
© March 2009 Altera Corporation
Section II. Hardware Abstraction Layer
This section describes the Nios® II hardware abstraction layer (HAL). It includes the
following chapters:

■ Chapter 5, Overview of the Hardware Abstraction Layer

■ Chapter 6, Developing Programs Using the Hardware Abstraction Layer

■ Chapter 7, Developing Device Drivers for the Hardware Abstraction Layer
Nios II Software Developer’s Handbook

II–2 Section II: Hardware Abstraction Layer
Nios II Software Developer’s Handbook © March 2009 Altera Corporation

© March 2009 Altera Corporation

NII52003-9.0.0
5. Overview of the Hardware Abstraction
Layer
Introduction
This chapter introduces the hardware abstraction layer (HAL) for the Nios® II
processor. This chapter contains the following sections:

■ “Getting Started” on page 5–1

■ “HAL Architecture” on page 5–2

■ “Supported Peripherals” on page 5–4

The HAL is a lightweight runtime environment that provides a simple device driver
interface for programs to communicate with the underlying hardware. The HAL
application program interface (API) is integrated with the ANSI C standard library.
The HAL API allows you to access devices and files using familiar C library functions,
such as printf(), fopen(), fwrite(), etc.

The HAL serves as a device driver package for Nios II processor systems, providing a
consistent interface to the peripherals in your system. Tight integration between
SOPC Builder and the Nios II software development tools automates the construction
of a HAL instance for your hardware. After SOPC Builder generates a hardware
system, the Nios II integrated development environment (IDE) or the Nios II software
build tools can generate a custom HAL board support package (BSP) to match the
hardware configuration. Changes in the hardware configuration automatically
propagate to the HAL device driver configuration, preventing changes in the
underlying hardware from creating bugs.

HAL device driver abstraction provides a clear distinction between application and
device driver software. This driver abstraction promotes reusable application code
that is resistant to changes in the underlying hardware. In addition, the HAL standard
makes it straightforward to write drivers for new hardware peripherals that are
consistent with existing peripheral drivers.

Getting Started
The easiest way to get started using the HAL is to perform the tutorials provided with
the Nios II IDE. In the process of creating a new project in the Nios II IDE, you also
create a HAL BSP. You need not create or copy HAL files, and you need not edit any of
the HAL source code. The Nios II IDE generates the HAL BSP for you.

In the Nios II software build tools command-line software build tools flow, you can
create an example BSP based on the HAL using one of the create-this-bsp scripts
supplied with the Nios II embedded design suite.

You must base the HAL on a specific SOPC Builder system. An SOPC Builder system
is a Nios II processor core integrated with peripherals and memory (which is
generated by SOPC Builder). If you do not have a custom SOPC Builder system, you
can base your project on an Altera-provided example hardware system. In fact, you
can first start developing projects targeting an Altera® Nios development board, and
later re-target the project to a custom board. You can easily change the target SOPC
Builder system later.
Nios II Software Developer’s Handbook
Preliminary

5–2 Chapter 5: Overview of the Hardware Abstraction Layer
HAL Architecture
f For information about creating a new project with the Nios II IDE, refer to the Nios II
Integrated Development Environment chapter of the Nios II Software Developer’s
Handbook, or to the Nios II IDE help system. For information about creating a new
project with the Nios II software build tools, refer to the Introduction to the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook. More
information about creating a Nios II IDE project is available in the Nios II IDE help
system.

HAL Architecture
This section describes the fundamental elements of the HAL architecture.

Services
The HAL provides the following services:

■ Integration with the newlib ANSI C standard library—Provides the familiar C
standard library functions

■ Device drivers—Provides access to each device in the system

■ The HAL API—Provides a consistent, standard interface to HAL services, such as
device access, interrupt handling, and alarm facilities

■ System initialization—Performs initialization tasks for the processor and the
runtime environment before main()

■ Device initialization—Instantiates and initializes each device in the system before
main() runs

Figure 5–1 shows the layers of a HAL-based system, from the hardware level up to a
user program.

