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1. Introduction
Avalon® interfaces simplify system design by allowing you to easily connect 
components in an FPGA. The Avalon interface family defines interfaces for use in 
both high-speed streaming and memory-mapped applications. These standard 
interfaces are designed into the components available in the SOPC Builder and the 
MegaWizard® Plug-In Manager. You can also use these standardized interfaces in 
your custom components.

This specification defines all of the Avalon interfaces. After reading it, you should 
understand which interfaces are appropriate for your components and which signal 
types are used for which desired behaviors. There are six different interface types: 

■ Avalon Memory Mapped Interface (Avalon-MM)—an address-based read/write 
interface typical of master–slave connections.

■ Avalon Streaming Interface (Avalon-ST)—an interface that supports the 
unidirectional flow of data, including multiplexed streams, packets, and DSP data.

■ Avalon Memory Mapped Tristate Interface—an address-based read/write 
interface to support off-chip peripherals. Multiple peripherals can share data and 
address buses to reduce the pincount of an FPGA and the number of traces on the 
PCB. 

■ Avalon Clock—an interface that drives or receives clock and reset signals to 
synchronize interfaces and provide reset connectivity.

■ Avalon Interrupt—an interface that allows components to signal events to other 
components. 

■ Avalon Conduit—an interface that allows signals to be exported out at the top 
level of an SOPC Builder system where they can be connected to other modules of 
the design or FPGA pins. 

A single component can include any number of these interfaces and can also include 
multiple instances of the same interface type. For example, in Figure 1–1, the Ethernet 
Controller includes four different interface types: Avalon-MM, Avalon-ST, clock, and 
conduit.

1 This specification supersedes the previous specifications published separately for the 
Avalon-MM interface and the Avalon-ST interfaces. 

Figure 1–1 and Figure 1–2 illustrate the use of each of the Avalon interfaces. 
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1–2 Chapter 1: Introduction
In Figure 1–1, the Nios® II processor accesses the control and status registers of 
on-chip components using an Avalon-MM interface. The scatter gather DMAs send 
and receive data using Avalon-ST interfaces. Four components include interrupt 
interfaces that are serviced by software running on the Nios II processor. A PLL 
accepts a clock via a clock sink interface and provides two clock sources. Finally, two 
components include conduit interfaces to access off-chip resources.

Figure 1–1. Avalon Interfaces in a System Design with Scatter Gather DMA Controller and Nios II Processor
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Chapter 1: Introduction 1–3
In Figure 1–2, an external processor accesses the control and status registers of on-chip 
components via an external bus bridge with an Avalon-MM interface. The PCI 
Express root port controls the printed circuit board and the other components of the 
FPGA by driving an on-chip PCI Express endpoint with an Avalon-MM master 
interface. Five components include interrupts that are handled by the external 
processor. As in Figure 1–1, a PLL accepts a reference clock via a clock sink interface 
and provides two clock sources. Finally, the flash and SRAM memories use an 
Avalon-MM tristate interface to share FPGA pins.

Figure 1–2. Avalon Interfaces in a System Design with PCI Express Endpoint and External Processor
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1–4 Chapter 1: Introduction
Avalon Properties and Parameters
1.1. Avalon Properties and Parameters
Avalon interfaces use properties to describe their behavior. For example, the 
setupTime and holdTime properties of an Avalon-MM tristate interface specify the 
timing of external memory devices. The maxChannel property of Avalon-ST 
interfaces allows you to state the number of channels supported by the interface. The 
specification for each interface type defines all of its properties and specifies the 
default values. For a complete list of properties for each interface type, refer to the 
following sections: 

■ For Avalon-MM properties, refer to: “Slave Interface Properties” on page 3–5 and 
“Master Interface Properties” on page 3–21

■ For Avalon-MM tristate properties, refer to: “tri-state Slave Properties” on 
page 5–4 

■ For Avalon-ST properties, refer to: “Avalon-ST Interface Properties” on page 6–4

■ For the properties of interrupts, refer to: “Interrupt Sender Properties” on page 4–1 
and “Interrupt Receiver Properties” on page 4–2

1.2. Signal Types
Each of the Avalon interfaces defines a number of signal types and their behavior. 
Many signal types are optional, allowing component designers the flexibility to select 
only the signal types necessary. For example, the Avalon-MM interface includes 
optional beginbursttransfer and burstcount signal types used only for 
components that support bursting. The Avalon-ST interface includes the optional 
startofpacket and endofpacket signal types for interfaces that support packets. 

With the exception of conduit interfaces, each interface may only include one signal of 
each signal type. Active-low signals are permitted for many signal types. Active-high 
signals are generally used in this document.

1.3. Interface Timing
Subsequent chapters of this document include timing information that describes 
transfers for individual interface types interfaces. There is no guaranteed performance 
for any of these interfaces; actual performance depends on many factors, including 
component design and system implementation.

Most Avalon interfaces must not be edge sensitive to signals other than the clock, 
because the signals may transition multiple times before they stabilize. The exact 
timing of signals between clock edges varies depending upon the characteristics of 
the selected Altera device. 

1.4. Related Documents
You can find additional information on related topics in the following documents:

■ Quartus II Handbook Volume 4: SOPC Builder 

This volume includes information on memory-mapped and streaming interfaces, 
Tcl scripting, designing memory sub-systems, and interconnect components.
Avalon Interface Specifications © April 2009 Altera Corporation
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Related Documents
■ Quartus II Handbook Volume 5: Embedded Peripherals

This volume includes documentation for the many embedded peripherals that are 
available in SOPC Builder. 

■ Building a Component Interface with Tcl Scripting Commands. 

This is a reference for a programmatic interface that you can use to define SOPC 
Builder components. 

You can also complete a one-hour online course, Using SOPC Builder, that is available 
on the Altera web site.
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2. Clock Interfaces
Clock interfaces are used to define the clock and resets used by a component. Typical 
components have one or more clock inputs; they rarely have clock outputs. A phase 
locked loop (PLL) is an example of a component that has both a clock input and clock 
outputs. Figure 2–1 is a simplified illustration showing the most important inputs and 
outputs of a PLL component.

2.1. Clock Input (Sink)
A clock input interface provides synchronization and reset control for a component. A 
typical component has a clock input to provide a timing reference for other interfaces 
and internal logic.

All reset inputs are connected to the logical OR of all system reset requests. Reset 
inputs are always asserted asychronously. If the clock input interface has a clock input 
and a reset input, the reset is deasserted synchronously to the clock input.

2.1.1. Properties
There are no properties for the clock sink interface.

2.1.2. Signal Types
Table 2–1 lists the clock input signals.

Figure 2–1. PLL Core Clock Outputs and Inputs
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Clock Output (Source)
2.1.3. associatedClock Interfaces 
All synchronous interfaces have an associatedClock property that specifies which 
clock input on the component is used as a synchronization reference for the interface. 
This property is illustrated in Figure 2–2.

2.2. Clock Output (Source)
A clock source interface, or clock output interface, is an interface that drives a clock 
signal out of a component. Clock output interfaces cannot have reset signals. 

2.2.1. Properties
There are no properties for clock source interfaces. 

2.2.2. Signal Types
Table 2–2 lists the clock source signals.

Table 2–1. Clock Input Signal Types

Signal Type Width Direction Required Description

clk 1 Input No A clock signal. Provides synchronization for internal logic and for 
other interfaces.

reset

reset_n

1 Input No Reset input. Resets the internal logic of an interface or component to a 
determined state. 

reset is synchronized to the clock input in the same interface. 

Figure 2–2. associatedClock Property
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Table 2–2. Clock Source Signal Types

Signal Type Width Direction Required Description

clk 1 Output Yes An output clock signal.
Avalon Interface Specifications © April 2009 Altera Corporation



© April 2009 Altera Corporation
3. Avalon Memory-Mapped Interfaces
3.1. Introduction
Avalon Memory-Mapped (Avalon-MM) interfaces are used for read/write interfaces 
on master and slave components in a memory-mapped system. These components 
include microprocessors, memories, UARTs, and timers, and have master and slave 
interfaces connected by a system interconnect fabric. Avalon-MM interfaces can 
describe a wide variety of components, from an SRAM which supports simple, 
fixed-cycle read/write transfers to a more complex, pipelined interface capable of 
burst transfers. Figure 3–1 shows a typical system, highlighting the Avalon-MM slave 
interface connection to the system interconnect fabric. 

Features of the Avalon-MM interface include: 

■ Definition of a point-to-point connection between a component and an 
interconnect fabric

■ Freedom to implement only the required subset of signals 

■ Variable data widths: 8, 16, 32, 64, . . . 1024

■ Automatic interconnect generation

Figure 3–1. Focus on Avalon-MM Slave Transfers
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Slaves
Avalon-MM components typically include only the signals required for the 
component logic. The 16-bit general-purpose I/O peripheral shown in Figure 3–2 
only responds to write requests, therefore it only includes the slave signals required 
for write transfers. 

Each signal in an Avalon-MM slave corresponds to exactly one Avalon-MM signal 
type. An Avalon-MM port can use only one instance of each signal type. 

3.2. Slaves 
Table 3–1 lists the signal types that constitute the Avalon-MM slave. This specification 
does not require all signals to exist in an Avalon-MM slave. The minimum 
requirements are readdata for a read-only interface or writedata and write for a 
write-only interface. 

Figure 3–2. Example Slave Component
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Table 3–1.  Avalon-MM Slave Port Signals (1) (Part 1 of 4)

Signal Type Width Dir Req’d Description

Fundamental Signals

read

read_n

1 In No Asserted to indicate a read transfer. If present, readdata is 
required. 

write

write_n

1 In No Asserted to indicate a write transfer. If present, writedata 
is required.

address 1-32 In No Specifies an offset into the slave address space. Each slave 
address value selects a word of slave data. For example, 
address= 0 selects the first <slave data width> bits of slave 
data; address=1 selects the second <slave data width> bits of 
slave data.

readdata 8,16,32,
64,128,
256,512,
1024

Out No The readdata provided by the slave in response to a read 
transfer. 
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Slaves
writedata 8,16,32,|
64,128,|
256,512,
1024

In No Data from the system interconnect fabric for write transfers. 

The width must be the same as the width of readdata if both 
are present. 

byteenable

byteenable_n

1,2,4,8, 
16, 32, 64, 
128

In No Enables specific byte lane(s) during transfers.

Each bit in byteenable corresponds to a byte in 
writedata and readdata. During writes, byteenables 
specify which bytes are being written to; other bytes should be 
ignored by the slave. During reads, byteenables indicates which 
bytes the master is reading. Slaves that simply return 
readdata with no side effects are free to ignore byteenables 
during reads.

When more than one bit is asserted, all asserted lanes are 
adjacent. The number of adjacent lines must be a power of two, 
and the specified bytes must be aligned on an address boundary 
for the size of the data. The following values are legal for a 32-bit 
slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

begintransfer 1 In No Asserted by the system interconnect fabric for the first cycle of 
each transfer regardless of waitrequest and other signals.

Wait-State Signals

waitrequest

waitrequest_n

1 Out No Asserted by the slave when it is unable to respond to a read or 
write request. When asserted, the control signals to the slave, 
with the exception of begintransfer and 
beginbursttransfer, remain constant, as is illustrated by 
Figure 3–7 on page 3–13. An Avalon-MM slave may assert 
waitrequest during idle cycles. An Avalon-MM master may 
initiate a transaction when waitrequest is asserted. The 
design of Avalon-MM slaves must take these possibilities into 
account.

