of chipselect, address, and
data and assertion of read or write.
© April 2009 Altera Corporation Avalon Interface Specifications

3–6 Chapter 3: Avalon Memory-Mapped Interfaces
Slave Timing
3.4. Slave Timing
This section describes issues related to timing and sequencing of Avalon-MM slave
signals.

3.4.1. Synchronous Interface
The Avalon-MM interface is a synchronous protocol. Each Avalon-MM port is
synchronized to an associated clock interface. Signals may be combinational if they
are driven from the outputs of registers that are synchronous to the clock signal. An
Avalon-MM component must not be sensitive to any signal besides the reference
clock. This document does not dictate how or when signals transition between clock
edges and timing diagrams are devoid of fine-grained timing information.

3.4.2. Performance
There is no guaranteed performance of the Avalon-MM interface. The maximum
performance is dependent on component design and system implementation.

maximumPendingRead
Transactions

1 (1) 1–64 The maximum number of pending reads which
can be queued up by the slave. Refer to Figure 3–5
on page 3–10 for a timing diagram that uses this
property.

burstOnBurstBoundariesOnly false true,false If true, burst transfers presented to this interface
are guaranteed to begin at addresses which are
multiples of the burst size.

linewrapBursts false true,false If true, indicates that the slave implements a line
wrapping burst instead of an incrementing burst.
With a wrapping burst, when the address reaches
a burst boundary, it wraps back to the previous
burst boundary such that only the low order bits
need to be used for addressing. To address 0xC, a
wrapping burst with burst boundaries every 32
bytes across a 32-bit interface would write to
addresses 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 0x4,
and 0x8.

maxBurstSize 1 64 The maximum burst size that a slave can accept.

bridgesToMaster null Avalon-MM
master on the
same
component

An Avalon-MM bridge consists of a slave and a
master, and has the property that an access to the
slave requesting a particular byte or bytes will
cause the same byte or bytes to be requested by
the master.

associatedClock — — Name of the clock interface that this Avalon-MM
slave interface is synchronous to.

Note to Table 3–2:

(1) If a component accepts more read transfers than the value indicated here, the internal pending read FIFO may overflow, causing the system to
lockup.

Table 3–2. Avalon-MM Slave Interface Properties (Part 2 of 2)

Name
Default
Value Legal Values Description
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–7
Slave Transfers
3.4.3. Electrical Characteristics
The Avalon-MM interface specification does not specify any electrical characteristics.

3.5. Slave Transfers
This section defines two basic concepts before introducing the slave transfer types.

■ Transfer—A transfer is a read or write operation of a word of data, between an
Avalon-MM slave and the system interconnect fabric. Avalon-MM transfers words
ranging in size from 8–1024 bits. Transfers take one or more clock cycles to
complete.

Both masters and slaves are part of a transfer; the Avalon-MM master initiates the
transfer and the Avalon-MM slave responds to it.

■ Master-slave pair —This term refers to the master port and slave port involved in a
transfer. During a transfer, the master port's control and data signals pass through
the system interconnect fabric and interact with the slave port.

3.5.1. Typical Slave Read and Write Transfers
This section describes a typical Avalon-MM slave that supports read and write
transfers with slave-controlled waitrequest. The slave can stall the system
interconnect fabric for as many cycles as required by asserting the waitrequest
signal. If a slave uses waitrequest for either read or write transfers, it must use
waitrequest for both.

The slave receives address, byteenable, read or write, and writedata after the
rising edge of the clock. The slave port must assert waitrequest before the next
rising clock edge to hold off the transfers. When the slave asserts waitrequest, the
transfer is delayed and the address and control signals are held constant. Transfers
complete on the rising edge of the first clk after the slave port deasserts
waitrequest.

There is no limit on how long a slave port can stall. Therefore, you must ensure that a
slave port does not assert waitrequest indefinitely. Figure 3–3 shows read and
write transfers using waitrequest.
© April 2009 Altera Corporation Avalon Interface Specifications

3–8 Chapter 3: Avalon Memory-Mapped Interfaces
Slave Transfers
3.5.2. Slave Read and Write Transfers with Fixed Wait-States
Instead of using waitrequest to hold off a transfer, a slave can specify fixed
wait-states using the readWaitTime and writeWaitTime properties. The address
and control signals (byteenable, read, and write) are held constant for the
duration of the transfer. The read/write timing with
readWaitTime/writeWaitTime set to <n> is exactly the same as asserting
waitrequest for <n> cycles per transfer.

Figure 3–4 shows an example slave read and write transfers with writeWaitTime =
2 and readWaitTime = 1.

Figure 3–3. Slave Read and Write Transfers with Waitrequest

Notes to Figure 3–3:

(1) address, read, and begintransfer are asserted after the rising edge of clk. waitrequest is asserted stalling the transfer.
(2) waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a wait-state, and address, read, write, and

byteenable remain constant. Begintransfer is not held constant.
(3) The slave presents valid readdata and deasserts waitrequest.
(4) readdata and deasserted waitrequest are sampled, completing the transfer.
(5) address, writedata, byteenable, begintransfer, and write signals are asserted. The slave responds by asserting

waitrequest, stalling the transfer.
(6) The slave captures writedata and deasserts waitrequest, ending the transfer.

clk

address

byteenable

read

write

waitrequest

begintransfer

readdata

writedata

address

byteenable

readdata

writedata

1 2 3 4 5 6
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–9
Slave Transfers
Transfers with a single wait-state are commonly used for synchronous, on-chip
peripherals. The peripheral can capture address and control signals on the rising edge
of clk, and has one full cycle to return data. Components with zero wait-states are
allowed, but may decrease achievable frequency because they generate the response
in the same cycle as the request.

3.5.3. Pipelined Transfers
Avalon-MM pipelined read transfers increase the throughput for synchronous slave
devices that require several cycles to return data for the first access, but can return one
data value per cycle for some time thereafter. New pipelined read transfers can be
started before readdata for the previous transfers is returned. Write transfers cannot
be pipelined.

A pipelined read transfer is divided into two phases: an address phase and a data
phase. A master initiates a transfer by presenting the address during the address
phase; a slave port fulfills the transfer by delivering the data during the data phase.
The address phase for a new transfer (or multiple transfers) can begin before the data
phase of a previous transfer completes. This delay is called pipeline latency, which is
the duration from the end of the address phase to the beginning of the data phase.

The key differences between how wait-states and pipeline latency affect transfer
timing is as follows:

■ Wait-states—Wait-states determine the length of the address phase, and limit the
maximum throughput of a port. If a slave requires one wait-state to respond to a
transfer request, then the port requires at least two clock cycles per transfer.

■ Pipeline Latency—Pipeline latency determines the time until data is returned
independently of the address phase. A pipelined slave port with no wait-states can
sustain one transfer per cycle, even though it may require several cycles of latency
to return the first unit of data.

Wait-states and pipelined reads can be supported concurrently, and pipeline latency
can be either fixed or variable, as discussed in the following sections.

Figure 3–4. Slave Read and Write Transfer with Fixed Wait-States

Notes to Figure 3–4:

(1) The master asserts address and read on the rising edge of clk.
(2) The next rising edge of clk marks the end of the first and only wait-state cycle because the readWaitTime is 1.
(3) The slave captures readdata on the rising edge of clk, and the read transfer ends.
(4) writedata, address, byteenable, and write signals are available to the slave.
(5) Because writeWaitTime is 2, the transfer terminates after completing. The data and control signals are held constant until this

time.

clk

address

byteenable

read

write

readdata

writedata

address address

readdata

writedata

4 51 2 3
© April 2009 Altera Corporation Avalon Interface Specifications

3–10 Chapter 3: Avalon Memory-Mapped Interfaces
Slave Transfers
3.5.3.1. Slave Pipelined Read Transfer with Variable Latency
An Avalon-MM pipelined slave takes one or more cycles to produce data after
address and control signals have been captured. A pipelined slave port may have
multiple pending read transfers at any given time. Variable-latency pipelined read
transfers use the same set of signals as non-pipelined read transfers, with one
additional signal, readdatavalid. Slave peripherals that use readdatavalid are
considered pipelined with variable latency; the readdata and readdatavalid
signals can be asserted the cycle after the read cycle is asserted, at the earliest.

The slave port must return readdata in the same order that it accepted the
addresses. Pipelined slave ports with variable latency must use waitrequest. The
slave can assert waitrequest to stall transfers to maintain the number of pending
transfers at an acceptable level.

1 The maximum number of pending transfers is a property of the slave interface. The
system interconnect fabric builds logic which routes readdata to the requesting
masters, parameterized by this maximum number. It is the responsibility of the slave
interface, not the system interconnect fabric, to keep the number of pending reads
from exceeding the stated maximum. Typically, the slave interface restricts the
number of pending reads by asserting waitrequest when that number has reached
the maximum value

Figure 3–5 shows several slave read transfers between the system interconnect fabric
and a pipelined slave with variable latency. In this example, the slave can accept a
maximum of two pending transfers and uses waitrequest to prevent overrunning
this maximum.

Figure 3–5. Slave Pipelined Read Transfers with Variable Latency

Notes to Figure 3–5:

(1) The master asserts address and read, initiating a read transfer.
(2) The slave captures addr1, and immediately provides the response data1 and asserts readdatavalid.
(3) The slave captures addr2 and immediately provides the response data2 and asserts readdatavalid.
(4) The slave asserts waitrequest causing the third transfer to be stalled for 2 cycles.
(5) The slave drives readdatavalid and valid readdata in response to the third read transfer.
(6) The data from transfer 3 is captured by the interconnect as addr4 is captured by the slave.
(7) data5 is presented with readdatavalid completing the data phase for the final pending read transfer.

clk

address

read

waitrequest

readdata

readdatavalid

1 2 3 4 5 6 7

addr1 addr2 addr3 addr4 addr5

data1 data2 data 3 data4 data5
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–11
Slave Transfers
If the slave cannot handle a write transfer while it is processing pending read
transfers, the slave must assert its waitrequest and stall the write operation until
the pending read transfers have completed. The Avalon-MM specification does not
define the value of readdata in the event that a slave accepts a write transfer to the
same address as a currently pending read transfer. Pipelined slaves with variable
latency must support waitrequest.

3.5.3.2. Slave Pipelined Read Transfer with Fixed Latency
The address phase for fixed latency slave read transfers is identical to the variable
latency case. After the address phase, a pipelined slave port with fixed read latency
takes a fixed number of clock cycles to return valid readdata, as indicated by the
readWaitTime property. The system interconnect fabric captures readdata on the
appropriate rising clock edge, and the data phase ends.

During the address phase, the slave port can assert waitrequest to hold off the
transfer or can specify readWaitTime for a fixed number of wait states. The address
phase ends on the next rising edge of clk after wait-states, if any.

During the data phase, the slave drives readdata after a fixed latency. If the slave
has a read latency of <n>, the slave port must present valid readdata on the <nth>
rising edge of clk after the end of the address phase.

Figure 3–6 shows multiple data transfers to a slave pipelined port that uses
waitrequest and has a fixed read latency of 2 cycles.

3.5.4. Burst Transfer
A burst executes multiple transfers as a unit, rather than treating every word
independently. Bursts may increase throughput for slave ports that achieve greater
efficiency when handling multiple word at a time, such as DDR. The net effect of
bursting is to lock the arbitration for the duration of the burst. If a slave provides both
read and write functionality and supports bursting, it must support both burst reads
and burst writes.

Figure 3–6. Slave Pipelined Read Transfer with Fixed Latency of Two Cycles

Notes to Figure 3–6:

(1) A master initiates a read transfer by asserting read and addr1. The slave asserts waitrequest to hold off the transfer for one
cycle.

(2) The slave deasserts waitrequest and captures addr1 at the rising edge of clk. The address phase ends here.
(3) The slave presents valid readdata after 2 cycles, ending the transfer.
(4) addr2 and read are asserted for a new read transfer.
(5) The master initiates a third read transfer during the next cycle, before the data from the prior transfer is returned.

clk

address

read

waitrequest

readdata

addr1 addr2 addr3

data1 data2 data3

1 2 3 4 5
© April 2009 Altera Corporation Avalon Interface Specifications

3–12 Chapter 3: Avalon Memory-Mapped Interfaces
Slave Transfers
To support bursts, an Avalon-MM slave includes a burstcount input signal. If a
slave has a burstcount input, it is considered burst capable.

The burstcount signal behaves as follows:

■ At the start of a burst, burstcount presents the number of sequential transfers in
the burst.

■ For width <n> of burstcount, the maximum burst length is 2<N> -1. The minimum
legal burst length is one.

To support slave read bursts, a slave must also support:

■ wait-states with the waitrequest signal.

■ Pipelined transfers with variable latency with the readdatavalid signal.

At the start of a burst, the slave sees the address and a burst length value on
burstcount. For a burst with an address of <a> and a burstcount value of ,
the slave must perform consecutive transfers starting at address <a>. The burst
completes after the slave receives (write) or returns (read) the <Bth> word of data. The
bursting slave must capture address and burstcount only once for each burst. The
slave logic must infer the address for all but the first transfers in the burst. A slave can
also use the input signal beginbursttransfer, which the system interconnect
fabric asserts for the first cycle of each burst.

3.5.4.1. Slave Write Bursts
These rules apply when a slave write burst begins with burstcount greater than
one:

■ If a burstcount of <n> is presented at the beginning of the burst, then the slave
must accept <n> successive units of writedata to complete the burst. Arbitration
between the master-slave pair is locked until the burst completes, guaranteeing
that data arrives, in order, from the master port that initiated the burst.

■ The slave must only capture writedata when write is asserted. During the burst,
write can be deasserted to indicate that it is not presenting valid writedata.
Deasserting write does not terminate the burst; it only delays it.

■ The slave can delay a transfer by asserting waitrequest which forces
writedata, write, and byteenable to be held constant, as usual.

■ The functionality of the byteenable signal is the same for bursting and
non-bursting slaves. For a 32-bit master burst-writing to a 64-bit slave, starting at
byte address 4, the first write transfer seen by the slave is at its address 0, with
byteenable = 8b’11110000.

■ The byteenable signals do not all have to be asserted. A burst master writing
unaligned data can use the byteenable signal to identify the data being written.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–13
Slave Transfers
Figure 3–7 demonstrates a slave write burst of length 4. In this example, the slave port
asserts waitrequest twice delaying the burst.

In Figure 3–7, the beginbursttransfer signal is asserted for the first clock cycle of
a burst and is deasserted on the next clock cycle. Even if the slave asserts
waitrequest, the beginbursttransfer signal is only asserted for the first clock
cycle.

3.5.4.2. Slave Read Bursts
Slave read bursts are similar to slave pipelined read transfers with variable latency. A
read burst has distinct address and data phases, and the slave port uses the
readdatavalid signal to indicate when it is presenting valid readdata. The
difference is that a single read burst address results in multiple data transfers.

These rules apply to slave read bursts:

■ When burstcount is <n>, the slave must return <n> words of readdata to
complete the burst.

■ The slave presents each word by providing readdata and asserting
readdatavalid for a cycle. Deassertion of readdatavalid delays but does not
terminate the burst data phase.

■ The byteenables presented with a read burst command apply to all cycles of the
burst. A byteenable value of 1 means that the least significant byte is being read
across all of the read cycles.

Figure 3–8 illustrates a system with two bursting masters accessing a slave. Note that
Master B can drive a read request before the data has returned for Master A.

Figure 3–7. Slave Write Burst

Notes to Figure 3–7:

(1) The master asserts address, burstcount, write, and drives the first unit of writedata. The slave immediately asserts
waitrequest, indicating that it is not ready to proceed with the transfer.

(2) waitrequest is low; the slave captures addr1, burstcount, and the first unit of writedata . On subsequent cycles of the
transfer, address and burstcount are ignored.

(3) The slave port captures the second unit of data at the rising edge of clk.
(4) The burst is paused while write is deasserted.
(5) The slave captures the third unit of data at the rising edge of clk.
(6) The slave asserts waitrequest. In response, all outputs are held constant through another clock cycle.
(7) The slave captures the last unit of data on this rising edge of clk. The slave write burst ends.

clk

address

beginbursttransfer

burstcount

write

writedata

waitrequest

addr1

4

data1 data2 data3 data4

1 2 3 4 65 7
© April 2009 Altera Corporation Avalon Interface Specifications

3–14 Chapter 3: Avalon Memory-Mapped Interfaces
Slave Transfers
3.5.4.3. Line–Wrapped Bursts
Processors with data or instruction caches gain efficiency by using line-wrapped
bursts. When a processor requests data, and the data is not in the cache, the cache
controller reads enough data from the memory to fill the entire cache line. For a
processor with a cache line size of 64 bytes, a cache miss causes 64 bytes to be read
from memory. If the processor reads from address 0xC when the cache miss occurred,
then an incrementing addressing burst uses read addresses 0x0, 0x4, 0x8, 0xC, 0x10,
0x14, 0x18, and 0x1C – the data that the processor requested is not available until the
fourth read. With wrapping bursts, the address order is 0xC, 0x10, 0x14, 0x18, 0x1C,
0x0, 0x4, and 0x8 such that the data that the processor requested is returned first.

f For more information about burst transfers and burst adapters refer to the Avalon
Memory-Mapped Design Optimizations chapter in the Embedded Design Handbook.

3.5.4.4. Flow Control
A slave can support the dataavailable and readyfordata signals to indicate
when it has data available for reading or has space available to which data can be
written. Masters that have the doStreamReads and doStreamWrites properties
set see waitrequest asserted when they access a slave with the dataavailable
and readyfordata signals deasserted, respectively.

For flow control to work, both interfaces in the master-slave pair must support it. If
one or both of the ports does not use flow control, then the transfer proceeds as if
neither port had it. Flow control signals cannot be used with Avalon-MM tristate
ports.

Figure 3–8. Slave Read Burst

Notes to Figure 3–8:

(1) Master A asserts address (A0), burstcount, and read after the rising edge of clk. The slave asserts waitrequest, causing
all inputs except beginbursttransfer to be held constant through another clock cycle.

(2) The slave captures A0 and burstcount at this rising edge of clk. A new transfer could start on the next cycle.
(3) Master B drives address (A1), burstcount, and read. The slave asserts waitrequest, causing all inputs except

beginbursttransfer to be held constant. The slave could have returned read data from the first read request at this time, at
the earliest.

(4) The slave presents valid readdata and asserts readdatavalid, transferring the first word of data for master A.
(5) The second word for master A is transferred. The slave deasserts readdatavalid pausing the read burst. The slave port can keep

readdatavalid deasserted for an arbitrary number of clock cycles.
(6) The first word for master B is returned.

clk

address

read

beginbursttransfer

waitrequest

burstcount

readdatavalid

readdata

A0 (master A) A1 (master B)

4 2

D(A0) D(A0+1) D(A0+2) D(A0+3) D(A1) D(A1+1)

2 3 5 61 4
Avalon Interface Specifications © April 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Chapter 3: Avalon Memory-Mapped Interfaces 3–15
Address Alignment
In a master-slave pair that uses flow control, after a master port initiates a transfer, the
system interconnect fabric initiates a transfer with the target slave port only if the
readyfordata or dataavailable signals indicate that the slave port it is ready for
the transfer. While the slave port is not ready, the system interconnect fabric forces the
master port to wait.

A slave port can assert dataavailable at any time to indicate that it has read data
available. While dataavailable is asserted, a new transfer from a master port with
flow control can begin on the next rising edge of clk. A slave port can only deassert
dataavailable at the end of a read transfer. The signal is immediately valid for
successive transfers that might follow.

A slave port can assert readyfordata at any time to indicate that it can accept write
data. While readyfordata is asserted, a new transfer from a master port with flow
control can begin on the next rising edge of clk.

1 Flow control is a deprecated feature. Altera recommends that you use the Avalon
Streaming (Avalon-ST) and the ready and valid signals for new designs. For more
information about Avalon-ST interfaces refer to Chapter 6, Avalon Streaming
Interfaces.

3.6. Address Alignment
For systems in which master and slave data widths differ, the system interconnect
manages address alignment issues. The Avalon-MM interface resolves data width
differences, so that any master port can communicate with any slave port, regardless
of the respective data widths.

3.6.1. Avalon-MM Slave Addressing
Dynamic bus sizing refers to a service provided by the system interconnect fabric that
dynamically manages data during transfers between master-slave pairs of differing
data widths, such that all slave data are aligned in contiguous bytes in the master
address space.

If the master is wider than the slave, data bytes in the master address space map to
multiple locations in the slave address space. For example, when a 32-bit master port
performs a read transfer from a 16-bit slave port, the system interconnect fabric
executes two read transfers on the slave side on consecutive addresses, and presents
32-bits of slave data back to the master port.

If the master is narrower than the slave, then the system interconnect fabric manages
the slave byte lanes. During master read transfers, the system interconnect fabric
presents only the appropriate byte lanes of slave data to the narrower master. During
master write transfers, the system interconnect fabric automatically asserts the
byteenable signals to write data only to the specified slave byte lanes.

Slaves must have a data width of 8, 16, 32, 64, 128, 256, 512 or 1024 bits. Table 3–3
shows how slave data of various widths is aligned within a 32-bit master. In Table 3–3,
OFFSET[N] refers to a slave word size offset into the slave address space.
© April 2009 Altera Corporation Avalon Interface Specifications

3–16 Chapter 3: Avalon Memory-Mapped Interfaces
Address Alignment
3.6.2. Avalon-MM Tri-State Slave Addressing
In contrast to Avalon-MM slaves which are accessed using the word size that the
Avalon-MM slave defines, Avalon-MM tri-state slaves are accessed using byte
addresses. Using byte addresses allows multiple slave devices with different word
sizes to be connected to the same address pins of the FPGA. Figure 3–9 illustrates this
point.