Table 3–1.  Avalon-MM Slave Port Signals (1) (Part 2 of 4)

Signal Type Width Dir Req’d Description
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arbiterlock

arbiterlock_n

1 In No arbiterlock ensures that once a master wins arbitration, it 
maintains access to the slave for multiple transactions. It is 
de-asserted coincident with read or write and with the 
deassertion of the last locked transaction read or write 
signal. Arbiterlock assertion does not guarantee that 
arbitration will be won, but after the arbiterlock-asserting master 
has been granted, it retains grant until it deasserts 
arbiterlock, whether or not it is making an access.

A master equipped with arbiterlock cannot be a burst 
master. Arbitration priority values for arbiterlock-equipped 
masters are ignored.

arbiterlock is particularly useful for read-modify-write 
operations, where master A reads 32-bit data that has multiple 
bitfields, changes one field, and writes the 32-bit data back. If 
master B were to able to write between Master A’s read and the 
write, master A’s write would undo what master B had done.

arbiterlock is also for tristate-pin sharing: an SDRAM 
controller can use it to lock arbitration to execute an unbroken 
sequence of commands to an SDRAM device.

Pipeline Signals

readdatavalid

readdatavalid_n

1 Out No Used for variable-latency, pipelined read transfers. Asserted by 
the slave to indicate that the readdata signal contains valid 
data in response to a previous read request. A slave with 
readdatavalid must assert this signal for one cycle for 
each read access it has received. There must be at least one 
cycle of latency between acceptance of the read and assertion 
of readdatavalid. Figure 3–5 on page 3–10 illustrates the 
readdatavalid signal.

Burst Signals

burstcount 1-11 In No During the first cycle of a burst, burstcount indicates the 
number of transfers the burst contains. A burstcount port of 
width <n> can encode a max burst of size 2(<N> -1). The minimum 
burstcount is 1.

beginbursttransfer 1 In No Asserted for the first cycle of a burst to indicate when a burst 
transfer is starting. This signal is deasserted after one cycle 
regardless of the value of waitrequest. Refer to Figure 3–3 
for an example of its use. 

Flow Control Signals

readyfordata 1 Out No Used for transfers with flow control. Indicates that the 
component is ready for a write transfer.

dataavailable 1 Out No Used for transfers with flow control. Indicates that the 
component is ready for a read transfer.

Table 3–1.  Avalon-MM Slave Port Signals (1) (Part 3 of 4)

Signal Type Width Dir Req’d Description
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Slave Interface Properties
3.3. Slave Interface Properties
Table 3–2 describes the interface properties for an Avalon-MM slave interface. 

Reset Signals

resetrequest

resetrequest_n

1 Out No Allows the component to reset the entire Avalon-MM system. 
The system reset signal is the logical OR of all reset signals. 

Notes to Table 3–1:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list a _n versions of the signal in the Signal Type column. 

Table 3–1.  Avalon-MM Slave Port Signals (1) (Part 4 of 4)

Signal Type Width Dir Req’d Description

Table 3–2. Avalon-MM Slave Interface Properties (Part 1 of 2)

Name
Default 
Value Legal Values Description

readLatency 0 0–63 Read latency for fixed-latency slaves. Not used on 
interfaces that include the readdatavalid 
signal. Refer to Figure 5–5 on page 5–9 for an 
timing diagram that uses this property.

timingUnits cycles cycles, 
nanoseconds

Specifies the units for setupTime, holdTime, 
writeWaitTime and readWaitTime. Use 
cycles for synchronous devices and nanoseconds 
for asynchronous devices. Almost all Avalon-MM 
slave devices are synchronous. One example of a 
device that requires asynchronous timing is an 
Avalon-MM slave that reads and writes an off-chip 
bidirectional port. That off-chip device might have 
a fixed settling time for bus turnaround.

writeWaitTime 0 0–1000 
cycles

For slave interfaces that don’t use the 
waitrequest signal, writeWaitTime 
indicates the number of cycles or nanoseconds 
before the slave accepts a write. The timing is as if 
the slave asserted waitrequest for 
writeWaitTime cycles or nanoseconds. Refer 
to Figure 5–4 on page 5–8 for a timing diagram 
that uses this property.

readWaitTime 1 0–1000 
cycles

For slave interfaces that don’t use the 
waitrequest signal, readWaitTime 
indicates the number of cycles or nanoseconds 
before the slave responds to a read. The timing is 
as if the slave asserted waitrequest for 
readWaitTime cycles.

holdTime 0 0–1000 
cycles 

Specifies time in timingUnits between the 
deassertion of write and the deassertion of 
chipselect, address, and data. (Only 
applies to write transactions.)

setupTime 0 0–1000 
cycles 

Specifies time in timingUnits between the 
assertion of chipselect, address, and 
data and assertion of read or write.
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3.4. Slave Timing
This section describes issues related to timing and sequencing of Avalon-MM slave 
signals.

3.4.1. Synchronous Interface
The Avalon-MM interface is a synchronous protocol. Each Avalon-MM port is 
synchronized to an associated clock interface. Signals may be combinational if they 
are driven from the outputs of registers that are synchronous to the clock signal. An 
Avalon-MM component must not be sensitive to any signal besides the reference 
clock. This document does not dictate how or when signals transition between clock 
edges and timing diagrams are devoid of fine-grained timing information. 

3.4.2. Performance
There is no guaranteed performance of the Avalon-MM interface. The maximum 
performance is dependent on component design and system implementation. 

maximumPendingRead
Transactions

1 (1) 1–64 The maximum number of pending reads which 
can be queued up by the slave. Refer to Figure 3–5 
on page 3–10 for a timing diagram that uses this 
property.

burstOnBurstBoundariesOnly false true,false If true, burst transfers presented to this interface 
are guaranteed to begin at addresses which are 
multiples of the burst size. 

linewrapBursts false true,false If true, indicates that the slave implements a line 
wrapping burst instead of an incrementing burst. 
With a wrapping burst, when the address reaches 
a burst boundary, it wraps back to the previous 
burst boundary such that only the low order bits 
need to be used for addressing. To address 0xC, a 
wrapping burst with burst boundaries every 32 
bytes across a 32-bit interface would write to 
addresses 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 0x4, 
and 0x8.

maxBurstSize 1 64 The maximum burst size that a slave can accept.

bridgesToMaster null  Avalon-MM 
master on the 
same 
component

An Avalon-MM bridge consists of a slave and a 
master, and has the property that an access to the 
slave requesting a particular byte or bytes will 
cause the same byte or bytes to be requested by 
the master. 

associatedClock — — Name of the clock interface that this Avalon-MM 
slave interface is synchronous to.

Note to Table 3–2:

(1) If a component accepts more read transfers than the value indicated here, the internal pending read FIFO may overflow, causing the system to 
lockup.

Table 3–2. Avalon-MM Slave Interface Properties (Part 2 of 2)

Name
Default 
Value Legal Values Description
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3.4.3. Electrical Characteristics
The Avalon-MM interface specification does not specify any electrical characteristics. 

3.5. Slave Transfers
This section defines two basic concepts before introducing the slave transfer types.

■ Transfer—A transfer is a read or write operation of a word of data, between an 
Avalon-MM slave and the system interconnect fabric. Avalon-MM transfers words 
ranging in size from 8–1024 bits. Transfers take one or more clock cycles to 
complete. 

Both masters and slaves are part of a transfer; the Avalon-MM master initiates the 
transfer and the Avalon-MM slave responds to it.

■ Master-slave pair —This term refers to the master port and slave port involved in a 
transfer. During a transfer, the master port's control and data signals pass through 
the system interconnect fabric and interact with the slave port. 

3.5.1. Typical Slave Read and Write Transfers 
This section describes a typical Avalon-MM slave that supports read and write 
transfers with slave-controlled waitrequest. The slave can stall the system 
interconnect fabric for as many cycles as required by asserting the waitrequest 
signal. If a slave uses waitrequest for either read or write transfers, it must use 
waitrequest for both. 

The slave receives address, byteenable, read or write, and writedata after the 
rising edge of the clock. The slave port must assert waitrequest before the next 
rising clock edge to hold off the transfers. When the slave asserts waitrequest, the 
transfer is delayed and the address and control signals are held constant. Transfers 
complete on the rising edge of the first clk after the slave port deasserts 
waitrequest. 

There is no limit on how long a slave port can stall. Therefore, you must ensure that a 
slave port does not assert waitrequest indefinitely. Figure 3–3 shows read and 
write transfers using waitrequest. 
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3.5.2. Slave Read and Write Transfers with Fixed Wait-States
Instead of using waitrequest to hold off a transfer, a slave can specify fixed 
wait-states using the readWaitTime and writeWaitTime properties. The address 
and control signals (byteenable, read, and write) are held constant for the 
duration of the transfer. The read/write timing with 
readWaitTime/writeWaitTime set to <n> is exactly the same as asserting 
waitrequest for <n> cycles per transfer.

Figure 3–4 shows an example slave read and write transfers with writeWaitTime = 
2 and readWaitTime = 1. 

Figure 3–3. Slave Read and Write Transfers with Waitrequest 

Notes to Figure 3–3: 

(1) address, read, and begintransfer are asserted after the rising edge of clk. waitrequest is asserted stalling the transfer. 
(2) waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a wait-state, and address, read, write, and 

byteenable remain constant. Begintransfer is not held constant.
(3) The slave presents valid readdata and deasserts waitrequest.
(4) readdata and deasserted waitrequest are sampled, completing the transfer.
(5) address, writedata, byteenable, begintransfer, and write signals are asserted. The slave responds by asserting 

waitrequest, stalling the transfer.
(6) The slave captures writedata and deasserts waitrequest, ending the transfer.
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Transfers with a single wait-state are commonly used for synchronous, on-chip 
peripherals. The peripheral can capture address and control signals on the rising edge 
of clk, and has one full cycle to return data. Components with zero wait-states are 
allowed, but may decrease achievable frequency because they generate the response 
in the same cycle as the request.

3.5.3. Pipelined Transfers
Avalon-MM pipelined read transfers increase the throughput for synchronous slave 
devices that require several cycles to return data for the first access, but can return one 
data value per cycle for some time thereafter. New pipelined read transfers can be 
started before readdata for the previous transfers is returned. Write transfers cannot 
be pipelined.

A pipelined read transfer is divided into two phases: an address phase and a data 
phase. A master initiates a transfer by presenting the address during the address 
phase; a slave port fulfills the transfer by delivering the data during the data phase. 
The address phase for a new transfer (or multiple transfers) can begin before the data 
phase of a previous transfer completes. This delay is called pipeline latency, which is 
the duration from the end of the address phase to the beginning of the data phase. 

The key differences between how wait-states and pipeline latency affect transfer 
timing is as follows: 

■ Wait-states—Wait-states determine the length of the address phase, and limit the 
maximum throughput of a port. If a slave requires one wait-state to respond to a 
transfer request, then the port requires at least two clock cycles per transfer. 

■ Pipeline Latency—Pipeline latency determines the time until data is returned 
independently of the address phase. A pipelined slave port with no wait-states can 
sustain one transfer per cycle, even though it may require several cycles of latency 
to return the first unit of data. 

Wait-states and pipelined reads can be supported concurrently, and pipeline latency 
can be either fixed or variable, as discussed in the following sections.