Table 3–3. Dynamic Bus Sizing Master-to-Slave Address Mapping

Master Byte
Address (1)

32-Bit Master Data

When Accessing a 16-Bit Slave Port When Accessing a 64-Bit Slave Port

0x00 OFFSET[1]15..0:OFFSET[0]15..0 (2) OFFSET[0]31..0

0x04 OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08 OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

...

Notes to Table 3–3:

(1) Although the master is issuing byte addresses, it is accessing full 32-bit words.
(2) For all slave entries, [<n>] is the word offset and the subscript values are the bits in the word.

Figure 3–9. Connecting a Tristate Bridge to Components with Different Address Widths and Word Sizes

data [7:0]

addr[19:0]

CE[0]

Parallel Flash
(8-bit word)

CE

A[19:0]

D[7:0]

data [15:0]

addr[11:1]

CE[1]CE[2:0]

Ethernet
 (16-bit word)

Tristate Bridge

PCB

CE

A[10:0]

D[15:0]

data [31:0]

addr[26:2]

CE[2]

SSRAM
(32-bit word)

CE
Byteenable[3:0]

Byteenable[3:0]

A[24:0]

D[31:0]

Nios II Processor

A[31:0]

D[31:0]

DMA Controller

A[26:0]

D[31:0]

A[26:0]

D[31:0]

FPGA
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–17
Masters
It is important to understand these differences in addressing to avoid costly respins of
PCBs.

■ Avalon-MM masters always drive word-aligned addresses that are aligned to the
masters’ own width. A 32-bit master port drives addresses aligned on 4-byte
boundaries, such as: 0x00, 0x04, 0x08, 0x0c. Masters use the byteenable signal to
access individual byte lanes.

■ Avalon-MM slaves respond to word addresses as defined by the slave device. The
word size must be a power of 2, between 23–210. The byteenable signals specify
valid data when transfers occur between masters and slave with different word
sizes. For example, the interface for an Avalon-MM slave device with 4, 64-bit
locations would include 2 address bits, addr[1:0] and 8 byte enables,
byteenable[7:0].

■ Avalon-MM tri-state slaves are accessed using byte addresses. If an Avalon-MM
master is accessing a 32-bit tri-state component, you should not connect the two
least significant bits on the PCB. The third least significant bit connects to
address[0] of the device.

In Figure 3–9, the Ethernet device has a 16-bit word size; however, because it is
accessed through a tri-state bridge, the tri-state bridge issues a byte address. The
left-shift from using address wires [10:0] to wires [11:1] occurs on the PCB.

3.6.3. Native Addressing
In versions of the SOPC Builder software before v8.0, a slave interface could specify
that it had native addressing. When a master port addresses a slave port with the native
address alignment property, all slave data is aligned on native master address
boundaries. When a master port reads from a narrower slave port, the slave data bits
map to the lower bits of the master data, and the upper master data bits are padded
with zero. During write transfers, the upper bits are ignored. For example, if a 16-bit
master port reads an 8-bit slave port, the readdata signal is of the form 0x00<nn>,
where <n> represents valid data, meaning that each word address as seen by each
master addresses a different word on the slave. When a 32-bit master accesses a 64-bit
slave, the upper 32 bits get coded to 0. Depending on how the slave handles the data,
this coding could have negative side-effects.

With native addressing, the effective address map of the slave is dependent on the
master that is accessing it, and in some cases, the address span of the slave changes as
masters are added to the system. In many cases, extra logic is required to handle
accesses from different masters, leading to increased logic usage and performance
degradation.

1 Native addressing is now deprecated, meaning that it is still supported by the system
interconnect fabric, but is not recommended for new components.

3.7. Masters
This section defines the behavior of Avalon-MM master transfers between a master
and the system interconnect fabric as shown in Figure 3–10.
© April 2009 Altera Corporation Avalon Interface Specifications

3–18 Chapter 3: Avalon Memory-Mapped Interfaces
Master Signal Types
The signal types available for Avalon-MM masters allow you to create masters that
use bursts for both reads and writes. Because the system interconnect fabric creates
point-to-point connections between master and slave pairs, you can increase the
throughput of your system by initiating reads with multiple pipelined slave
peripherals. In responding to reads, when a slave peripheral has valid data it asserts
readdatavalid and the system interconnect fabric enables the connection between
the master and slave pair.

The following sections provide details of the signal types available for Avalon-MM
masters and provide timing diagrams that detail these transfers.

3.8. Master Signal Types
Table 3–4 lists the signal types that constitute the Avalon-MM interface for master
ports.

Figure 3–10. Focus of Avalon-MM Master Transfers

RS-232

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

Avalon-MM
Slave

Avalon-MM
Slave

Avalon-MM
Slave

SDRAM
Memory

Chip

Avalon-MM
Master

Processor

Flash
Memory

Chip

Tristate
Slave

SRAM
Memory

Chip

Tristate
Slave

Avalon-MM
Master

Avalon
Master Port

Ethernet MAC Custom Logic

SDRAM
Controller

UART Custom
Logic

Avalon-MM
Master
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–19
Master Signal Types
Table 3–4. Avalon-MM Master Signals (Part 1 of 3)

Signal Type Width Direction Req’d Description

Fundamental Signals

address 1-32 Out Yes The address signal represents a byte address
regardless of the data-width of the master. The value of
the address must be aligned to the data width. To write
to specific bytes within a data word, the master must
use the byteenable signal.

Masters always issue byte addresses, regardless of the
data width of the master or slave port. The system
interconnect fabric translates this address into a word
address in the slave’s address space so that each slave
access is for a word of data from the perspective of the
slave.

read

read_n

1 Out No Read request signal from the master. Not required if the
master never performs read transfers.

If present, readdata must also be present.

readdata 8,16,32,64,
128, 256, 512,
1024

In No Data signal for read transfers.

write

write_n

1 Out No Write request signal from the master. Not required if
the master never performs write transfers.

If present, writedata must also be used.

writedata 8,16,32,64,
128, 256, 512,
1024

Out No Data signal from the master for write transfers. Not
required if the master never performs write
transfers. If readdata is also present, readdata
and writedata must be the same width.

byteenable

byteenable_n

1, 2,4,8, 16,
32, 64, 128

Out No Enables specific byte lanes during transfers on ports of
width greater than 8 bits. Each bit in byteenable
corresponds to a byte lane in writedata and
readdata. The master bit <n> of byteenable
indicates whether byte <n> is being written to. During
writes, byteenables specify which bytes to write. Other
bytes should be ignored by the slave. During reads,
byteenables indicates which bytes the master is
reading.

When more than one byte lane is asserted, all asserted
lanes must be adjacent. The number of adjacent lines
must be a power of 2, and the specified bytes must be
aligned on an address boundary for the size of the data.
The are legal values for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only
© April 2009 Altera Corporation Avalon Interface Specifications

3–20 Chapter 3: Avalon Memory-Mapped Interfaces
Master Signal Types
waitrequest

waitrequest_n

1 In Yes Forces the master to wait until the system interconnect
fabric is ready to proceed with the transfer. At the start
of all transfers, a master initiates the transfer, and waits
until waitrequest is deasserted. Masters must
keep its control signals the same on subsequent cycles
if waitrequest is asserted

arbiterlock

arbiterlock_n

1 Out No arbiterlock ensures that once a master wins
arbitration, it maintains access to the slave for multiple
transfers. It is de-asserted coincident with read or
write and with the deassertion of the last locked
transfer read or write signal. Arbiterlock
assertion does not guarantee that arbitration will be
won, but after the arbiterlock-asserting master has
been granted, it retains grant until it deasserts
arbiterlock, whether or not it is making an
access.

Burst masters cannot use the arbiterlock signal.
Arbitration priority values for arbiterlock-equipped
masters are ignored.

arbiterlock is particularly useful for
read-modify-write operations, where master A reads
32-bit data that has multiple bitfields, changes one
field, and writes the 32-bit data back. If master B were
to able to write between the read and the write, master
A’s write would undo what master B had done.

A master that asserts arbiterlock indefinitely
blocks all other masters, causing a deadlock.

Pipeline Signals

readdatavalid

readdatavalid_n

1 In No For pipelined read transfers with latency. Indicates that
valid data is present on the readdata lines. Required
if the master supports pipelined reads. Bursting
masters with read functionality must include the
readdatavalid signal.

flush

flush_n

1 Out No Used for pipelined read transfers. The master port
asserts flush with a new read or write command
to indicate that read responses from all previous read
transfers are to be dropped to clear any pending read
transfers in the pipeline.

Burst Signals

burstcount 1-11 Out No Used by bursting masters to indicate the number of
transfers in each burst. The minimum value for
burstcount is 1. For a burstcount signal of
width <n>, the maximum burst length is 2<N> -1.
Bursting masters with read functionality must include
the readdatavalid signal.

Table 3–4. Avalon-MM Master Signals (Part 2 of 3)

Signal Type Width Direction Req’d Description
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–21
Master Interface Properties
3.9. Master Interface Properties
Table 3–5 describes the interface properties for an Avalon-MM master interface.

3.10.Master Transfers
A typical transfer is initiated by the master and transfers a word of data. When
necessary, waitrequest is asserted to stall the master until the transfer can be
accepted. The transfer terminates when waitrequest is deasserted.

If waitrequest is asserted for <n> cycles, then the total transfer takes <n> + 1 cycles.
The system interconnect fabric does not provide a time out; the master must stall for
as long as waitrequest remains asserted.

Reset Signals

resetrequest

resetrequest_n

1 Out No Asserted by the master to request a reset the entire
system.

Note to Table 3–4:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list an _n version of the signal in the Signal Type column.

Table 3–4. Avalon-MM Master Signals (Part 3 of 3)

Signal Type Width Direction Req’d Description

Table 3–5. Avalon-MM Master Interface Properties

Name
Default
Value

Legal
Values Description

burstOnBurstBoundariesOnly false true,false If true, the master guarantees that all bursts begin
on a multiple of the burst size.

linewrapBursts false true,false Some memory devices implement a wrapping
burst instead of an incrementing burst. The
difference between the two is that with a wrapping
burst, when the address reaches a burst boundary,
the address wraps back to the previous burst
boundary such that only the low order bits need to
be used for address counting. A wrapping burst
with burst boundaries every 32 bytes across a
32-bit interface to address 0xC would write to
addresses 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 0x4,
and 0x8.

maxBurstSize 1 1–64 The maximum burst size that a master can send.

doStreamReads false true,false Indicates that the master wishes to be held off with
the waitrequest signal whenever it reads from
a slave that has dataavailable deasserted.

doStreamWrites false true,false Indicates that the master wishes to be held off with
the waitrequest signal whenever it writes to a
slave that has readyfordata deasserted.
© April 2009 Altera Corporation Avalon Interface Specifications

3–22 Chapter 3: Avalon Memory-Mapped Interfaces
Master Transfers
A master can use the byteenable signal to indicate that it only requires data for
specific bytes of readdata or to write specific bytes of writedata. If a master port
does not have a byteenable signal, the transfer proceeds as if all byteenable are
asserted.

A master transfer starts on the rising edge of clk. During the first cycle, the master
asserts the address, byteenable, and the read or write signals. If
waitrequest is asserted, the master must hold all outputs constant through the next
cycle. The transfer ends on the first rising clock edge with a deasserted
waitrequest, and the master may initiate another transfer immediately.

Figure 3–11 shows a typical master transfers.

3.10.1.Master Pipelined Read Transfer
A master that supports pipelined reads can initiate a new read transfer before it
receives data from a previous transfer. To support pipeline reads, a master includes
the one-bit input signal readdatavalid. The slave asserts readdatavalid to
indicate that readdata is valid data in response to a previous read.

The timing and sequence of signals during the address phase is identical to that of the
fundamental Avalon-MM master read transfer, except for the readdata signal. The
master must present read, address, and byteenable, and must hold these signals
constant as long as waitrequest is asserted. Once waitrequest is deasserted, the
master can initiate another read or write transfer.

For pipelined transfers, readdata is returned some number of cycles later.
readdata is always returned in the same order as the reads were issued by the
master. There is no limit on the time until readdatavalid is asserted. Pipelined
masters can have an arbitrary number of read transfers pending at any given time.

Figure 3–11. Fundamental Master Read and Write Transfers

Notes to Figure 3–11:

(1) The master initiates a read by asserting address, byteenable, and read. The slave returns readdata during the first cycle.
(2) The master captures readdata and deasserts read, ending the transfer. It immediately asserts address, byteenable,

writedata, and write for the next transfer.
(3) waitrequest is not asserted at the rising edge of clk, so the write transfer completes.
(4) The master asserts valid address, byteenable, writedata, and write beginning a second write transfer. waitrequest is

asserted, so the master holds all outputs.
(5) waitrequest is not asserted so the write transfer completes. The master asserts address, byteenable, and read for the next

transfer. waitrequest is asserted. The master holds all outputs.
(6) waitrequest is not asserted at the rising edge of clk, so the read transfer completes.

clk

address

byteenable

read

write

waitrequest

readdata

writedata

addr2addr1 addr3 addr4

be3be1 be2 be4

d3d2

d1 d4

1 2 3 4 5 6
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–23
Master Transfers
Pipelined masters can optionally use the flush signal, which is provided for cases in
which a master component determines that it does not need the data for all currently
pending transfers. Flushing the pipeline is a common requirement for pipelined CPUs
that prefetch instructions before knowing if the instructions are valid or not. When the
master port asserts flush on the rising edge of clk, readdatavalid is cancelled for
all pending reads. The master port can initiate a new read transfer during the same
clock cycle that flush is asserted. In this case, the data corresponding to this transfer
becomes the next valid data to be returned on readdata.

Figure 3–12 shows several pipelined master read transfers. This example
demonstrates that the master must respond appropriately to both waitrequest and
readdatavalid. In this example, the second-to-last transfer is flushed using the
flush signal. However, the unwanted data might have appeared on readdata if the
latency for that transfer were shorter.

3.10.2.Burst Transfers
A burst transfer guarantees that a master is granted uninterrupted access to a target
slave for the duration of the burst. Once a burst begins no other master can access the
slave port until the burst completes. A burst-capable master which supports read or
write functionality must support burst reads or burst writes.

Avalon-MM bursts do not guarantee that a master or slave sustains one transfer per
cycle during the burst, they only guarantee that arbitration between the master-slave
pair remains locked throughout the burst.

Figure 3–12. Master Pipelined Read Transfer

Notes to Figure 3–12:

(1) The master initiates a read transfer by presenting addr1 and asserting read. waitrequest is asserted so the master port waits
and asserts addr1 and read for another cycle.

(2) The system interconnect fabric deasserts waitrequest accepting the read command.
(3) The system interconnect fabric accepts a second read command. readdatavalid is asserted, so the master captures valid

readdata (data1), in response to the first read command.
(4) The system interconnect fabric accepts a third command, making a total of two pending transfers.
(5) readdatavalid is asserted, so master captures valid readdata (data2).
(6) readdatavalid is not asserted, so master does not capture readdata. Master asserts flush, causing pending transfer (addr3)

to be dropped.
(7) readdatavalid is asserted, so the master captures valid readdata (data4).

clk

address

read

flush

waitrequest

readdatavalid

readdata data1 data2 data4

addr1 addr2 addr3 addr4 4

2 3 4 5 71 6
© April 2009 Altera Corporation Avalon Interface Specifications

3–24 Chapter 3: Avalon Memory-Mapped Interfaces
Master Transfers
For an Avalon-MM master, burstcount is an output signal used to indicate the
length of the burst. At the start of each burst, a master asserts a valid address and a
burst length value on burstcount, measured in word transfers. The master presents
only one address for each burst; the addresses for all subsequent transfers in the burst
are inferred by the slave. All interfaces of a burst-capable master must be burst
capable.

When a master starts a burst with an address of <a> and a burstcount value of ,
it is committing to consecutive transfers starting at address <a>. The burst does
not complete until the master transfers units of data. A master cannot abort the
burst without first exhausting remaining transfers in the current burst. The master can
issue a new read burst before the data for the previous burst has been returned.

3.10.2.1. Master Write Bursts
To start a write burst the master port asserts address, writedata, write,
byteenable, and burstcount. If waitrequest is deasserted, address,
burstcount, and the first unit of writedata are captured on the rising edge of clk.
The master must hold constant values on address and burstcount throughout the
write burst.

The following rules apply to burst transfers:

■ The master can pause a write burst without ending it by deasserting write.

■ When waitrequest is asserted, the master must hold byteenable,
writedata, write, and address constant.

Figure 3–13 demonstrates an example of a master write burst of length 4.

Figure 3–13. Master Write Burst

Notes to Figure 3–13:

(1) The master begins a burst of 4 transfers. waitrequest is asserted, pausing the burst and causing the master to hold all outputs
constant.

(2) Because waitrequest is deasserted, the system interconnect fabric accepts the first write transfer.
(3) The second writedata (data2) is accepted. The master then deasserts write, pausing the burst.
(4) The system interconnect captures writedata (data3) and then the master presents the last unit of writedata (data4)

waitrequest pauses the burst again.
(5) waitrequest is deasserted and the last unit of writedata (data4) is captured on the next rising edge of clk ending the burst.

clk

waitrequest

address

burstcount

write

byteenable[3:0]

writedata

1 4

4

2 3

data1

addr1

data2 data3 data4

2 3 4 51
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–25
Master Transfers
3.10.2.2. Master Read Bursts
Read bursts are a form of pipelined read transfer. In contrast to non-burst pipelined
read transfers, a single read burst transfer corresponds to multiple data transfers. To
start a read burst, the master asserts address, read, and burstcount. When
waitrequest is deasserted, the address phase ends.

The data phase consists of a number of words of data being provided on readdata,
with readdatavalid asserted to mark valid cycles. The burst data phase is complete
once the number of words transferred is equal to the value provided by burstcount.
readdatavalid may be deasserted at any time, pausing the transfer. The master
cannot pause the data phase. The following rules apply when a master starts a read
burst:

■ Unless flush is asserted, if the master specifies burstcount of <n>, the master is
guaranteed to see readdatavalid for <n> cycles to complete the burst.

■ The master must capture readdata whenever readdatavalid is asserted. Each
value of readdata is valid for a single clock cycle.

■ The master must hold constant all control lines throughout the burst address
phase. (All control lines must also be held constant through the non-burst address
phase.)

Figure 3–14 demonstrates a master read burst of length 4.

Figure 3–14. Master Read Burst

Notes to Figure 3–14:

(1) The master asserts address, burstcount, and read. In this example, burstcount is 4. waitrequest is asserted for one cycle,
pausing the transfer.

(2) address and burstcount are captured. The master could begin a new transfer on the following cycle.
(3) readdata and readdatavalid are presented.
(4) Master captures the first unit of readdata (data1).
(5) Master captures the next unit of readdata (data2).
(6) readdatavalid is deasserted, pausing the burst. readdatavalid can be deasserted for an arbitrary number of clock cycles.
(7) The system interconnect fabric presents valid readdata, and asserts readdatavalid again.
(8) The master captures the next unit of readdata (data3).
(9) The master captures the last unit of readdata (data4), ending the burst.

clk

waitrequest

read

address

burstcount

eaddatavalid

readdata

addr1

4

data1 data2 data3 data4

2 3 5 76 8 91 4
© April 2009 Altera Corporation Avalon Interface Specifications

3–26 Chapter 3: Avalon Memory-Mapped Interfaces
Master Transfers
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
4. Interrupt Interfaces
Interrupt interfaces allow slave components to signal events to master components.
For example, a DMA controller can interrupt a processor when it has completed a
DMA transfer.

4.1. Interrupt Sender
An interrupt sender drives a single interrupt signal to an interrupt receiver. The
timing of the irq signal must be synchronous to the rising edge of its associated
clock, but has no relationship to any transfer on any other interface. irq must be
asserted until the interrupt has been acknowledged on the associated Avalon-MM
slave interface. An Avalon-MM slave can only include one interrupt sender.

The interrupt receiver typically determines how to respond to the event by reading an
interrupt status register from an Avalon-MM slave interface. The mechanism used to
acknowledge an interrupt is component specific.

4.1.1. Signal Types
Table 4–1 lists the interrupt signal types.

4.1.2. Interrupt Sender Properties
Table 4–2 lists the properties associated with interrupt senders.

4.2. Interrupt Receiver
An interrupt receiver interface receives interrupts from interrupt sender interfaces.
Components with an Avalon-MM master interface can include an interrupt receiver to
detect interrupts asserted by slave components with interrupt sender interfaces.
Interrupt receiver interfaces support two interrupt schemes:

Table 4–1. Interrupt Sender Signal Types

Signal Type Width Direction Required Description

irq

irq_n

1 Output Yes Interrupt Request. A slave asserts irq when it needs to be serviced.

Table 4–2. Interrupt Sender Properties

Property Name
Default
Value Legal Values Description

associatedClockReset — Name of clock
Interface on this
component.

The name of the clock interface that this
interrupt sender is synchronous to. The sender
and receiver may have different values for this
property.

associatedAddressablePoint — Name of Avalon-MM
slave on this
component.

The name of the Avalon-MM slave that provides
access to the registers that should be accessed
to service the interrupt.
Avalon Interface Specifications

4–2 Chapter 4: Interrupt Interfaces
Interrupt Receiver
■ Individual requests—the interrupt receiver expects to see each interrupt request
from each interrupt sender as a separate bit and is responsible for determining the
relative priority of the interrupts,

■ Priority encoded—the interrupt receiver expects to see a single-bit irq signal and a
six-bit interrupt number signal that indicates the number of the highest priority
interrupt currently being asserted. Interrupt zero is the highest priority. There can
only be one interrupt sender at each priority for a total of 64 senders in a system.