Figure 3–4. Slave Read and Write Transfer with Fixed Wait-States

Notes to Figure 3–4:

(1) The master asserts address and read on the rising edge of clk.
(2) The next rising edge of clk marks the end of the first and only wait-state cycle because the readWaitTime is 1. 
(3) The slave captures readdata on the rising edge of clk, and the read transfer ends.
(4) writedata, address, byteenable, and write signals are available to the slave. 
(5) Because writeWaitTime is 2, the transfer terminates after completing. The data and control signals are held constant until this 

time. 
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3.5.3.1. Slave Pipelined Read Transfer with Variable Latency
An Avalon-MM pipelined slave takes one or more cycles to produce data after 
address and control signals have been captured. A pipelined slave port may have 
multiple pending read transfers at any given time. Variable-latency pipelined read 
transfers use the same set of signals as non-pipelined read transfers, with one 
additional signal, readdatavalid. Slave peripherals that use readdatavalid are 
considered pipelined with variable latency; the readdata and readdatavalid 
signals can be asserted the cycle after the read cycle is asserted, at the earliest.

The slave port must return readdata in the same order that it accepted the 
addresses. Pipelined slave ports with variable latency must use waitrequest. The 
slave can assert waitrequest to stall transfers to maintain the number of pending 
transfers at an acceptable level. 

1 The maximum number of pending transfers is a property of the slave interface. The 
system interconnect fabric builds logic which routes readdata to the requesting 
masters, parameterized by this maximum number. It is the responsibility of the slave 
interface, not the system interconnect fabric, to keep the number of pending reads 
from exceeding the stated maximum. Typically, the slave interface restricts the 
number of pending reads by asserting waitrequest when that number has reached 
the maximum value

Figure 3–5 shows several slave read transfers between the system interconnect fabric 
and a pipelined slave with variable latency. In this example, the slave can accept a 
maximum of two pending transfers and uses waitrequest to prevent overrunning 
this maximum.

Figure 3–5. Slave Pipelined Read Transfers with Variable Latency 

Notes to Figure 3–5: 

(1) The master asserts address and read, initiating a read transfer. 
(2) The slave captures addr1, and immediately provides the response data1 and asserts readdatavalid. 
(3) The slave captures addr2 and immediately provides the response data2 and asserts readdatavalid.
(4) The slave asserts waitrequest causing the third transfer to be stalled for 2 cycles. 
(5) The slave drives readdatavalid and valid readdata in response to the third read transfer.
(6) The data from transfer 3 is captured by the interconnect as addr4 is captured by the slave. 
(7) data5 is presented with readdatavalid completing the data phase for the final pending read transfer.
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If the slave cannot handle a write transfer while it is processing pending read 
transfers, the slave must assert its waitrequest and stall the write operation until 
the pending read transfers have completed. The Avalon-MM specification does not 
define the value of readdata in the event that a slave accepts a write transfer to the 
same address as a currently pending read transfer. Pipelined slaves with variable 
latency must support waitrequest.

3.5.3.2. Slave Pipelined Read Transfer with Fixed Latency 
The address phase for fixed latency slave read transfers is identical to the variable 
latency case. After the address phase, a pipelined slave port with fixed read latency 
takes a fixed number of clock cycles to return valid readdata, as indicated by the 
readWaitTime property. The system interconnect fabric captures readdata on the 
appropriate rising clock edge, and the data phase ends. 

During the address phase, the slave port can assert waitrequest to hold off the 
transfer or can specify readWaitTime for a fixed number of wait states. The address 
phase ends on the next rising edge of clk after wait-states, if any. 

During the data phase, the slave drives readdata after a fixed latency. If the slave 
has a read latency of <n>, the slave port must present valid readdata on the <nth> 
rising edge of clk after the end of the address phase. 

Figure 3–6 shows multiple data transfers to a slave pipelined port that uses 
waitrequest and has a fixed read latency of 2 cycles. 

3.5.4. Burst Transfer
A burst executes multiple transfers as a unit, rather than treating every word 
independently. Bursts may increase throughput for slave ports that achieve greater 
efficiency when handling multiple word at a time, such as DDR. The net effect of 
bursting is to lock the arbitration for the duration of the burst. If a slave provides both 
read and write functionality and supports bursting, it must support both burst reads 
and burst writes. 

Figure 3–6. Slave Pipelined Read Transfer with Fixed Latency of Two Cycles

Notes to Figure 3–6: 

(1) A master initiates a read transfer by asserting read and addr1. The slave asserts waitrequest to hold off the transfer for one 
cycle.

(2) The slave deasserts waitrequest and captures addr1 at the rising edge of clk. The address phase ends here.
(3) The slave presents valid readdata after 2 cycles, ending the transfer. 
(4) addr2 and read are asserted for a new read transfer.
(5) The master initiates a third read transfer during the next cycle, before the data from the prior transfer is returned.
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To support bursts, an Avalon-MM slave includes a burstcount input signal. If a 
slave has a burstcount input, it is considered burst capable. 

The burstcount signal behaves as follows:

■ At the start of a burst, burstcount presents the number of sequential transfers in 
the burst.

■ For width <n> of burstcount, the maximum burst length is 2<N> -1. The minimum 
legal burst length is one.

To support slave read bursts, a slave must also support:

■ wait-states with the waitrequest signal. 

■ Pipelined transfers with variable latency with the readdatavalid signal. 

At the start of a burst, the slave sees the address and a burst length value on 
burstcount. For a burst with an address of <a> and a burstcount value of <b>, 
the slave must perform <b> consecutive transfers starting at address <a>. The burst 
completes after the slave receives (write) or returns (read) the <Bth> word of data. The 
bursting slave must capture address and burstcount only once for each burst. The 
slave logic must infer the address for all but the first transfers in the burst. A slave can 
also use the input signal beginbursttransfer, which the system interconnect 
fabric asserts for the first cycle of each burst.

3.5.4.1. Slave Write Bursts
These rules apply when a slave write burst begins with burstcount greater than 
one:

■ If a burstcount of <n> is presented at the beginning of the burst, then the slave 
must accept <n> successive units of writedata to complete the burst. Arbitration 
between the master-slave pair is locked until the burst completes, guaranteeing 
that data arrives, in order, from the master port that initiated the burst.

■ The slave must only capture writedata when write is asserted. During the burst, 
write can be deasserted to indicate that it is not presenting valid writedata. 
Deasserting write does not terminate the burst; it only delays it. 

■ The slave can delay a transfer by asserting waitrequest which forces 
writedata, write, and byteenable to be held constant, as usual. 

■ The functionality of the byteenable signal is the same for bursting and 
non-bursting slaves. For a 32-bit master burst-writing to a 64-bit slave, starting at 
byte address 4, the first write transfer seen by the slave is at its address 0, with 
byteenable = 8b’11110000.

■ The byteenable signals do not all have to be asserted. A burst master writing 
unaligned data can use the byteenable signal to identify the data being written.
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Figure 3–7 demonstrates a slave write burst of length 4. In this example, the slave port 
asserts waitrequest twice delaying the burst. 

In Figure 3–7, the beginbursttransfer signal is asserted for the first clock cycle of 
a burst and is deasserted on the next clock cycle. Even if the slave asserts 
waitrequest, the beginbursttransfer signal is only asserted for the first clock 
cycle. 

3.5.4.2. Slave Read Bursts
Slave read bursts are similar to slave pipelined read transfers with variable latency. A 
read burst has distinct address and data phases, and the slave port uses the 
readdatavalid signal to indicate when it is presenting valid readdata. The 
difference is that a single read burst address results in multiple data transfers. 

These rules apply to slave read bursts:

■ When burstcount is <n>, the slave must return <n> words of readdata to 
complete the burst. 

■ The slave presents each word by providing readdata and asserting 
readdatavalid for a cycle. Deassertion of readdatavalid delays but does not 
terminate the burst data phase.

■ The byteenables presented with a read burst command apply to all cycles of the 
burst. A byteenable value of 1 means that the least significant byte is being read 
across all of the read cycles.

Figure 3–8 illustrates a system with two bursting masters accessing a slave. Note that 
Master B can drive a read request before the data has returned for Master A.

Figure 3–7. Slave Write Burst 

Notes to Figure 3–7: 

(1) The master asserts address, burstcount, write, and drives the first unit of writedata. The slave immediately asserts 
waitrequest, indicating that it is not ready to proceed with the transfer. 

(2) waitrequest is low; the slave captures addr1, burstcount, and the first unit of writedata . On subsequent cycles of the 
transfer, address and burstcount are ignored. 

(3) The slave port captures the second unit of data at the rising edge of clk.
(4) The burst is paused while write is deasserted. 
(5) The slave captures the third unit of data at the rising edge of clk.
(6) The slave asserts waitrequest. In response, all outputs are held constant through another clock cycle. 
(7) The slave captures the last unit of data on this rising edge of clk. The slave write burst ends.
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3.5.4.3. Line–Wrapped Bursts
Processors with data or instruction caches gain efficiency by using line-wrapped 
bursts. When a processor requests data, and the data is not in the cache, the cache 
controller reads enough data from the memory to fill the entire cache line. For a 
processor with a cache line size of 64 bytes, a cache miss causes 64 bytes to be read 
from memory. If the processor reads from address 0xC when the cache miss occurred, 
then an incrementing addressing burst uses read addresses 0x0, 0x4, 0x8, 0xC, 0x10, 
0x14, 0x18, and 0x1C – the data that the processor requested is not available until the 
fourth read. With wrapping bursts, the address order is 0xC, 0x10, 0x14, 0x18, 0x1C, 
0x0, 0x4, and 0x8 such that the data that the processor requested is returned first.

f For more information about burst transfers and burst adapters refer to the Avalon 
Memory-Mapped Design Optimizations chapter in the Embedded Design Handbook.

3.5.4.4. Flow Control
A slave can support the dataavailable and readyfordata signals to indicate 
when it has data available for reading or has space available to which data can be 
written. Masters that have the doStreamReads and doStreamWrites properties 
set see waitrequest asserted when they access a slave with the dataavailable 
and readyfordata signals deasserted, respectively.

For flow control to work, both interfaces in the master-slave pair must support it. If 
one or both of the ports does not use flow control, then the transfer proceeds as if 
neither port had it. Flow control signals cannot be used with Avalon-MM tristate 
ports.

Figure 3–8. Slave Read Burst

Notes to Figure 3–8:

(1) Master A asserts address (A0), burstcount, and read after the rising edge of clk. The slave asserts waitrequest, causing 
all inputs except beginbursttransfer to be held constant through another clock cycle.

(2) The slave captures A0 and burstcount at this rising edge of clk. A new transfer could start on the next cycle. 
(3) Master B drives address (A1), burstcount, and read. The slave asserts waitrequest, causing all inputs except 

beginbursttransfer to be held constant. The slave could have returned read data from the first read request at this time, at 
the earliest.

(4) The slave presents valid readdata and asserts readdatavalid, transferring the first word of data for master A.
(5) The second word for master A is transferred. The slave deasserts readdatavalid pausing the read burst. The slave port can keep 

readdatavalid deasserted for an arbitrary number of clock cycles.
(6) The first word for master B is returned.
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In a master-slave pair that uses flow control, after a master port initiates a transfer, the 
system interconnect fabric initiates a transfer with the target slave port only if the 
readyfordata or dataavailable signals indicate that the slave port it is ready for 
the transfer. While the slave port is not ready, the system interconnect fabric forces the 
master port to wait. 

A slave port can assert dataavailable at any time to indicate that it has read data 
available. While dataavailable is asserted, a new transfer from a master port with 
flow control can begin on the next rising edge of clk. A slave port can only deassert 
dataavailable at the end of a read transfer. The signal is immediately valid for 
successive transfers that might follow. 