4.2.1. Interrupt Receiver Properties
Table 4–3 lists the properties associated with interrupt receivers.

4.2.2. Signal Types
Table 4–4 lists the interrupt receiver signal types.

4.2.3. Interrupt Timing
Figure 4–1 illustrates interrupt timing using both individual requests and priority
encoding. In both cases, the Avalon-MM master services the priority 0 interrupt
before the priority 1 interrupt.

Table 4–3. Interrupt Receiver Properties

Property Name Default Value Legal Values Description

irqScheme individualRequests individualRequests
priorityEncoded

Selects one of the two
interrupt encoding
schemes.

associatedAddressable
Point

— The name of Avalon-MM
slave on this component.

The name of the
Avalon-MM slave that
provides access to the
registers that should be
cleared after the interrupt is
serviced.

Table 4–4. Interrupt Receiver Signal Types

Signal Type Width Direction Required Description

irq 1–32 Input Yes Indicates when one or more slave ports have requested an interrupt.

If irqScheme=individualRequests, irq is an <n>-bit
vector, where each bit corresponds directly to one IRQ sender, with no
inherent assumption of priority.

If irqScheme=priorityEncoded, irq is a one bit logical OR
of all connected interrupt sender signals.

irqnumber 6 Input No Only used when irqScheme = priorityEncoded.
irqnumber indicates the current highest priority interrupt.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 4: Interrupt Interfaces 4–3
Interrupt Receiver
Figure 4–1. Interrupt Timing for Individual Request and Priority Encoded Interrupts

Notes to Figure 4–1:

(1) Interrupt 0 serviced.
(2) Interrupt 1 serviced.

clk

int0

int1

irqnum

irq

1 10 0

1 2

Individual
Requests

Priority
Encoded
© April 2009 Altera Corporation Avalon Interface Specifications

4–4 Chapter 4: Interrupt Interfaces
Interrupt Receiver
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
5. Avalon Memory-Mapped Tri-state
Interfaces
Avalon-MM tri-state slave interfaces allow Avalon-MM masters to drive off-chip
devices. The interface allows data and address pins to be shared across multiple
tri-state devices. Sharing is valuable in systems that have multiple external memory
devices and limited pins. Figure 5–1 shows a typical example where multiple flash
memories and an SRAM device are connected to the FPGA through a tri-state bridge.
The Avalon-MM tri-state interface is required for these external devices to share pins.

5.1. Tri-state Slave Signal Types
Tri-state slave ports use the bidirectional signal data rather than the separate,
unidirectional signals readdata and writedata. Avalon-MM tri-state ports must
also use the outputenable signal. Table 5–1 lists the Avalon-MM tri-state signal
types.

Figure 5–1. Typical Use of Avalon-MM tri-state Interface

Avalon-MM System

Printed Circuit Board

Avalon-MM
Slave

Flash
Memory

Chip

Tristate
Slave Port

Flash
Memory

Chip

Tristate
Slave Port

Flash
Memory

Chip

Tristate
Slave Port

SRAM
Memory

Chip

Tristate
Slave Port

Tristate
Bridge

Shared Addr/Data Bus on PCB

System Interconnect Fabric

Avalon-MM
Master

Processor

Tristate
Master

Tristate
Slave

Tristate
Slave

Tristate
Slave

Tristate
Slave
Avalon Interface Specifications

5–2 Chapter 5: Avalon Memory-Mapped Tri-state Interfaces
Tri-state Slave Signal Types
Table 5–1. Avalon-MM tri-state Slave Signals (1)

Signal Type Width Direction
Req’

d Description

address 1-32 In No Address lines to the slave port. Specifies a byte offset into the
slave’s address space.

read

read_n

1 In No Read-request signal. Not required if the slave port never
outputs data.

If present, data must also be used.

write

write_n

1 In No Write-request signal. Not required if the slave port never
receives data from a master.

If present, data must also be present, and
writebyteenable cannot be present.

chipselect

chipselect_n

1 In No When present, the slave port ignores all Avalon-MM signals
unless chipselect is asserted. chipselect is always
present in combination with read or write.

outputenable

outputenable_n

1 In Yes Output-enable signal. When deasserted, a tri-state slave port
must not drive its data lines otherwise data contention may
occur.

data 8,16, 32,
64, 128,
256, 512,
1024

Bidir No Bidirectional data. During write transfers, the FPGA drives
the data lines. During read transfers the slave device drives
the data lines, and the FPGA captures the data signals and
provides them to the master.

byteenable

byteenable_n

2, 4, 8,16,
32, 64,
128

In No Enables specific byte lane(s) during transfers.

Each bit in byteenable corresponds to a byte lane in data.
During writes, byteenables specify which bytes the master is
writing to the slave. During reads, byteenables indicates which
bytes the master is reading. Slaves that simply return data
with no side effects are free to ignore byteenables during
reads.

When more than one byte lane is asserted, all asserted lanes
are guaranteed to be adjacent. The number of adjacent lines
must be a power of 2, and the specified bytes must be aligned
on an address boundary for the size of the data. The are legal
values for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

writebyteenable

writebyteenable_n

2,4,8,16,
32, 64,128

In No Equivalent to the logical AND of the byteenable and
write signals. When used, the write signal is not used.

begintransfer 1 In No Asserted for the first cycle of each transfer.

Note to Table 5–1:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Type column.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 5: Avalon Memory-Mapped Tri-state Interfaces 5–3
Tri-state Slave Signal Types
5.1.1. address Behavior
For Avalon-MM tri-state slaves, the address signal represents a byte address. The
address signal can be shared among multiple off-chip devices which have differing
data widths. If the Avalon-MM tri-state slave port data width is greater than one byte,
it is necessary to correctly map the address signals from the system interconnect fabric
to the address lines on the slave peripheral.

Table 5–2 specifies which Avalon-MM address line corresponds to A0 (the
least-significant address line) on the external device for a number of data widths.

For example, when connecting the system interconnect fabric to a 32-bit memory
device using an Avalon-MM tri-state slave interface, the two least-significant bits of
the Avalon-MM address signal do not connect to the address lines on the memory
chip. Avalon-MM address[2] connects to the device's A0 pin, address[3]
connects to the A1 pin, and so forth.

5.1.2. outputenable and read Behavior
The system interconnect fabric asserts the outputenable signal during read
transfers only. When a port's outputenable is deasserted, the data lines may be
active with signals for a write transfer or with signals from some other peripheral that
shares the data signals. Therefore, it is critical for the slave peripheral to tri-state its
data lines any time outputenable is deasserted.

5.1.3. write_n and writebyteenable Behavior
If a memory device has a combined R/Wn pin, the Avalon-MM signal write_n can be
connected to a read/write (R/Wn) pin. write_n is only asserted during write
transfers, and remains deasserted (i.e., in read mode) at all other times. In this case,
the Avalon-MM outputenable_n signal connects to the output enable pin on the
external device, and the Avalon-MM write_n signal connects to the R/Wn pin.

Some synchronous memory devices use individual write-enable signals for each byte
lane (such as BWn1, BWn2, BWn3, and BWn4). The Avalon-MM port
writebyteenable is the logical AND of the write and byteenable signals, and
can be connected directly to such BWn pins.

5.1.4. Interfacing to Synchronous Off-Chip Memory
Avalon-MM tri-state slaves can write data to off-chip synchronous memory devices,
such as SRAM and ZBT RAM. The hold time property is used to keep data asserted
several clock cycles after write is deasserted.

Table 5–2. Connecting External Device AO to Avalon-MM address

Data Width of External Device External Device Address LSB Connects to

8 address[0] of Avalon-MM address

16 address[1] of Avalon-MM address

32 address[2] of Avalon-MM address

64 address[3] of Avalon-MM address
© April 2009 Altera Corporation Avalon Interface Specifications

5–4 Chapter 5: Avalon Memory-Mapped Tri-state Interfaces
tri-state Slave Properties
Pipelined read transfers are supported if the component has fixed read latency.
Pending pipelined read transfers are completed before initiating new write transfers
to prevent possible signal contention. As a result, Avalon-MM tri-state slaves might
not achieve the maximum possible throughput when performing back-to-back
read-write transfer sequences.

Figure 5–2 shows an example of the connections between the system interconnect
fabric and a synchronous, 32-bit memory. In this example, the Avalon-MM tri-state
slave port is pipelined to accommodate the synchronous memory. The port uses
separate read_n and outputenable_n signals. The chip in this example uses the
writebyteenable signal for its four byte lanes. This chip has an 18-bit address.
Note that the lower two bits of the 20-bit Avalon-MM address signal specify a byte
address, and therefore do not connect to the chip's address lines.

5.2. tri-state Slave Properties
Table 5–3 lists the properties of Avalon-MM tri-state slave interfaces. These include all
the properties for slave interfaces defined in Chapter 3, Avalon Memory-Mapped
Interfaces plus some additional properties to support off-chip devices.

Figure 5–2. Connection to Synchronous Memory Chip

clk

chipselect_n

outputenable_n

writebytenable_n[3..0]

data [31..0]

address[19..2]

Synchronous SRAM Chip

A
va

lo
n-

M
M

 T
ris

ta
te

 S
la

ve
 P

or
tCLK

CEn

OEn

WBE

A[17..0]

D [31..0]

A,B,C,D

Avalon-MM System

VCC

GND

Other
Pins

Rest of
the

System

S
ys

te
m

 In
te

rc
o

n
n

ec
t

Fa
b

ri
c

read_n
Rn

Table 5–3. Avalon-MM tri-state Interface Properties (Part 1 of 2)

Name
Default
Value Legal Values Description

readLatency 0 num_cycles Read latency for fixed-latency slaves. Refer to
Figure 5–5 for an illustration of this property.

writeLatency 0 num_cycles Delay in cycles between acceptance of a write access
and acceptance of valid writedata.

timingUnits cycles cycles,
nanoseconds

Specifies the units for setupTime, holdTime,
writeWaitTime and readWaitTime. Use
cycles for synchronous devices and nanoseconds for
asynchronous devices.

writeWaitTime 0 0–1000 Specifies additional time in units of timingUnits
for write to be asserted.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 5: Avalon Memory-Mapped Tri-state Interfaces 5–5
Slave Transfers
5.3. Slave Transfers
This section illustrates slave transfers that are specific to the Avalon-MM tri-state
interface.

5.3.1. Asynchronous Transfers
Figure 5–3 illustrates connections to an asynchronous memory chip. This chip has an
18-bit address and 4 byteenable lanes. Note that the lower 2 bits of the 20-bit
Avalon-MM address are not connected to the chip's address lines. For Avalon-MM
tri-state ports without pipelining, the read signal and the outputenable signal are
identical. Therefore, the Avalon-MM signal read_n can connect directly to both an
external device's output enable pin (OE_n) and read-enable pin (READ_n).

When connecting directly to asynchronous off-chip devices with an Avalon-MM
tri-state slave port, the clk signal is not needed. Instead, pulses on the chipselect,
read, and write, or both read and write signals synchronize the transfer, using
the defined setup and hold times. All output signals are glitch-free throughout the
transfer. Even though the timing units may be specified in nanoseconds, the system
interconnect fabric is always synchronous, and it toggles and captures signals only at
integer multiples of the clock period.

holdTime 0 0–1000
cycles

Specifies time in timingUnits between the
deassertion of write and the deassertion of
chipselect, address, and data. (Only applies
to write transactions.)

readWaitTime 1 0–1000 Specifies additional time in units of timingUnits
for read to be asserted.

setupTime 0 0–1000
cycles

Specifies time in timingUnits between the
assertion of chipselect, address, and data
and assertion of read or write.

activeCSThroughReadLatency false true,false If true, chipselect is asserted while readdata
is pending.

associatedClockReset — — Name of the clock interface that this tri-state interface
is synchronous to.

Table 5–3. Avalon-MM tri-state Interface Properties (Part 2 of 2)

Name
Default
Value Legal Values Description
© April 2009 Altera Corporation Avalon Interface Specifications

5–6 Chapter 5: Avalon Memory-Mapped Tri-state Interfaces
Slave Transfers
5.3.1.1. Setup Time
Some component, require address and chipselect signals to be stable for a period
of time before the read signal is asserted. Avalon-MM transfers with setupTime
accommodate such requirements.

A nonzero setupTime of means that after address and chipselect are asserted,
there is a delay before read or write is asserted. The total number of cycles to
complete the transfer depends on setup and wait time. For example, a slave port with
2 cycles of setup time and 3 cycles of wait time takes 6 cycles to complete the transfer:
2 setup cycles, plus 3 wait-state cycles, plus 1 cycle to capture data. Setup time is
applied equally to both read and write transfers.

5.3.1.2. Hold Time
A nonzero holdTime of <n> means that, after write is deasserted, address,
byteenable, writedata, and chipselect remain constant for <n> more cycles.
Hold time only applies to write transactions. The total number of cycles to complete
the transfer depends on setup, wait-state, and hold cycles. For example, a slave port
with 2 cycles of setup time, 3 cycles of write wait time, 2 cycles of hold time takes 8
cycles to complete the transfer: 2 setup cycles plus 3 wait time cycles plus 2 hold
cycles plus 1 cycle to capture data.

A slave port does not have to use both setup and hold times.

5.3.1.3. Example Read and Write Using Setup, Hold and Wait Times
Figure 5–4 shows Avalon-MM tri-state slave asynchronous read and write transfers,
assuming a 50 MHz clock. This port uses the following Avalon-MM tri-state
properties:

■ timingUnits is given in nanoseconds

■ setupTime is 50 ns (3 clocks at 50 MHz)

■ holdTime is 10 ns (1 clock at 50 MHz)

■ writeWaitTime is 30 ns (2 clocks at 50 MHz)

Figure 5–3. Connection to Asynchronous Memory Chip

chipselect_n

read_n

write_n

address[19..2]

data[31..0]

byteenable_n[3..0]

Asynchronous Memory Chip

A
va

lo
n-

M
M

 T
ris

ta
te

 S
la

ve
 P

or
tCSn

OEn

R/Wn

A[17..0]

BEn[3..0]

D[31..0]

VCC

GND

Other
Pins

Avalon-MM System

Rest of
the

System

S
ys

te
m

 In
te

rc
o

n
n

ec
t

Fa
b

ri
c

Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 5: Avalon Memory-Mapped Tri-state Interfaces 5–7
Slave Transfers
■ readWaitTime is 30 ns (2 clocks at 50 MHz)

■ No pipelining

When the wait time is expressed in nanoseconds, the read or write period, as seen on
the FPGA pins, is as long as the specified wait time, rounded up to the next clock
period. Table 5–4 illustrates this point.

When the wait time is expressed as cycles, the number of cycles that the read or write
signal is asserted is the value of waitTime plus one cycle for data capture.

Figure 5–4 shows the tri-state behavior for a single asynchronous memory. The data
lines could be active at any time due to the transfer activity of other components
sharing the data and address signals. clk is shown only to illustrate the relationship
between signals and the system clock; it is not connected to the asynchronous device.

Table 5–4. Wait Times Expressed in Nanoseconds - 50 MHz Clock

Wait Time Number of Cycles

0 ns 1 cycle

10 ns 1 cycle

20 ns 1 cycle

21 ns 2 cycles

Table 5–5. Wait Times Expressed in Cycles

Wait Time Number of Cycles

0 cycles 1 clock period

1 cycle 2 clock periods

2 cycles 3 clock periods
© April 2009 Altera Corporation Avalon Interface Specifications

5–8 Chapter 5: Avalon Memory-Mapped Tri-state Interfaces
Slave Transfers
5.3.2. Synchronous Transfers
Synchronous read and write transfers are the same as for Avalon-MM interfaces
described in Chapter 3, Avalon Memory-Mapped Interfaces.

5.3.3. Pipelined Slave Read Transfers
The pipelined Avalon-MM tri-state slave read transfer is suitable for connecting to
off-chip synchronous memory devices, such as SSRAM. For Avalon-MM tri-state
ports with pipelining, read is asserted during the address phase only and is
deasserted through the data phase. outputenable is asserted before the final rising
clock edge of the transfer, causing the peripheral device to drive its data pins.
outputenable is deasserted when there are no pending read transfers. Avalon-MM
slave tri-state ports cannot be pipelined with variable latency. Only pipelined tri-state
ports with fixed latency are supported.

Some synchronous memory chips which use pipelined transfers require the
chipselect signal to be asserted only during the address phase, while other chips
require the chipselect signal to be asserted until the entire transfer completes. The
Avalon-MM tri-state slave interface supports both cases, using the
activeCSThroughReadLatency property.

The tri-state slave must declare which chipselect timing it supports according to
the guidelines:

Figure 5–4. tri-state Slave Read and Write Transfers with Setup Time and Wait-States

Notes to Figure 5–4:

(1) The system interconnect fabric drives address and asserts chipselect_n.
(2) After 3 cycles (from 50 ns) of setupTime, the system interconnect fabric asserts read_n.
(3) The slave port deasserts read_n after 2 cycles (from 30 ns) of readWaitTime. Data is sampled at the rising clock edge.
(4) address and writedata are driven.
(5) write_n is driven after 3 cycles (from 50 ns) setupTime.
(6) write_n is deasserted after two cycles (from 30 ns) of writeWaitTime.
(7) address, chipselect, and the data bus stop being driven after 1 cycle (from 10 ns) of holdTime.

clk

address

chipselect_n

outputenable_n

read_n

write_n

data

addr1 addr2

data writedata

Tsuw

readWaitTime

TsuRead

2 3 4 5 6 71

holdTime
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 5: Avalon Memory-Mapped Tri-state Interfaces 5–9
Slave Transfers
■ When a tri-state slave declares activeCSThroughReadLatency property to be
true, chipselect is asserted throughout both the address and data phases of
the read transfer. In this case, chipselect mirrors outputenable.

■ When a port does not use the activeCSThroughReadLatency property,
chipselect is only asserted during the address phase. In this case, chipselect
mirrors read.

Figure 5–5 shows a pipelined Avalon-MM tri-state slave read transfer. This port uses
the Avalon-MM properties:

■ readLatency is set to 2

■ writeLatency is set to 2

■ activeCSThroughReadLatency is shown for both the true and false
settings

The diagram shows the behavior for one component. However, the data lines could be
active at any time due to the transfer activity of a different peripheral sharing the
data and address signals.

Figure 5–5. Pipelined tri-state Slave Read Transfers

Notes to Figure 5–5:

(1) chipselect_n, addr1, and read_n are asserted, initiating a read transfer. At this time outputenable_n is also asserted, so
the slave device can drive the data lines at any time.

(2) The slave device captures addr1 and read_n on this rising edge of clk. The data phase begins, and the slave produces valid data
two clock cycles later.

(3) read_n is deasserted on this rising edge of clk, so the master is not issuing a new read command. When
activeCSThroughReadLatency is false, chipselect_n is deasserted, and the tri-state slave must not drive the data bus.

(4) data1 is captured at this rising edge of clk. chipselect_n, addr2, and read_n are asserted initiating transfer 2.
(5) The system interconnect fabric asserts chipselect_n, addr3, and read_n at this rising edge of clk, initiating transfer 3.

Because outputenable_n is asserted, the slave device could drive the data lines.
(6) The system interconnect fabric captures data2 at the rising edge of clk. read_n is deasserted, ending the sequence of read

transfers. If activeCSThroughReadLatency is asserted chipselect remains asserted until all pending read transfers have
completed, otherwise it is deasserted.

(7) The system interconnect fabric captures data3.
(8) The system interconnect fabric captures data4. There are no more pending transfers so chipselect and outputenable_n are

deasserted, forcing the slave peripheral to stop driving its data lines.

clk

address

chipselect_n

chipselect_n

read_n

write_n

data

(activeCSThroughReadLatency=true)

(activeCSThroughReadLatency=false)

addr1 addr2 addr3 addr4

data1 data2 data3 data4

2 3 4 5 6 7 81
© April 2009 Altera Corporation Avalon Interface Specifications

5–10 Chapter 5: Avalon Memory-Mapped Tri-state Interfaces
Master Transfers
5.4. Master Transfers
Avalon-MM tri-state slaves are mastered by Avalon-MM masters via a tri-state bridge.
Avalon-MM tri-state masters are not supported on other components. For more
information on Avalon-MM master refer to Chapter 3, Avalon Memory-Mapped
Interfaces.
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
6. Avalon Streaming Interfaces
6.1. Introduction
You can use Avalon Streaming (Avalon-ST) interfaces for components that drive high
bandwidth, low latency, unidirectional data. Typical applications include multiplexed
streams, packets, and DSP data. The Avalon-ST interface signals can describe
traditional streaming interfaces supporting a single stream of data without
knowledge of channels or packet boundaries. The interface can also support more
complex protocols capable of burst and packet transfers with packets interleaved
across multiple channels. Figure 6–1 illustrates a typical application of the Avalon-ST
interface.

All Avalon-ST source and sink interfaces are not necessarily interoperable. However,
if two interfaces provide compatible functions for the same application space, adapter
logic is available to allow them to interoperate.

Figure 6–1. Avalon-ST Interface - Typical Application

SDRAM
Memory

Chip

Avalon-MM
Master Port

Processor

Avalon-MM Interface (Control Plane)

Avalon-MM
Master Port

IO Control

Avalon-MM
Slave Port

SDRAM Cntl

Source Sink SinkSource

ch
0-2

2

1

0

Scheduler

Tx IF CoreRx IF Core
Avalon-ST

Input
Avalon-ST

Output

Avalon-ST Interfaces (Data Plane)

Altera FPGA

Printed Circuit Board
Avalon Interface Specifications

6–2 Chapter 6: Avalon Streaming Interfaces
Introduction
6.1.1. Features
Some of the prominent features of the Avalon-ST interface are:

■ Low latency, high throughput point-to-point data transfer

■ Multiple channel support with flexible packet interleaving

■ Sideband signaling of channel, error, and start and end of packet delineation

■ Support for data bursting

■ Automatic interface adaptation

6.1.2. Terms and Concepts
This section defines terms and concepts used in the Avalon-ST interface protocol.

■ Avalon Streaming System—An Avalon Streaming system is a system that contains
one or more Avalon-ST connections that transfer data from a source interface to a
sink interface. The system shown in Figure 6–1 consists of Avalon-ST interfaces to
transfer data from the system input to output and Avalon-MM control and status
register interfaces to allow software control.