A slave port can assert readyfordata at any time to indicate that it can accept write 
data. While readyfordata is asserted, a new transfer from a master port with flow 
control can begin on the next rising edge of clk. 

1 Flow control is a deprecated feature. Altera recommends that you use the Avalon 
Streaming (Avalon-ST) and the ready and valid signals for new designs. For more 
information about Avalon-ST interfaces refer to Chapter 6, Avalon Streaming 
Interfaces. 

3.6. Address Alignment 
For systems in which master and slave data widths differ, the system interconnect 
manages address alignment issues. The Avalon-MM interface resolves data width 
differences, so that any master port can communicate with any slave port, regardless 
of the respective data widths. 

3.6.1. Avalon-MM Slave Addressing
Dynamic bus sizing refers to a service provided by the system interconnect fabric that 
dynamically manages data during transfers between master-slave pairs of differing 
data widths, such that all slave data are aligned in contiguous bytes in the master 
address space.

If the master is wider than the slave, data bytes in the master address space map to 
multiple locations in the slave address space. For example, when a 32-bit master port 
performs a read transfer from a 16-bit slave port, the system interconnect fabric 
executes two read transfers on the slave side on consecutive addresses, and presents 
32-bits of slave data back to the master port.

If the master is narrower than the slave, then the system interconnect fabric manages 
the slave byte lanes. During master read transfers, the system interconnect fabric 
presents only the appropriate byte lanes of slave data to the narrower master. During 
master write transfers, the system interconnect fabric automatically asserts the 
byteenable signals to write data only to the specified slave byte lanes.

Slaves must have a data width of 8, 16, 32, 64, 128, 256, 512 or 1024 bits. Table 3–3 
shows how slave data of various widths is aligned within a 32-bit master. In Table 3–3, 
OFFSET[N] refers to a slave word size offset into the slave address space. 
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3.6.2. Avalon-MM Tri-State Slave Addressing
In contrast to Avalon-MM slaves which are accessed using the word size that the 
Avalon-MM slave defines, Avalon-MM tri-state slaves are accessed using byte 
addresses. Using byte addresses allows multiple slave devices with different word 
sizes to be connected to the same address pins of the FPGA. Figure 3–9 illustrates this 
point. 

Table 3–3. Dynamic Bus Sizing Master-to-Slave Address Mapping

Master Byte 
Address (1)

32-Bit Master Data

When Accessing a 16-Bit Slave Port When Accessing a 64-Bit Slave Port

0x00 OFFSET[1]15..0:OFFSET[0]15..0 (2) OFFSET[0]31..0 

0x04 OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08 OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

... ... ...

Notes to Table 3–3:

(1) Although the master is issuing byte addresses, it is accessing full 32-bit words.
(2) For all slave entries, [<n>] is the word offset and the subscript values are the bits in the word.

Figure 3–9. Connecting a Tristate Bridge to Components with Different Address Widths and Word Sizes
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It is important to understand these differences in addressing to avoid costly respins of 
PCBs.

■ Avalon-MM masters always drive word-aligned addresses that are aligned to the 
masters’ own width. A 32-bit master port drives addresses aligned on 4-byte 
boundaries, such as: 0x00, 0x04, 0x08, 0x0c. Masters use the byteenable signal to 
access individual byte lanes.

■ Avalon-MM slaves respond to word addresses as defined by the slave device. The 
word size must be a power of 2, between 23–210. The byteenable signals specify 
valid data when transfers occur between masters and slave with different word 
sizes. For example, the interface for an Avalon-MM slave device with 4, 64-bit 
locations would include 2 address bits, addr[1:0] and 8 byte enables, 
byteenable[7:0]. 

■ Avalon-MM tri-state slaves are accessed using byte addresses. If an Avalon-MM 
master is accessing a 32-bit tri-state component, you should not connect the two 
least significant bits on the PCB. The third least significant bit connects to 
address[0] of the device. 

In Figure 3–9, the Ethernet device has a 16-bit word size; however, because it is 
accessed through a tri-state bridge, the tri-state bridge issues a byte address. The 
left-shift from using address wires [10:0] to wires [11:1] occurs on the PCB.

3.6.3. Native Addressing 
In versions of the SOPC Builder software before v8.0, a slave interface could specify 
that it had native addressing. When a master port addresses a slave port with the native 
address alignment property, all slave data is aligned on native master address 
boundaries. When a master port reads from a narrower slave port, the slave data bits 
map to the lower bits of the master data, and the upper master data bits are padded 
with zero. During write transfers, the upper bits are ignored. For example, if a 16-bit 
master port reads an 8-bit slave port, the readdata signal is of the form 0x00<nn>, 
where <n> represents valid data, meaning that each word address as seen by each 
master addresses a different word on the slave. When a 32-bit master accesses a 64-bit 
slave, the upper 32 bits get coded to 0. Depending on how the slave handles the data, 
this coding could have negative side-effects.

With native addressing, the effective address map of the slave is dependent on the 
master that is accessing it, and in some cases, the address span of the slave changes as 
masters are added to the system. In many cases, extra logic is required to handle 
accesses from different masters, leading to increased logic usage and performance 
degradation. 

1 Native addressing is now deprecated, meaning that it is still supported by the system 
interconnect fabric, but is not recommended for new components.

3.7. Masters 
This section defines the behavior of Avalon-MM master transfers between a master 
and the system interconnect fabric as shown in Figure 3–10. 
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The signal types available for Avalon-MM masters allow you to create masters that 
use bursts for both reads and writes. Because the system interconnect fabric creates 
point-to-point connections between master and slave pairs, you can increase the 
throughput of your system by initiating reads with multiple pipelined slave 
peripherals. In responding to reads, when a slave peripheral has valid data it asserts 
readdatavalid and the system interconnect fabric enables the connection between 
the master and slave pair. 

The following sections provide details of the signal types available for Avalon-MM 
masters and provide timing diagrams that detail these transfers. 

3.8. Master Signal Types
Table 3–4 lists the signal types that constitute the Avalon-MM interface for master 
ports. 

Figure 3–10. Focus of Avalon-MM Master Transfers
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Table 3–4. Avalon-MM Master Signals (Part 1 of 3)

Signal Type Width Direction Req’d Description 

Fundamental Signals

address 1-32 Out Yes The address signal represents a byte address 
regardless of the data-width of the master. The value of 
the address must be aligned to the data width. To write 
to specific bytes within a data word, the master must 
use the byteenable signal.

Masters always issue byte addresses, regardless of the 
data width of the master or slave port. The system 
interconnect fabric translates this address into a word 
address in the slave’s address space so that each slave 
access is for a word of data from the perspective of the 
slave.

read

read_n

1 Out No Read request signal from the master. Not required if the 
master never performs read transfers. 

If present, readdata must also be present.

readdata 8,16,32,64, 
128, 256, 512, 
1024 

In No Data signal for read transfers. 

write

write_n

1 Out No Write request signal from the master. Not required if 
the master never performs write transfers. 

If present, writedata must also be used.

writedata 8,16,32,64, 
128, 256, 512, 
1024 

Out No Data signal from the master for write transfers. Not 
required if the master never performs write 
transfers. If readdata is also present, readdata 
and writedata must be the same width.

byteenable

byteenable_n

1, 2,4,8, 16, 
32, 64, 128

Out No Enables specific byte lanes during transfers on ports of 
width greater than 8 bits. Each bit in byteenable 
corresponds to a byte lane in writedata and 
readdata. The master bit <n> of byteenable 
indicates whether byte <n> is being written to. During 
writes, byteenables specify which bytes to write. Other 
bytes should be ignored by the slave. During reads, 
byteenables indicates which bytes the master is 
reading. 

When more than one byte lane is asserted, all asserted 
lanes must be adjacent. The number of adjacent lines 
must be a power of 2, and the specified bytes must be 
aligned on an address boundary for the size of the data. 
The are legal values for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only
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waitrequest

waitrequest_n

1 In Yes Forces the master to wait until the system interconnect 
fabric is ready to proceed with the transfer. At the start 
of all transfers, a master initiates the transfer, and waits 
until waitrequest is deasserted. Masters must 
keep its control signals the same on subsequent cycles 
if waitrequest is asserted

arbiterlock

arbiterlock_n

1 Out No arbiterlock ensures that once a master wins 
arbitration, it maintains access to the slave for multiple 
transfers. It is de-asserted coincident with read or 
write and with the deassertion of the last locked 
transfer read or write signal. Arbiterlock 
assertion does not guarantee that arbitration will be 
won, but after the arbiterlock-asserting master has 
been granted, it retains grant until it deasserts 
arbiterlock, whether or not it is making an 
access.

Burst masters cannot use the arbiterlock signal. 
Arbitration priority values for arbiterlock-equipped 
masters are ignored.

arbiterlock is particularly useful for 
read-modify-write operations, where master A reads 
32-bit data that has multiple bitfields, changes one 
field, and writes the 32-bit data back. If master B were 
to able to write between the read and the write, master 
A’s write would undo what master B had done.

A master that asserts arbiterlock indefinitely 
blocks all other masters, causing a deadlock.

Pipeline Signals 

readdatavalid

readdatavalid_n

1 In No For pipelined read transfers with latency. Indicates that 
valid data is present on the readdata lines. Required 
if the master supports pipelined reads. Bursting 
masters with read functionality must include the 
readdatavalid signal.

flush

flush_n

1 Out No Used for pipelined read transfers. The master port 
asserts flush with a new read or write command 
to indicate that read responses from all previous read 
transfers are to be dropped to clear any pending read 
transfers in the pipeline.

Burst Signals

burstcount 1-11 Out No Used by bursting masters to indicate the number of 
transfers in each burst. The minimum value for 
burstcount is 1. For a burstcount signal of 
width <n>, the maximum burst length is 2<N> -1. 
Bursting masters with read functionality must include 
the readdatavalid signal.

Table 3–4. Avalon-MM Master Signals (Part 2 of 3)

Signal Type Width Direction Req’d Description 
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3.9. Master Interface Properties
Table 3–5 describes the interface properties for an Avalon-MM master interface.

3.10.Master Transfers 
A typical transfer is initiated by the master and transfers a word of data. When 
necessary, waitrequest is asserted to stall the master until the transfer can be 
accepted. The transfer terminates when waitrequest is deasserted. 

If waitrequest is asserted for <n> cycles, then the total transfer takes <n> + 1 cycles. 
The system interconnect fabric does not provide a time out; the master must stall for 
as long as waitrequest remains asserted. 

Reset Signals

resetrequest

resetrequest_n

1 Out No Asserted by the master to request a reset the entire 
system. 

Note to Table 3–4: 

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list an _n version of the signal in the Signal Type column. 

Table 3–4. Avalon-MM Master Signals (Part 3 of 3)

Signal Type Width Direction Req’d Description 

Table 3–5. Avalon-MM Master Interface Properties

Name
Default 
Value

Legal 
Values Description

burstOnBurstBoundariesOnly false true,false If true, the master guarantees that all bursts begin 
on a multiple of the burst size. 

linewrapBursts false true,false Some memory devices implement a wrapping 
burst instead of an incrementing burst. The 
difference between the two is that with a wrapping 
burst, when the address reaches a burst boundary, 
the address wraps back to the previous burst 
boundary such that only the low order bits need to 
be used for address counting. A wrapping burst 
with burst boundaries every 32 bytes across a 
32-bit interface to address 0xC would write to 
addresses 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 0x4, 
and 0x8.

maxBurstSize 1 1–64 The maximum burst size that a master can send.

doStreamReads false true,false Indicates that the master wishes to be held off with 
the waitrequest signal whenever it reads from 
a slave that has dataavailable deasserted.

doStreamWrites false true,false Indicates that the master wishes to be held off with 
the waitrequest signal whenever it writes to a 
slave that has readyfordata deasserted.
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A master can use the byteenable signal to indicate that it only requires data for 
specific bytes of readdata or to write specific bytes of writedata. If a master port 
does not have a byteenable signal, the transfer proceeds as if all byteenable are 
asserted. 

A master transfer starts on the rising edge of clk. During the first cycle, the master 
asserts the address, byteenable, and the read or write signals. If 
waitrequest is asserted, the master must hold all outputs constant through the next 
cycle. The transfer ends on the first rising clock edge with a deasserted 
waitrequest, and the master may initiate another transfer immediately.

Figure 3–11 shows a typical master transfers. 

3.10.1.Master Pipelined Read Transfer
A master that supports pipelined reads can initiate a new read transfer before it 
receives data from a previous transfer. To support pipeline reads, a master includes 
the one-bit input signal readdatavalid. The slave asserts readdatavalid to 
indicate that readdata is valid data in response to a previous read. 

The timing and sequence of signals during the address phase is identical to that of the 
fundamental Avalon-MM master read transfer, except for the readdata signal. The 
master must present read, address, and byteenable, and must hold these signals 
constant as long as waitrequest is asserted. Once waitrequest is deasserted, the 
master can initiate another read or write transfer.

For pipelined transfers, readdata is returned some number of cycles later. 
readdata is always returned in the same order as the reads were issued by the 
master. There is no limit on the time until readdatavalid is asserted. Pipelined 
masters can have an arbitrary number of read transfers pending at any given time.

Figure 3–11. Fundamental Master Read and Write Transfers 

Notes to Figure 3–11: 

(1) The master initiates a read by asserting address, byteenable, and read. The slave returns readdata during the first cycle.
(2) The master captures readdata and deasserts read, ending the transfer. It immediately asserts address, byteenable, 

writedata, and write for the next transfer.
(3) waitrequest is not asserted at the rising edge of clk, so the write transfer completes. 
(4) The master asserts valid address, byteenable, writedata, and write beginning a second write transfer. waitrequest is 

asserted, so the master holds all outputs.
(5) waitrequest is not asserted so the write transfer completes. The master asserts address, byteenable, and read for the next 

transfer. waitrequest is asserted. The master holds all outputs.
(6) waitrequest is not asserted at the rising edge of clk, so the read transfer completes.
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Pipelined masters can optionally use the flush signal, which is provided for cases in 
which a master component determines that it does not need the data for all currently 
pending transfers. Flushing the pipeline is a common requirement for pipelined CPUs 
that prefetch instructions before knowing if the instructions are valid or not. When the 
master port asserts flush on the rising edge of clk, readdatavalid is cancelled for 
all pending reads. The master port can initiate a new read transfer during the same 
clock cycle that flush is asserted. In this case, the data corresponding to this transfer 
becomes the next valid data to be returned on readdata. 

Figure 3–12 shows several pipelined master read transfers. This example 
demonstrates that the master must respond appropriately to both waitrequest and 
readdatavalid. In this example, the second-to-last transfer is flushed using the 
flush signal. However, the unwanted data might have appeared on readdata if the 
latency for that transfer were shorter. 

3.10.2.Burst Transfers
A burst transfer guarantees that a master is granted uninterrupted access to a target 
slave for the duration of the burst. Once a burst begins no other master can access the 
slave port until the burst completes. A burst-capable master which supports read or 
write functionality must support burst reads or burst writes.

Avalon-MM bursts do not guarantee that a master or slave sustains one transfer per 
cycle during the burst, they only guarantee that arbitration between the master-slave 
pair remains locked throughout the burst. 

Figure 3–12. Master Pipelined Read Transfer

Notes to Figure 3–12:

(1) The master initiates a read transfer by presenting addr1 and asserting read. waitrequest is asserted so the master port waits 
and asserts addr1 and read for another cycle.

(2) The system interconnect fabric deasserts waitrequest accepting the read command. 
(3) The system interconnect fabric accepts a second read command. readdatavalid is asserted, so the master captures valid 

readdata (data1), in response to the first read command.
(4) The system interconnect fabric accepts a third command, making a total of two pending transfers. 
(5) readdatavalid is asserted, so master captures valid readdata (data2).
(6) readdatavalid is not asserted, so master does not capture readdata. Master asserts flush, causing pending transfer (addr3) 

to be dropped. 
(7) readdatavalid is asserted, so the master captures valid readdata (data4).
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For an Avalon-MM master, burstcount is an output signal used to indicate the 
length of the burst. At the start of each burst, a master asserts a valid address and a 
burst length value on burstcount, measured in word transfers. The master presents 
only one address for each burst; the addresses for all subsequent transfers in the burst 
are inferred by the slave. All interfaces of a burst-capable master must be burst 
capable.

When a master starts a burst with an address of <a> and a burstcount value of <b>, 
it is committing to <b> consecutive transfers starting at address <a>. The burst does 
not complete until the master transfers <b> units of data. A master cannot abort the 
burst without first exhausting remaining transfers in the current burst. The master can 
issue a new read burst before the data for the previous burst has been returned.

3.10.2.1. Master Write Bursts
To start a write burst the master port asserts address, writedata, write, 
byteenable, and burstcount. If waitrequest is deasserted, address, 
burstcount, and the first unit of writedata are captured on the rising edge of clk. 
The master must hold constant values on address and burstcount throughout the 
write burst.

The following rules apply to burst transfers:

■ The master can pause a write burst without ending it by deasserting write. 

■ When waitrequest is asserted, the master must hold byteenable, 
writedata, write, and address constant. 

Figure 3–13 demonstrates an example of a master write burst of length 4. 

Figure 3–13. Master Write Burst 

Notes to Figure 3–13:

(1) The master begins a burst of 4 transfers. waitrequest is asserted, pausing the burst and causing the master to hold all outputs 
constant.

(2) Because waitrequest is deasserted, the system interconnect fabric accepts the first write transfer.
(3) The second writedata (data2) is accepted. The master then deasserts write, pausing the burst. 
(4) The system interconnect captures writedata (data3) and then the master presents the last unit of writedata (data4) 

waitrequest pauses the burst again.
(5) waitrequest is deasserted and the last unit of writedata (data4) is captured on the next rising edge of clk ending the burst.
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3.10.2.2. Master Read Bursts
Read bursts are a form of pipelined read transfer. In contrast to non-burst pipelined 
read transfers, a single read burst transfer corresponds to multiple data transfers. To 
start a read burst, the master asserts address, read, and burstcount. When 
waitrequest is deasserted, the address phase ends.

The data phase consists of a number of words of data being provided on readdata, 
with readdatavalid asserted to mark valid cycles. The burst data phase is complete 
once the number of words transferred is equal to the value provided by burstcount. 
readdatavalid may be deasserted at any time, pausing the transfer. The master 
cannot pause the data phase. The following rules apply when a master starts a read 
burst:

■ Unless flush is asserted, if the master specifies burstcount of <n>, the master is 
guaranteed to see readdatavalid for <n> cycles to complete the burst.

■ The master must capture readdata whenever readdatavalid is asserted. Each 
value of readdata is valid for a single clock cycle. 

■ The master must hold constant all control lines throughout the burst address 
phase. (All control lines must also be held constant through the non-burst address 
phase.)

Figure 3–14 demonstrates a master read burst of length 4.

Figure 3–14. Master Read Burst

Notes to Figure 3–14:

(1) The master asserts address, burstcount, and read. In this example, burstcount is 4. waitrequest is asserted for one cycle, 
pausing the transfer. 

(2) address and burstcount are captured. The master could begin a new transfer on the following cycle. 
(3) readdata and readdatavalid are presented.
(4) Master captures the first unit of readdata (data1).
(5) Master captures the next unit of readdata (data2).
(6) readdatavalid is deasserted, pausing the burst. readdatavalid can be deasserted for an arbitrary number of clock cycles.
(7) The system interconnect fabric presents valid readdata, and asserts readdatavalid again.
(8) The master captures the next unit of readdata (data3).
(9) The master captures the last unit of readdata (data4), ending the burst.
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4. Interrupt Interfaces
Interrupt interfaces allow slave components to signal events to master components. 
For example, a DMA controller can interrupt a processor when it has completed a 
DMA transfer.

4.1. Interrupt Sender
An interrupt sender drives a single interrupt signal to an interrupt receiver. The 
timing of the irq signal must be synchronous to the rising edge of its associated 
clock, but has no relationship to any transfer on any other interface. irq must be 
asserted until the interrupt has been acknowledged on the associated Avalon-MM 
slave interface. An Avalon-MM slave can only include one interrupt sender.

The interrupt receiver typically determines how to respond to the event by reading an 
interrupt status register from an Avalon-MM slave interface. The mechanism used to 
acknowledge an interrupt is component specific.

4.1.1. Signal Types 
Table 4–1 lists the interrupt signal types.

4.1.2. Interrupt Sender Properties
Table 4–2 lists the properties associated with interrupt senders.

4.2. Interrupt Receiver
An interrupt receiver interface receives interrupts from interrupt sender interfaces. 
Components with an Avalon-MM master interface can include an interrupt receiver to 
detect interrupts asserted by slave components with interrupt sender interfaces. 
Interrupt receiver interfaces support two interrupt schemes: 

Table 4–1. Interrupt Sender Signal Types

Signal Type Width Direction Required Description

irq

irq_n

1 Output Yes Interrupt Request. A slave asserts irq when it needs to be serviced.

Table 4–2. Interrupt Sender Properties

Property Name
Default 
Value Legal Values Description

associatedClockReset — Name of clock 
Interface on this 
component.

The name of the clock interface that this 
interrupt sender is synchronous to. The sender 
and receiver may have different values for this 
property.

associatedAddressablePoint — Name of Avalon-MM 
slave on this 
component.

The name of the Avalon-MM slave that provides 
access to the registers that should be accessed 
to service the interrupt.
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■ Individual requests—the interrupt receiver expects to see each interrupt request 
from each interrupt sender as a separate bit and is responsible for determining the 
relative priority of the interrupts,

■ Priority encoded—the interrupt receiver expects to see a single-bit irq signal and a 
six-bit interrupt number signal that indicates the number of the highest priority 
interrupt currently being asserted. Interrupt zero is the highest priority. There can 
only be one interrupt sender at each priority for a total of 64 senders in a system.

4.2.1. Interrupt Receiver Properties
Table 4–3 lists the properties associated with interrupt receivers.

4.2.2. Signal Types
Table 4–4 lists the interrupt receiver signal types.

4.2.3. Interrupt Timing 
Figure 4–1 illustrates interrupt timing using both individual requests and priority 
encoding. In both cases, the Avalon-MM master services the priority 0 interrupt 
before the priority 1 interrupt.

Table 4–3. Interrupt Receiver Properties

Property Name Default Value Legal Values Description

irqScheme individualRequests individualRequests
priorityEncoded

Selects one of the two 
interrupt encoding 
schemes.

associatedAddressable
Point

— The name of Avalon-MM 
slave on this component.

The name of the 
Avalon-MM slave that 
provides access to the 
registers that should be 
cleared after the interrupt is 
serviced.

Table 4–4. Interrupt Receiver Signal Types

Signal Type Width Direction Required Description

irq 1–32 Input Yes Indicates when one or more slave ports have requested an interrupt. 