■ Avalon Streaming Components—A typical system using Avalon-ST interfaces
combines multiple functional modules, called components. The system designer
configures the components and connects them together to implement a system.

■ Source and Sink Interfaces and Connections—When two components are connected,
the data flows from the source interface to the sink interface. The combination of a
source interface connected to a sink interface is referred to as a connection.

■ Backpressure—Backpressure is a mechanism by which a sink can signal to a source
to stop sending data. The sink typically uses backpressure to stop the flow of data
when its FIFOs are full or when there is congestion on its output port. Support for
backpressure is optional.

■ Transfers and Ready Cycles—A transfer is an operation that results in data and
control propagation from a source interface to a sink interface. For data interfaces,
a ready cycle is a cycle during which the sink can accept a transfer.

■ Symbol—A symbol is the smallest unit of data. For most packet interfaces, a
symbol is a byte. One or more symbols make up the single unit of data transferred
in a cycle.

■ Channel—A channel is a physical or logical path or link through which
information passes between two ports.

■ Packet—A packet is an aggregation of data and control signals that is transmitted
together. A packet may contain a header to help routers and other network devices
direct the packet to the correct destination. The packet format is defined by the
application, not this specification. Avalon-ST packets can be variable in length and
can be interleaved across a connection. With an Avalon-ST interfaces, the use of
packets is optional.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 6: Avalon Streaming Interfaces 6–3
Avalon-ST Interface Signals
6.2. Avalon-ST Interface Signals
Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST
signal type; an Avalon-ST interface may contain only one instance of each signal type.
All Avalon-ST signal types apply to both sources and sinks and have the same
meaning for both.

Table 6–1 lists the signal types that comprise an Avalon-ST data interface.

Table 6–1. Avalon-ST Interface Signals

Signal Type Width Direction Required Description

Fundamental Signals

ready 1 Sink →
Source

No Asserted high to indicate that the sink can accept data. On
interfaces supporting flow control, ready is asserted by the
sink on cycle <n> to mark cycle <n +readyLatency> as a
ready cycle, during which the source may assert valid and
transfer data.

Sources without a ready input cannot be backpressured, and
sinks without a ready output never need to backpressure.

valid 1 Source →
Sink

No Asserted by the source to qualify all other source to sink
signals. On ready cycles where valid is asserted, the data bus
and other source to sink signals are sampled by the sink, and on
other cycles are ignored.

Sources without a valid output implicitly provide valid data
on every cycle that they are not being backpressured, and sinks
without a valid input expect valid data on every cycle that
they are not backpressuring.

data 1–256 Source →
Sink

No The data signal from the source to the sink, typically carries
the bulk of the information being transferred.

The contents and format of the data signal is further defined
by parameters.

channel 0–8 Source →
Sink

No The channel number for data being transferred on the
current cycle.

If an interface supports the channel signal, it must also define
the maxChannel parameter.

error 1–255 Source →
Sink

No A bit mask used to mark errors affecting the data being
transferred in the current cycle. A single bit in error is used
for each of the errors recognized by the component, as defined
by the errorDescriptor property.

Packet Transfer Signals

startofpacket 1 Source →
Sink

No Asserted by the source to mark the beginning of a packet.

endofpacket 1 Source →
Sink

No Asserted by the source to mark the end of a packet.

empty 0–8 Source →
Sink

No Indicates the number of symbols that are empty during cycles
that contain the end of a packet. The empty signal is not used
on interfaces where there is one symbol per beat. If
endofpacket is not asserted, this signal is not interpreted.
© April 2009 Altera Corporation Avalon Interface Specifications

6–4 Chapter 6: Avalon Streaming Interfaces
Avalon-ST Interface Properties
6.2.1. Signal Polarity
All signal types listed in Table 6–1 are active high.

6.2.2. Signal Sequencing and Timing
This section describes issues related to timing and sequencing of Avalon-ST signals.

6.2.2.1. Synchronous Interface
All transfers of an Avalon-ST connection occur synchronous to the rising edge of the
associated clock signal. All outputs from a source interface to a sink interface,
including the data, channel, and error signals, must be registered on the rising
edge of clock. Inputs to a sink interface do not have to be registered. Registering
signals at the source provides for high frequency operation while eliminating
back-to-back registers with no intervening logic.

6.2.2.2. Clock Enables
Avalon-ST components typically do not include a clock enable input, because the
Avalon-ST signaling itself is sufficient to determine the cycles that a component
should and should not be enabled. Avalon-ST compliant components may have a
clock enable input for their internal logic, but they must take care to ensure that the
timing of the interface control signals still adheres to the protocol.

6.3. Avalon-ST Interface Properties
Table 6–2 lists the properties that characterize an Avalon-ST interface.

6.4. Typical Data Transfers
This section defines the transfer of data from a source interface to a sink interface. In
all cases, the data source and the data sink must comply with the specification. It is
not the responsibility of the data sink to detect source protocol errors.

Table 6–2. Avalon-ST Interface Properties

Property Name
Default
Value Legal Values Description

dataBitsPerSymbol 8 1–512 Defines the number of bits per symbol. For example,
byte-oriented interfaces have 8-bit symbols. This value is not
restricted to be a power of 2.

readyLatency 0 0–8 Defines the relationship between assertion/deassertion of the
ready signal, and cycles which are considered to be ready
for data transfer, separately for each interface.

maxChannel 0 0–255 The maximum number of channels that a data interface can
support.

errorDescriptor 0 list of strings A list of words that describe the error associated with each bit
of the error signal. The length of the list must be the same as
the number of bits in the error signal, and the first word in the
list applies to the highest order bit. For example, “crc,
overflow" means that bit[1] of error indicates a CRC
error, and bit[0] indicates an overflow error.
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 6: Avalon Streaming Interfaces 6–5
Typical Data Transfers
6.4.1. Signal Details
This section describes the basic Avalon-ST protocol that all data transfers must follow.
It also highlights the flexibility you have in choosing Avalon-ST signals to meet the
needs of a particular component and makes recommendations about the signals that
should be used.

Figure 6–1 shows the signals that are typically included in an Avalon-ST interface. As
this figure indicates, a typical Avalon-ST source interface drives the valid, data,
error, and channel signals to the sink. The sink can apply backpressure using the
ready signal.

The following paragraphs provide more details about these signals.

■ ready—On interfaces supporting backpressure, the sink asserts ready to mark
ready cycles, cycles where transfers may take place. Data interfaces that support
backpressure must define the readyLatency parameter so that if ready is
asserted on cycle <n>, cycle <N + readyLatency> is considered a ready cycle.

■ valid—The valid signal qualifies valid data on any cycle where data is being
transferred from the source to the sink. The valid signal is required by all
interfaces. On each active cycle the data signal and other source to sink signals are
sampled by the sink.

■ data—The data signal typically carries the bulk of the information being
transferred from the source to the sink, and consists of one or more symbols being
transferred on every clock cycle. The dataBitsPerSymbol parameter defines
how the data signal is divided into symbols.

■ error—Errors are signaled with the error signal, where each bit in error
corresponds to a possible error condition. A value of 0 on any cycle indicates the
data on that cycle is error-free. The action that a component takes when an error is
detected is not defined by this specification.

Figure 6–2. Typical Avalon-ST Interface Signals

channel
<max_channel>

valid

data

error

ready

Data SinkData Source
© April 2009 Altera Corporation Avalon Interface Specifications

6–6 Chapter 6: Avalon Streaming Interfaces
Data Transfer without Backpressure
■ channel—The optional channel signal is driven by the source to indicate the
channel to which the data belongs. The meaning of channel for a given interface
depends on the application: some applications use channel as a port number
indication, while other applications use channel as a page number or timeslot
indication. When the channel signal is used, all of the data transferred in each
active cycle belongs to the same channel. The source may change to a different
channel on successive active cycles.

An interface that uses the channel signal must define the maxChannel
parameter to indicate the maximum channel number. If the number of channels
that the interface supports varies while the component is operating, maxChannel
is the maximum channel number that the interface can support.

6.4.2. Data Layout
Symbol ordering is big endian, such that the high-order symbol is composed of the
most significant bits. Figure 6–3 shows a 64–bit data signal with symbolsPerBeat=4
and dataBitsPerSymbol=16.

The timing diagram in Figure 6–4, provides a 32–bit example where
dataBitsPerSymbol=8 symbolsPerBeat=4. In this figure, D0 is the most
significant symbol and data[31] is the most significant bit of the most significant
symbol.

6.5. Data Transfer without Backpressure
The data transfer without backpressure is the most basic of Avalon-ST data transfers.
On any given clock cycle, the source interface drives the data and the optional
channel and error signals, and asserts valid. The sink interface samples these
signals on the rising edge of the reference clock if valid is asserted. Figure 6–5 shows
an example of data transfer without backpressure.

Figure 6–3. Data Symbols

 symbol 0 symbol 3symbol 2symbol 1

63 48 47 32 31 16 15 0

Figure 6–4. Big Endian Layout of Data

clk

ready

valid

channel

error

data[31:24]

data[23:16]

data[15:8]

data[7:0]

S0 S4 S8

S1

S2

S3

S5

S6

S7

S9

SA

SD

SC

SE

SF

S11

S12

SB

S10

S13
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 6: Avalon Streaming Interfaces 6–7
Data Transfer with Backpressure
6.6. Data Transfer with Backpressure
The sink indicates to the source that it is ready for an active cycle by asserting ready
for a single clock cycle. Cycles during which the sink is ready for data are called ready
cycles. During a ready cycle, the source may assert valid and provide data to the
sink. If it has no data to send, it deasserts valid and can drive data to any value.

Each interface that supports backpressure defines the readyLatency parameter to
indicate the number of cycles from the time that ready is asserted until valid data can
be driven. Cycles during which the sink is ready for data are called ready cycles. If an
interface defines readyLatency to be 0, then the cycle during which ready is
asserted is the ready cycle. If readyLatency has a nonzero value, the interface
considers cycle <N + readyLatency> to be a ready cycle if ready is asserted on
cycle <n>. Any interface that includes the ready signal and defines the
readyLatency parameter supports backpressure.

When readyLatency = 0, data is transferred only when ready and valid are
asserted on the same cycle. In this mode of operation, the source does not receive the
sink’s ready signal before it begins sending valid data. The source provides the data
and asserts valid whenever it can and waits for the sink to capture the data and
assert ready. The source can change the data it is providing at any time. The sink only
captures input data from the source when ready and valid are both asserted.