If irqScheme=individualRequests, irq is an <n>-bit 
vector, where each bit corresponds directly to one IRQ sender, with no 
inherent assumption of priority.

If irqScheme=priorityEncoded, irq is a one bit logical OR 
of all connected interrupt sender signals.

irqnumber 6 Input No Only used when irqScheme = priorityEncoded. 
irqnumber indicates the current highest priority interrupt. 
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Figure 4–1. Interrupt Timing for Individual Request and Priority Encoded Interrupts

Notes to Figure 4–1:

(1) Interrupt 0 serviced.
(2) Interrupt 1 serviced.
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5. Avalon Memory-Mapped Tri-state
Interfaces
Avalon-MM tri-state slave interfaces allow Avalon-MM masters to drive off-chip 
devices. The interface allows data and address pins to be shared across multiple 
tri-state devices. Sharing is valuable in systems that have multiple external memory 
devices and limited pins. Figure 5–1 shows a typical example where multiple flash 
memories and an SRAM device are connected to the FPGA through a tri-state bridge. 
The Avalon-MM tri-state interface is required for these external devices to share pins.

5.1. Tri-state Slave Signal Types
Tri-state slave ports use the bidirectional signal data rather than the separate, 
unidirectional signals readdata and writedata. Avalon-MM tri-state ports must 
also use the outputenable signal. Table 5–1 lists the Avalon-MM tri-state signal 
types.

Figure 5–1. Typical Use of Avalon-MM tri-state Interface
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Tri-state Slave Signal Types
Table 5–1.  Avalon-MM tri-state Slave Signals (1)

Signal Type Width Direction
Req’

d Description

address 1-32 In No Address lines to the slave port. Specifies a byte offset into the 
slave’s address space. 

read

read_n

1 In No Read-request signal. Not required if the slave port never 
outputs data. 

If present, data must also be used. 

write

write_n

1 In No Write-request signal. Not required if the slave port never 
receives data from a master. 

If present, data must also be present, and 
writebyteenable cannot be present.

chipselect

chipselect_n

1 In No When present, the slave port ignores all Avalon-MM signals 
unless chipselect is asserted. chipselect is always 
present in combination with read or write. 

outputenable

outputenable_n

1 In Yes Output-enable signal. When deasserted, a tri-state slave port 
must not drive its data lines otherwise data contention may 
occur.

data 8,16, 32, 
64, 128, 
256, 512, 
1024 

Bidir No Bidirectional data. During write transfers, the FPGA drives 
the data lines. During read transfers the slave device drives 
the data lines, and the FPGA captures the data signals and 
provides them to the master.

byteenable

byteenable_n

2, 4, 8,16, 
32, 64, 
128

In No Enables specific byte lane(s) during transfers.

Each bit in byteenable corresponds to a byte lane in data. 
During writes, byteenables specify which bytes the master is 
writing to the slave. During reads, byteenables indicates which 
bytes the master is reading. Slaves that simply return data 
with no side effects are free to ignore byteenables during 
reads.

When more than one byte lane is asserted, all asserted lanes 
are guaranteed to be adjacent. The number of adjacent lines 
must be a power of 2, and the specified bytes must be aligned 
on an address boundary for the size of the data. The are legal 
values for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

writebyteenable

writebyteenable_n

2,4,8,16, 
32, 64,128

In No Equivalent to the logical AND of the byteenable and 
write signals. When used, the write signal is not used.

begintransfer 1 In No Asserted for the first cycle of each transfer.

Note to Table 5–1:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Type column. 
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Tri-state Slave Signal Types
5.1.1. address Behavior
For Avalon-MM tri-state slaves, the address signal represents a byte address. The 
address signal can be shared among multiple off-chip devices which have differing 
data widths. If the Avalon-MM tri-state slave port data width is greater than one byte, 
it is necessary to correctly map the address signals from the system interconnect fabric 
to the address lines on the slave peripheral. 

Table 5–2 specifies which Avalon-MM address line corresponds to A0 (the 
least-significant address line) on the external device for a number of data widths.

For example, when connecting the system interconnect fabric to a 32-bit memory 
device using an Avalon-MM tri-state slave interface, the two least-significant bits of 
the Avalon-MM address signal do not connect to the address lines on the memory 
chip. Avalon-MM address[2] connects to the device's A0 pin, address[3] 
connects to the A1 pin, and so forth.

5.1.2. outputenable and read Behavior
The system interconnect fabric asserts the outputenable signal during read 
transfers only. When a port's outputenable is deasserted, the data lines may be 
active with signals for a write transfer or with signals from some other peripheral that 
shares the data signals. Therefore, it is critical for the slave peripheral to tri-state its 
data lines any time outputenable is deasserted.

5.1.3. write_n and writebyteenable Behavior
If a memory device has a combined R/Wn pin, the Avalon-MM signal write_n can be 
connected to a read/write (R/Wn) pin. write_n is only asserted during write 
transfers, and remains deasserted (i.e., in read mode) at all other times. In this case, 
the Avalon-MM outputenable_n signal connects to the output enable pin on the 
external device, and the Avalon-MM write_n signal connects to the R/Wn pin.

Some synchronous memory devices use individual write-enable signals for each byte 
lane (such as BWn1, BWn2, BWn3, and BWn4). The Avalon-MM port 
writebyteenable is the logical AND of the write and byteenable signals, and 
can be connected directly to such BWn pins. 

5.1.4. Interfacing to Synchronous Off-Chip Memory
Avalon-MM tri-state slaves can write data to off-chip synchronous memory devices, 
such as SRAM and ZBT RAM. The hold time property is used to keep data asserted 
several clock cycles after write is deasserted. 

Table 5–2. Connecting External Device AO to Avalon-MM address

Data Width of External Device External Device Address LSB Connects to 

8 address[0] of Avalon-MM address

16 address[1] of Avalon-MM address

32 address[2] of Avalon-MM address

64 address[3] of Avalon-MM address
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Pipelined read transfers are supported if the component has fixed read latency. 
Pending pipelined read transfers are completed before initiating new write transfers 
to prevent possible signal contention. As a result, Avalon-MM tri-state slaves might 
not achieve the maximum possible throughput when performing back-to-back 
read-write transfer sequences. 

Figure 5–2 shows an example of the connections between the system interconnect 
fabric and a synchronous, 32-bit memory. In this example, the Avalon-MM tri-state 
slave port is pipelined to accommodate the synchronous memory. The port uses 
separate read_n and outputenable_n signals. The chip in this example uses the 
writebyteenable signal for its four byte lanes. This chip has an 18-bit address. 
Note that the lower two bits of the 20-bit Avalon-MM address signal specify a byte 
address, and therefore do not connect to the chip's address lines. 

5.2. tri-state Slave Properties
Table 5–3 lists the properties of Avalon-MM tri-state slave interfaces. These include all 
the properties for slave interfaces defined in Chapter 3, Avalon Memory-Mapped 
Interfaces plus some additional properties to support off-chip devices. 

Figure 5–2. Connection to Synchronous Memory Chip
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Table 5–3. Avalon-MM tri-state Interface Properties (Part 1 of 2)

Name
Default 
Value Legal Values Description

readLatency 0 num_cycles Read latency for fixed-latency slaves. Refer to 
Figure 5–5 for an illustration of this property.

writeLatency 0 num_cycles Delay in cycles between acceptance of a write access 
and acceptance of valid writedata.

timingUnits cycles cycles, 
nanoseconds

Specifies the units for setupTime, holdTime, 
writeWaitTime and readWaitTime. Use 
cycles for synchronous devices and nanoseconds for 
asynchronous devices.

writeWaitTime 0 0–1000 Specifies additional time in units of timingUnits 
for write to be asserted.
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5.3. Slave Transfers 
This section illustrates slave transfers that are specific to the Avalon-MM tri-state 
interface. 

5.3.1. Asynchronous Transfers
Figure 5–3 illustrates connections to an asynchronous memory chip. This chip has an 
18-bit address and 4 byteenable lanes. Note that the lower 2 bits of the 20-bit 
Avalon-MM address are not connected to the chip's address lines. For Avalon-MM 
tri-state ports without pipelining, the read signal and the outputenable signal are 
identical. Therefore, the Avalon-MM signal read_n can connect directly to both an 
external device's output enable pin (OE_n) and read-enable pin (READ_n).

When connecting directly to asynchronous off-chip devices with an Avalon-MM 
tri-state slave port, the clk signal is not needed. Instead, pulses on the chipselect, 
read, and write, or both read and write signals synchronize the transfer, using 
the defined setup and hold times. All output signals are glitch-free throughout the 
transfer. Even though the timing units may be specified in nanoseconds, the system 
interconnect fabric is always synchronous, and it toggles and captures signals only at 
integer multiples of the clock period.

holdTime 0 0–1000 
cycles 

Specifies time in timingUnits between the 
deassertion of write and the deassertion of 
chipselect, address, and data. (Only applies 
to write transactions.)

readWaitTime 1 0–1000 Specifies additional time in units of timingUnits 
for read to be asserted.

setupTime 0 0–1000 
cycles 

Specifies time in timingUnits between the 
assertion of chipselect, address, and data 
and assertion of read or write.

activeCSThroughReadLatency false true,false If true, chipselect is asserted while readdata 
is pending.

associatedClockReset — — Name of the clock interface that this tri-state interface 
is synchronous to.

Table 5–3. Avalon-MM tri-state Interface Properties (Part 2 of 2)

Name
Default 
Value Legal Values Description
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5.3.1.1. Setup Time
Some component, require address and chipselect signals to be stable for a period 
of time before the read signal is asserted. Avalon-MM transfers with setupTime 
accommodate such requirements. 

A nonzero setupTime of means that after address and chipselect are asserted, 
there is a delay before read or write is asserted. The total number of cycles to 
complete the transfer depends on setup and wait time. For example, a slave port with 
2 cycles of setup time and 3 cycles of wait time takes 6 cycles to complete the transfer: 
2 setup cycles, plus 3 wait-state cycles, plus 1 cycle to capture data. Setup time is 
applied equally to both read and write transfers.

5.3.1.2. Hold Time
A nonzero holdTime of <n> means that, after write is deasserted, address, 
byteenable, writedata, and chipselect remain constant for <n> more cycles. 
Hold time only applies to write transactions. The total number of cycles to complete 
the transfer depends on setup, wait-state, and hold cycles. For example, a slave port 
with 2 cycles of setup time, 3 cycles of write wait time, 2 cycles of hold time takes 8 
cycles to complete the transfer: 2 setup cycles plus 3 wait time cycles plus 2 hold 
cycles plus 1 cycle to capture data. 

A slave port does not have to use both setup and hold times.

5.3.1.3. Example Read and Write Using Setup, Hold and Wait Times
Figure 5–4 shows Avalon-MM tri-state slave asynchronous read and write transfers, 
assuming a 50 MHz clock. This port uses the following Avalon-MM tri-state 
properties:

■ timingUnits is given in nanoseconds

■ setupTime is 50 ns (3 clocks at 50 MHz)

■ holdTime is 10 ns (1 clock at 50 MHz)

■ writeWaitTime is 30 ns (2 clocks at 50 MHz)

Figure 5–3. Connection to Asynchronous Memory Chip
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■ readWaitTime is 30 ns (2 clocks at 50 MHz)

■ No pipelining

When the wait time is expressed in nanoseconds, the read or write period, as seen on 
the FPGA pins, is as long as the specified wait time, rounded up to the next clock 
period. Table 5–4 illustrates this point.

When the wait time is expressed as cycles, the number of cycles that the read or write 
signal is asserted is the value of waitTime plus one cycle for data capture.

Figure 5–4 shows the tri-state behavior for a single asynchronous memory. The data 
lines could be active at any time due to the transfer activity of other components 
sharing the data and address signals. clk is shown only to illustrate the relationship 
between signals and the system clock; it is not connected to the asynchronous device. 

Table 5–4. Wait Times Expressed in Nanoseconds - 50 MHz Clock

Wait Time Number of Cycles

0 ns 1 cycle

10 ns 1 cycle

20 ns 1 cycle

21 ns 2 cycles

Table 5–5. Wait Times Expressed in Cycles

Wait Time Number of Cycles

0 cycles 1 clock period

1 cycle 2 clock periods

2 cycles 3 clock periods
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5.3.2. Synchronous Transfers
Synchronous read and write transfers are the same as for Avalon-MM interfaces 
described in Chapter 3, Avalon Memory-Mapped Interfaces.

5.3.3. Pipelined Slave Read Transfers
The pipelined Avalon-MM tri-state slave read transfer is suitable for connecting to 
off-chip synchronous memory devices, such as SSRAM. For Avalon-MM tri-state 
ports with pipelining, read is asserted during the address phase only and is 
deasserted through the data phase. outputenable is asserted before the final rising 
clock edge of the transfer, causing the peripheral device to drive its data pins. 
outputenable is deasserted when there are no pending read transfers. Avalon-MM 
slave tri-state ports cannot be pipelined with variable latency. Only pipelined tri-state 
ports with fixed latency are supported. 

Some synchronous memory chips which use pipelined transfers require the 
chipselect signal to be asserted only during the address phase, while other chips 
require the chipselect signal to be asserted until the entire transfer completes. The 
Avalon-MM tri-state slave interface supports both cases, using the 
activeCSThroughReadLatency property. 

The tri-state slave must declare which chipselect timing it supports according to 
the guidelines:

Figure 5–4. tri-state Slave Read and Write Transfers with Setup Time and Wait-States 

Notes to Figure 5–4:

(1) The system interconnect fabric drives address and asserts chipselect_n.
(2) After 3 cycles (from 50 ns) of setupTime, the system interconnect fabric asserts read_n.
(3) The slave port deasserts read_n after 2 cycles (from 30 ns) of readWaitTime. Data is sampled at the rising clock edge.
(4) address and writedata are driven.
(5) write_n is driven after 3 cycles (from 50 ns) setupTime.
(6) write_n is deasserted after two cycles (from 30 ns) of writeWaitTime.
(7) address, chipselect, and the data bus stop being driven after 1 cycle (from 10 ns) of holdTime. 
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■ When a tri-state slave declares activeCSThroughReadLatency property to be 
true, chipselect is asserted throughout both the address and data phases of 
the read transfer. In this case, chipselect mirrors outputenable.

■ When a port does not use the activeCSThroughReadLatency property, 
chipselect is only asserted during the address phase. In this case, chipselect 
mirrors read. 

Figure 5–5 shows a pipelined Avalon-MM tri-state slave read transfer. This port uses 
the Avalon-MM properties:

■ readLatency is set to 2

■ writeLatency is set to 2 

■ activeCSThroughReadLatency is shown for both the true and false 
settings

The diagram shows the behavior for one component. However, the data lines could be 
active at any time due to the transfer activity of a different peripheral sharing the 
data and address signals. 

Figure 5–5. Pipelined tri-state Slave Read Transfers

Notes to Figure 5–5:

(1) chipselect_n, addr1, and read_n are asserted, initiating a read transfer. At this time outputenable_n is also asserted, so 
the slave device can drive the data lines at any time. 

(2) The slave device captures addr1 and read_n on this rising edge of clk. The data phase begins, and the slave produces valid data 
two clock cycles later.

(3) read_n is deasserted on this rising edge of clk, so the master is not issuing a new read command.  When 
activeCSThroughReadLatency is false, chipselect_n is deasserted, and the tri-state slave must not drive the data bus.

(4) data1 is captured at this rising edge of clk. chipselect_n, addr2, and read_n are asserted initiating transfer 2.
(5) The system interconnect fabric asserts chipselect_n, addr3, and read_n at this rising edge of clk, initiating transfer 3. 

Because outputenable_n is asserted, the slave device could drive the data lines. 
(6) The system interconnect fabric captures data2 at the rising edge of clk. read_n is deasserted, ending the sequence of read 

transfers. If activeCSThroughReadLatency is asserted chipselect remains asserted until all pending read transfers have 
completed, otherwise it is deasserted.

(7) The system interconnect fabric captures data3. 
(8) The system interconnect fabric captures data4. There are no more pending transfers so chipselect and outputenable_n are 

deasserted, forcing the slave peripheral to stop driving its data lines.
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Master Transfers
5.4. Master Transfers
Avalon-MM tri-state slaves are mastered by Avalon-MM masters via a tri-state bridge. 
Avalon-MM tri-state masters are not supported on other components. For more 
information on Avalon-MM master refer to Chapter 3, Avalon Memory-Mapped 
Interfaces. 
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6. Avalon Streaming Interfaces
6.1. Introduction
You can use Avalon Streaming (Avalon-ST) interfaces for components that drive high 
bandwidth, low latency, unidirectional data. Typical applications include multiplexed 
streams, packets, and DSP data. The Avalon-ST interface signals can describe 
traditional streaming interfaces supporting a single stream of data without 
knowledge of channels or packet boundaries. The interface can also support more 
complex protocols capable of burst and packet transfers with packets interleaved 
across multiple channels. Figure 6–1 illustrates a typical application of the Avalon-ST 
interface.

All Avalon-ST source and sink interfaces are not necessarily interoperable. However, 
if two interfaces provide compatible functions for the same application space, adapter 
logic is available to allow them to interoperate.

Figure 6–1. Avalon-ST Interface - Typical Application
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Introduction
6.1.1. Features
Some of the prominent features of the Avalon-ST interface are:

■ Low latency, high throughput point-to-point data transfer

■ Multiple channel support with flexible packet interleaving

■ Sideband signaling of channel, error, and start and end of packet delineation

■ Support for data bursting

■ Automatic interface adaptation

6.1.2. Terms and Concepts
This section defines terms and concepts used in the Avalon-ST interface protocol. 

■ Avalon Streaming System—An Avalon Streaming system is a system that contains 
one or more Avalon-ST connections that transfer data from a source interface to a 
sink interface. The system shown in Figure 6–1 consists of Avalon-ST interfaces to 
transfer data from the system input to output and Avalon-MM control and status 
register interfaces to allow software control.

■ Avalon Streaming Components—A typical system using Avalon-ST interfaces 
combines multiple functional modules, called components. The system designer 
configures the components and connects them together to implement a system.

■ Source and Sink Interfaces and Connections—When two components are connected, 
the data flows from the source interface to the sink interface. The combination of a 
source interface connected to a sink interface is referred to as a connection. 

■ Backpressure—Backpressure is a mechanism by which a sink can signal to a source 
to stop sending data. The sink typically uses backpressure to stop the flow of data 
when its FIFOs are full or when there is congestion on its output port. Support for 
backpressure is optional.

■ Transfers and Ready Cycles—A transfer is an operation that results in data and 
control propagation from a source interface to a sink interface. For data interfaces, 
a ready cycle is a cycle during which the sink can accept a transfer. 

■ Symbol—A symbol is the smallest unit of data. For most packet interfaces, a 
symbol is a byte. One or more symbols make up the single unit of data transferred 
in a cycle.

■ Channel—A channel is a physical or logical path or link through which 
information passes between two ports. 

■ Packet—A packet is an aggregation of data and control signals that is transmitted 
together. A packet may contain a header to help routers and other network devices 
direct the packet to the correct destination. The packet format is defined by the 
application, not this specification. Avalon-ST packets can be variable in length and 
can be interleaved across a connection. With an Avalon-ST interfaces, the use of 
packets is optional. 
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Avalon-ST Interface Signals
6.2. Avalon-ST Interface Signals
Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST 
signal type; an Avalon-ST interface may contain only one instance of each signal type. 
All Avalon-ST signal types apply to both sources and sinks and have the same 
meaning for both.

Table 6–1 lists the signal types that comprise an Avalon-ST data interface. 

Table 6–1. Avalon-ST Interface Signals 

Signal Type Width Direction Required Description

Fundamental Signals

ready 1 Sink → 
Source

No Asserted high to indicate that the sink can accept data. On 
interfaces supporting flow control, ready is asserted by the 
sink on cycle <n> to mark cycle <n +readyLatency> as a 
ready cycle, during which the source may assert valid and 
transfer data. 

Sources without a ready input cannot be backpressured, and 
sinks without a ready output never need to backpressure. 

valid 1 Source → 
Sink

No Asserted by the source to qualify all other source to sink 
signals. On ready cycles where valid is asserted, the data bus 
and other source to sink signals are sampled by the sink, and on 
other cycles are ignored. 

Sources without a valid output implicitly provide valid data 
on every cycle that they are not being backpressured, and sinks 
without a valid input expect valid data on every cycle that 
they are not backpressuring.

data 1–256 Source → 
Sink

No The data signal from the source to the sink, typically carries 
the bulk of the information being transferred.

The contents and format of the data signal is further defined 
by parameters.

channel 0–8 Source → 
Sink

No The channel number for data being transferred on the 
current cycle. 

If an interface supports the channel signal, it must also define 
the maxChannel parameter. 

error 1–255 Source → 
Sink

No A bit mask used to mark errors affecting the data being 
transferred in the current cycle. A single bit in error is used 
for each of the errors recognized by the component, as defined 
by the errorDescriptor property.

Packet Transfer Signals

startofpacket 1 Source → 
Sink

No Asserted by the source to mark the beginning of a packet. 

endofpacket 1 Source → 
Sink

No Asserted by the source to mark the end of a packet. 

empty 0–8 Source → 
Sink

No Indicates the number of symbols that are empty during cycles 
that contain the end of a packet. The empty signal is not used 
on interfaces where there is one symbol per beat. If 
endofpacket is not asserted, this signal is not interpreted.
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Avalon-ST Interface Properties
6.2.1. Signal Polarity
All signal types listed in Table 6–1 are active high. 

6.2.2. Signal Sequencing and Timing
This section describes issues related to timing and sequencing of Avalon-ST signals.

6.2.2.1. Synchronous Interface
All transfers of an Avalon-ST connection occur synchronous to the rising edge of the 
associated clock signal. All outputs from a source interface to a sink interface, 
including the data, channel, and error signals, must be registered on the rising 
edge of clock. Inputs to a sink interface do not have to be registered. Registering 
signals at the source provides for high frequency operation while eliminating 
back-to-back registers with no intervening logic. 

6.2.2.2. Clock Enables
Avalon-ST components typically do not include a clock enable input, because the 
Avalon-ST signaling itself is sufficient to determine the cycles that a component 
should and should not be enabled. Avalon-ST compliant components may have a 
clock enable input for their internal logic, but they must take care to ensure that the 
timing of the interface control signals still adheres to the protocol. 

6.3. Avalon-ST Interface Properties
Table 6–2 lists the properties that characterize an Avalon-ST interface.

6.4. Typical Data Transfers
This section defines the transfer of data from a source interface to a sink interface. In 
all cases, the data source and the data sink must comply with the specification. It is 
not the responsibility of the data sink to detect source protocol errors.