When readyLatency >= 1, the sink asserts ready before the ready cycle itself.
The source can respond during the appropriate cycle by asserting valid. It may not
assert valid during a cycle that is not a ready cycle. Figure 6–6 illustrates an
Avalon-ST interface where readyLatency = 4.

Figure 6–5. Data Transfer without Backpressure

clk

valid

channel

error

data D1 D2 D3D0
© April 2009 Altera Corporation Avalon Interface Specifications

6–8 Chapter 6: Avalon Streaming Interfaces
Data Transfer with Backpressure
Figure 6–7 illustrates a transfer with backpressure and readyLatency=0. The source
provides data and asserts valid on cycle 1, even though the sink is not ready. The
source waits until cycle two, when the sink does assert ready, before moving onto the
next data cycle. In cycle 3, the source drives data on the same cycle and the sink is
ready to receive it; the transfer happens immediately. In cycle 4, the sink asserts
ready, but the source does not drive valid data.

Figure 6–8 and Figure 6–9 show data transfers with readyLatency=1 and
readyLatency=2, respectively. In both these cases, ready is asserted before the
ready cycle, and the source responds 1 or 2 cycles later by providing data and
asserting valid. When readyLatency is not 0, the source must deassert valid on
non-ready cycles. The sink captures data on any cycle where valid is asserted,
regardless of the value of ready on that cycle.

Figure 6–6. Avalon-ST Interface with readyLatency = 4

clock

ready

valid

data[31:0]

readyLatency = 4 readyLatency = 4

1 2 3 4

source may not assert valid

source may assert valid

Figure 6–7. Transfer with Backpressure, readyLatency=0

clk

ready

valid

channel

error

data

0 1 2 3 5 6 7 84

D0 D1 D2 D3
Avalon Interface Specifications © April 2009 Altera Corporation

Chapter 6: Avalon Streaming Interfaces 6–9
Packet Data Transfers
6.7. Packet Data Transfers
The packet transfer property adds support for transferring packets from a source
interface to a sink interface. Three additional signals are defined to implement the
packet transfer. Both the source and sink interfaces must include these additional
signals to support packets. No automatic adaptation to create connections between
source and sink interfaces with and without packet support.

6.7.1. Signal Details
The following paragraphs provide more details about these three signals.

■ startofpacket—The startofpacket signal is required by all interfaces
supporting packet transfers and marks the active cycle containing the start of the
packet. This signal is only interpreted when valid is asserted.

Figure 6–8. Transfer with Backpressure, readyLatency=1

Figure 6–9. Transfer with Backpressure, readyLatency=2

clk

ready

valid

channel

error

data D0 D1 D2 D3 D4 D5

clk

ready

valid

channel

error

data D0 D1 D2 D3

Figure 6–10. Avalon-ST Packet Interface Signals

channel
<max_channel>

valid

data

error

ready

Data Source Data Sink

empty

startofpacket

endofpacket
© April 2009 Altera Corporation Avalon Interface Specifications

6–10 Chapter 6: Avalon Streaming Interfaces
Packet Data Transfers
■ endofpacket—The endofpacket signal is required by all interfaces supporting
packet transfer and marks the active cycle containing the end of the packet. This
signal is only interpreted when valid is asserted. startofpacket and
endofpacket can be asserted in the same cycle. No idle cycles are required
between packets, so that the startofpacket signal can follow immediately after
the previous endofpacket signal.

■ empty—The optional empty signal indicates the number of symbols that are
empty during the cycles that mark the end of a packet. The sink only checks the
value of the empty during active cycles that have endofpacket asserted. The
empty symbols are always the last symbols in data, those carried by the
low-order bits. The empty signal is required on all packet interfaces whose data
signal carries more than one symbol of data and have a variable length packet
format. The size of the empty signal in bits is log2(<symbols per cycle>).

6.7.2. Protocol Details
Packet data transfer follows the same protocol as the typical data transfer described in
“Typical Data Transfers” on page 6–4, with the addition of the startofpacket,
endofpacket, and empty.

Figure 6–11 illustrates the transfer of a 17-byte packet from a source interface to a sink
interface, where readyLatency=0. Data transfer occurs on cycles 1, 2, 4, 5, and 6,
when both ready and valid are asserted. During cycle 1, startofpacket is
asserted, and the first 4 bytes of packet are transferred. During cycle 6, endofpacket
is asserted, and empty has a value of 3, indicating that this is the end of the packet
and that 3 of the 4 symbols are empty. In cycle 6, the high-order byte, data[31:24]
drives valid data because Avalon-ST is big-endian.

Figure 6–11. Packet Transfer

clk

ready

valid

startofpacket

endofpacket

empty

channel

error

data[31:24]

data[23:16]

data[15:8]

data[7:0]

0 0 0 0 0

0 0 0 0 0

D0 D4 D8 D12 D16

D1 D5 D9 D13

D2 D6 D10 D14

D3 D7 D11 D15

3

1 2 3 4 5 6 7
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
7. Conduit Interfaces
Conduit interfaces are used to group together an arbitrary collection of signals to be
exported to the outside of an SOPC Builder system. A conduit interface can consist of
both input and output signals. Directions, such as source and sink for Avalon-ST
interfaces or in and out for Avalon-MM masters and slaves, do not apply to conduit
interfaces. A module can have multiple conduit interfaces to provide a logical
grouping of the signals being exported. Table 7–1 illustrates this interface.

In this figure, signals that interface to the SDRAM, such as address, data and control
signals, form a conduit interface and would have the signal type export.

7.1. Properties
There are no properties for conduit interfaces.

Figure 7–1. Focus on the Conduit Interface

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

Avalon
Slave

Avalon-MM
Slave

SDRAM
Memory

Chip

Avalon-MM
Master

Processor

Avalon-MM
Master

Avalon-MM
Master

Ethernet MAC Custom Logic

SDRAM
Controller

Custom
Logic

Conduit
Interface
Avalon Interface Specifications

7–2 Chapter 7: Conduit Interfaces
Signals
7.2. Signals
Table 7–1 lists the conduit signal types.

Table 7–1. Conduit Signal Types

Signal Type Width Direction Required Description

export n In, out or
bidirectional

Yes A conduit interface consists of one or more signals of arbitrary
width of direction input or output, of type export. All of these
signals are exported out the top level of the SOPC Builder system.
Avalon Interface Specifications © April 2009 Altera Corporation

© April 2009 Altera Corporation
Additional Information
Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
For the most up-to-date information about Altera® products, see the following table.

Date and Document
Version Changes Made Summary of changes

April v.1.2 ■ Expanded flow control section in Chapter 3, Avalon Memory-Mapped
Interfaces.

■ Clarified use of startofpacket and endofpacket signals.

■ Added fact that an Avalon-MM slave can only include one interrupt
sender.

■ Removed flush signal which is only used by the Nios II processor.

■ Clarified operation of readyLatency and valid signals. Added
Figure 6–6 on page 6–8.

■ Changed direction of byteenable signal from out to in in Table 5–1.

■ Clarified use of burstcount signal.

Clarifications for some
Avalon-MM
descriptions.

October 2008
v. 1.1

■ Clarified burst behavior in “Burst Transfers” on page 3–23. A master
can issue a new read burst before the data for the previous burst has
been returned.

■ Added section discussing native addressing and the fact that it is
deprecated.

■ Improved description of big-endian data layout.

■ Clarified behavior of waitrequest signal for Avalon-MM slaves.
Avalon-MM masters may initiate transactions when waitrequest is
asserted.

Clarification for some
Avalon-MM
descriptions.

March 2008
v.1.0

Combined previous Avalon Memory-Mapped Interface Specification with
Avalon Streaming Interface Specification. Added separate chapters for
clocks, tri-state slaves, interrupts, and conduits.

—

Contact Contact Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com
Avalon Interface Specifications

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com

Info–2 Additional Information
Typographic Conventions
The following table shows the typographic conventions that this document uses.

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Contact Contact Method Address

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic.
Avalon Interface Specifications © April 2009 Altera Corporation

mailto:authorization@altera.com

	Contents
	1. Introduction
	1.1. Avalon Properties and Parameters
	1.2. Signal Types
	1.3. Interface Timing
	1.4. Related Documents

	2. Clock Interfaces
	2.1. Clock Input (Sink)
	2.1.1. Properties
	2.1.2. Signal Types
	2.1.3. associatedClock Interfaces

	2.2. Clock Output (Source)
	2.2.1. Properties
	2.2.2. Signal Types

	3. Avalon Memory-Mapped Interfaces
	3.1. Introduction
	3.2. Slaves
	3.3. Slave Interface Properties
	3.4. Slave Timing
	3.4.1. Synchronous Interface
	3.4.2. Performance
	3.4.3. Electrical Characteristics

	3.5. Slave Transfers
	3.5.1. Typical Slave Read and Write Transfers
	3.5.2. Slave Read and Write Transfers with Fixed Wait-States
	3.5.3. Pipelined Transfers
	3.5.4. Burst Transfer

	3.6. Address Alignment
	3.6.1. Avalon-MM Slave Addressing
	3.6.2. Avalon-MM Tri-State Slave Addressing
	3.6.3. Native Addressing

	3.7. Masters
	3.8. Master Signal Types
	3.9. Master Interface Properties
	3.10. Master Transfers
	3.10.1. Master Pipelined Read Transfer
	3.10.2. Burst Transfers

	4. Interrupt Interfaces
	4.1. Interrupt Sender
	4.1.1. Signal Types
	4.1.2. Interrupt Sender Properties

	4.2. Interrupt Receiver
	4.2.1. Interrupt Receiver Properties
	4.2.2. Signal Types
	4.2.3. Interrupt Timing

	5. Avalon Memory-Mapped Tri-state Interfaces
	5.1. Tri-state Slave Signal Types
	5.1.1. address Behavior
	5.1.2. outputenable and read Behavior
	5.1.3. write_n and writebyteenable Behavior
	5.1.4. Interfacing to Synchronous Off-Chip Memory

	5.2. tri-state Slave Properties
	5.3. Slave Transfers
	5.3.1. Asynchronous Transfers
	5.3.2. Synchronous Transfers
	5.3.3. Pipelined Slave Read Transfers

	5.4. Master Transfers

	6. Avalon Streaming Interfaces
	6.1. Introduction
	6.1.1. Features
	6.1.2. Terms and Concepts

	6.2. Avalon-ST Interface Signals
	6.2.1. Signal Polarity
	6.2.2. Signal Sequencing and Timing

	6.3. Avalon-ST Interface Properties
	6.4. Typical Data Transfers
	6.4.1. Signal Details
	6.4.2. Data Layout

	6.5. Data Transfer without Backpressure
	6.6. Data Transfer with Backpressure
	6.7. Packet Data Transfers
	6.7.1. Signal Details
	6.7.2. Protocol Details

	7. Conduit Interfaces
	7.1. Properties
	7.2. Signals

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