Table 6–2. Avalon-ST Interface Properties

Property Name
Default 
Value Legal Values Description

dataBitsPerSymbol 8 1–512 Defines the number of bits per symbol. For example, 
byte-oriented interfaces have 8-bit symbols. This value is not 
restricted to be a power of 2. 

readyLatency 0 0–8 Defines the relationship between assertion/deassertion of the 
ready signal, and cycles which are considered to be ready 
for data transfer, separately for each interface.

maxChannel 0 0–255 The maximum number of channels that a data interface can 
support.

errorDescriptor 0 list of strings A list of words that describe the error associated with each bit 
of the error signal. The length of the list must be the same as 
the number of bits in the error signal, and the first word in the 
list applies to the highest order bit. For example, “crc, 
overflow" means that bit[1] of error indicates a CRC 
error, and bit[0] indicates an overflow error.
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Typical Data Transfers
6.4.1. Signal Details
This section describes the basic Avalon-ST protocol that all data transfers must follow. 
It also highlights the flexibility you have in choosing Avalon-ST signals to meet the 
needs of a particular component and makes recommendations about the signals that 
should be used. 

Figure 6–1 shows the signals that are typically included in an Avalon-ST interface. As 
this figure indicates, a typical Avalon-ST source interface drives the valid, data, 
error, and channel signals to the sink. The sink can apply backpressure using the 
ready signal.

The following paragraphs provide more details about these signals.

■ ready—On interfaces supporting backpressure, the sink asserts ready to mark 
ready cycles, cycles where transfers may take place. Data interfaces that support 
backpressure must define the readyLatency parameter so that if ready is 
asserted on cycle <n>, cycle <N + readyLatency> is considered a ready cycle.

■ valid—The valid signal qualifies valid data on any cycle where data is being 
transferred from the source to the sink. The valid signal is required by all 
interfaces. On each active cycle the data signal and other source to sink signals are 
sampled by the sink. 

■ data—The data signal typically carries the bulk of the information being 
transferred from the source to the sink, and consists of one or more symbols being 
transferred on every clock cycle. The dataBitsPerSymbol parameter defines 
how the data signal is divided into symbols. 

■ error—Errors are signaled with the error signal, where each bit in error 
corresponds to a possible error condition. A value of 0 on any cycle indicates the 
data on that cycle is error-free. The action that a component takes when an error is 
detected is not defined by this specification.

Figure 6–2. Typical Avalon-ST Interface Signals 
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Data Transfer without Backpressure
■ channel—The optional channel signal is driven by the source to indicate the 
channel to which the data belongs. The meaning of channel for a given interface 
depends on the application: some applications use channel as a port number 
indication, while other applications use channel as a page number or timeslot 
indication. When the channel signal is used, all of the data transferred in each 
active cycle belongs to the same channel. The source may change to a different 
channel on successive active cycles.

An interface that uses the channel signal must define the maxChannel 
parameter to indicate the maximum channel number. If the number of channels 
that the interface supports varies while the component is operating, maxChannel 
is the maximum channel number that the interface can support.

6.4.2. Data Layout
Symbol ordering is big endian, such that the high-order symbol is composed of the 
most significant bits. Figure 6–3 shows a 64–bit data signal with symbolsPerBeat=4 
and dataBitsPerSymbol=16.

The timing diagram in Figure 6–4, provides a 32–bit example where 
dataBitsPerSymbol=8 symbolsPerBeat=4. In this figure, D0 is the most 
significant symbol and data[31] is the most significant bit of the most significant 
symbol.

6.5. Data Transfer without Backpressure
The data transfer without backpressure is the most basic of Avalon-ST data transfers. 
On any given clock cycle, the source interface drives the data and the optional 
channel and error signals, and asserts valid. The sink interface samples these 
signals on the rising edge of the reference clock if valid is asserted. Figure 6–5 shows 
an example of data transfer without backpressure.

Figure 6–3. Data Symbols

 symbol 0 symbol 3symbol 2symbol 1

63 48 47 32 31 16 15 0

Figure 6–4. Big Endian Layout of Data 
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Data Transfer with Backpressure
6.6. Data Transfer with Backpressure
The sink indicates to the source that it is ready for an active cycle by asserting ready 
for a single clock cycle. Cycles during which the sink is ready for data are called ready 
cycles. During a ready cycle, the source may assert valid and provide data to the 
sink. If it has no data to send, it deasserts valid and can drive data to any value. 

Each interface that supports backpressure defines the readyLatency parameter to 
indicate the number of cycles from the time that ready is asserted until valid data can 
be driven. Cycles during which the sink is ready for data are called ready cycles. If an 
interface defines readyLatency to be 0, then the cycle during which ready is 
asserted is the ready cycle. If readyLatency has a nonzero value, the interface 
considers cycle <N + readyLatency> to be a ready cycle if ready is asserted on 
cycle <n>. Any interface that includes the ready signal and defines the 
readyLatency parameter supports backpressure. 

When readyLatency = 0, data is transferred only when ready and valid are 
asserted on the same cycle. In this mode of operation, the source does not receive the 
sink’s ready signal before it begins sending valid data. The source provides the data 
and asserts valid whenever it can and waits for the sink to capture the data and 
assert ready. The source can change the data it is providing at any time. The sink only 
captures input data from the source when ready and valid are both asserted.

When readyLatency >= 1, the sink asserts ready before the ready cycle itself. 
The source can respond during the appropriate cycle by asserting valid. It may not 
assert valid during a cycle that is not a ready cycle. Figure 6–6 illustrates an 
Avalon-ST interface where readyLatency = 4.

Figure 6–5. Data Transfer without Backpressure
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Data Transfer with Backpressure
Figure 6–7 illustrates a transfer with backpressure and readyLatency=0. The source 
provides data and asserts valid on cycle 1, even though the sink is not ready. The 
source waits until cycle two, when the sink does assert ready, before moving onto the 
next data cycle. In cycle 3, the source drives data on the same cycle and the sink is 
ready to receive it; the transfer happens immediately. In cycle 4, the sink asserts 
ready, but the source does not drive valid data.

Figure 6–8 and Figure 6–9 show data transfers with readyLatency=1 and 
readyLatency=2, respectively. In both these cases, ready is asserted before the 
ready cycle, and the source responds 1 or 2 cycles later by providing data and 
asserting valid. When readyLatency is not 0, the source must deassert valid on 
non-ready cycles. The sink captures data on any cycle where valid is asserted, 
regardless of the value of ready on that cycle.

Figure 6–6. Avalon-ST Interface with readyLatency = 4
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Packet Data Transfers
6.7. Packet Data Transfers
The packet transfer property adds support for transferring packets from a source 
interface to a sink interface. Three additional signals are defined to implement the 
packet transfer. Both the source and sink interfaces must include these additional 
signals to support packets. No automatic adaptation to create connections between 
source and sink interfaces with and without packet support.

6.7.1. Signal Details
The following paragraphs provide more details about these three signals.

■ startofpacket—The startofpacket signal is required by all interfaces 
supporting packet transfers and marks the active cycle containing the start of the 
packet. This signal is only interpreted when valid is asserted. 

Figure 6–8. Transfer with Backpressure, readyLatency=1

Figure 6–9. Transfer with Backpressure, readyLatency=2

clk

ready

valid

channel

error

data D0 D1 D2 D3 D4 D5

clk

ready

valid

channel

error

data D0 D1 D2 D3

Figure 6–10. Avalon-ST Packet Interface Signals
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■ endofpacket—The endofpacket signal is required by all interfaces supporting 
packet transfer and marks the active cycle containing the end of the packet. This 
signal is only interpreted when valid is asserted. startofpacket and 
endofpacket can be asserted in the same cycle. No idle cycles are required 
between packets, so that the startofpacket signal can follow immediately after 
the previous endofpacket signal.

■ empty—The optional empty signal indicates the number of symbols that are 
empty during the cycles that mark the end of a packet. The sink only checks the 
value of the empty during active cycles that have endofpacket asserted. The 
empty symbols are always the last symbols in data, those carried by the 
low-order bits. The empty signal is required on all packet interfaces whose data 
signal carries more than one symbol of data and have a variable length packet 
format. The size of the empty signal in bits is log2(<symbols per cycle>).

6.7.2. Protocol Details
Packet data transfer follows the same protocol as the typical data transfer described in 
“Typical Data Transfers” on page 6–4, with the addition of the startofpacket, 
endofpacket, and empty.

Figure 6–11 illustrates the transfer of a 17-byte packet from a source interface to a sink 
interface, where readyLatency=0. Data transfer occurs on cycles 1, 2, 4, 5, and 6, 
when both ready and valid are asserted. During cycle 1, startofpacket is 
asserted, and the first 4 bytes of packet are transferred. During cycle 6, endofpacket 
is asserted, and empty has a value of 3, indicating that this is the end of the packet 
and that 3 of the 4 symbols are empty. In cycle 6, the high-order byte, data[31:24] 
drives valid data because Avalon-ST is big-endian.

Figure 6–11. Packet Transfer
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7. Conduit Interfaces
Conduit interfaces are used to group together an arbitrary collection of signals to be 
exported to the outside of an SOPC Builder system. A conduit interface can consist of 
both input and output signals. Directions, such as source and sink for Avalon-ST 
interfaces or in and out for Avalon-MM masters and slaves, do not apply to conduit 
interfaces. A module can have multiple conduit interfaces to provide a logical 
grouping of the signals being exported. Table 7–1 illustrates this interface. 

In this figure, signals that interface to the SDRAM, such as address, data and control 
signals, form a conduit interface and would have the signal type export. 

7.1. Properties
There are no properties for conduit interfaces. 

Figure 7–1. Focus on the Conduit Interface
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Signals
7.2. Signals
Table 7–1 lists the conduit signal types.

Table 7–1. Conduit Signal Types

Signal Type Width Direction Required Description

export n In, out or 
bidirectional

Yes A conduit interface consists of one or more signals of arbitrary 
width of direction input or output, of type export. All of these 
signals are exported out the top level of the SOPC Builder system.
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Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
For the most up-to-date information about Altera® products, see the following table. 

Date and Document 
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April v.1.2 ■ Expanded flow control section in Chapter 3, Avalon Memory-Mapped 
Interfaces. 

■ Clarified use of startofpacket and endofpacket signals.

■ Added fact that an Avalon-MM slave can only include one interrupt 
sender.

■ Removed flush signal which is only used by the Nios II processor.

■ Clarified operation of readyLatency and valid signals. Added 
Figure 6–6 on page 6–8.

■ Changed direction of byteenable signal from out to in in Table 5–1.

■ Clarified use of burstcount signal.

Clarifications for some 
Avalon-MM 
descriptions.

October 2008
v. 1.1

■ Clarified burst behavior in “Burst Transfers” on page 3–23. A master 
can issue a new read burst before the data for the previous burst has 
been returned.

■ Added section discussing native addressing and the fact that it is 
deprecated.

■ Improved description of big-endian data layout.

■ Clarified behavior of waitrequest signal for Avalon-MM slaves. 
Avalon-MM masters may initiate transactions when waitrequest is 
asserted.

Clarification for some 
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descriptions.
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v.1.0
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Typographic Conventions
The following table shows the typographic conventions that this document uses.

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative. 

Contact Contact Method Address

Visual Cue Meaning

Bold Type with Initial Capital 
Letters 

Indicates command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. 

bold type Indicates directory names, project names, disk drive names, file names, file name 
extensions, and software utility names. For example, \qdesigns directory, d: drive, 
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options 
menu. 

“Subheading Title” Quotation marks indicate references to sections within a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. Active-low signals are denoted by suffix n. For example, 
resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic. 
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