Figure 5–1. The Layers of a HAL-Based System

User Program

C Standard Library

HAL API

Device
Driver

Device
Driver...Device

Driver

Nios II Processor System Hardware
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 5: Overview of the Hardware Abstraction Layer 5–3
HAL Architecture
Applications versus Drivers
Application developers are responsible for writing the system’s main() routine,
among other routines. Applications interact with system resources either through the
C standard library, or through the HAL API. Device driver developers are responsible
for making device resources available to application developers. Device drivers
communicate directly with hardware through low-level hardware-access macros.

f For further details about the HAL, refer to the following chapters:

■ The Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook describes how to take advantage of the HAL to write
programs without considering the underlying hardware.

■ The Developing Device Drivers for the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook describes how to communicate directly with
hardware and how to make hardware resources available with the HAL API.

Generic Device Models
The HAL provides generic device models for classes of peripherals found in
embedded systems, such as timers, Ethernet MAC/PHY chips, and I/O peripherals
that transmit character data. The generic device models are at the core of the HAL’s
power. The generic device models allow you to write programs using a consistent
API, regardless of the underlying hardware.

Device Model Classes
The HAL provides models for the following classes of devices:

■ Character-mode devices—Hardware peripherals that send and/or receive
characters serially, such as a UART.

■ Timer devices—Hardware peripherals that count clock ticks and can generate
periodic interrupt requests.

■ File subsystems—A mechanism for accessing files stored in physical device(s).
Depending on the internal implementation, the file subsystem driver might access
the underlying device(s) directly or use a separate device driver. For example, you
can write a flash file subsystem driver that accesses flash using the HAL API for
flash memory devices.

■ Ethernet devices—Devices that provide access to an Ethernet connection for a
networking stack such as the Altera-provided NicheStack® TCP/IP Stack - Nios II
Edition. You need a networking stack to use an ethernet device.

■ Direct memory access (DMA) devices—Peripherals that perform bulk data
transactions from a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection.

■ Flash memory devices—Nonvolatile memory devices that use a special
programming protocol to store data.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

5–4 Chapter 5: Overview of the Hardware Abstraction Layer
Supported Hardware
Benefits to Application Developers
The HAL defines a set of functions that you use to initialize and access each class of
device. The API is consistent, regardless of the underlying implementation of the
device hardware. For example, to access character-mode devices and file subsystems,
you can use the C standard library functions, such as printf() and fopen(). For
application developers, you need not write low-level routines just to establish basic
communication with the hardware for these classes of peripherals.

Benefits to Device Driver Developers
Each device model defines a set of driver functions necessary to manipulate the
particular class of device. If you are writing drivers for a new peripheral, you need
only provide this set of driver functions. As a result, your driver development task is
predefined and well documented. In addition, you can use existing HAL functions
and applications to access the device, which saves software development effort. The
HAL calls driver functions to access hardware. Application programmers call the
ANSI C or HAL API to access hardware, rather than calling your driver routines
directly. Therefore, the usage of your driver is already documented as part of the HAL
API.

C Standard Library—Newlib
The HAL integrates the ANSI C standard library in its runtime environment. The
HAL uses newlib, an open-source implementation of the C standard library. newlib is
a C library for use on embedded systems, making it a perfect match for the HAL and
the Nios II processor. newlib licensing does not require you to release your source
code or pay royalties for projects based on newlib.

The ANSI C standard library is well documented. Perhaps the most well-known
reference is The C Programming Language by B. Kernighan and D. Ritchie, published by
Prentice Hall and available in over 20 languages. Redhat also provides online
documentation for newlib at http://sources.redhat.com/newlib.

Supported Hardware
This section summarizes Nios II HAL support for Nios II hardware.

Nios II Processor Core Support
The Nios II HAL supports all available Nios II processor core implementations.

Supported Peripherals
Altera provides many peripherals for use in Nios II processor systems. Most Altera
peripherals provide HAL device drivers that allow you to access the hardware with
the HAL API. The following Altera peripherals provide full HAL support:

■ Character mode devices

■ UART core

■ JTAG UART core

■ LCD 16207 display controller
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Overview of the Hardware Abstraction Layer 5–5
Supported Hardware
■ Flash memory devices

■ Common flash interface compliant flash chips

■ Altera’s erasable programmable configurable serial (EPCS) serial configuration
device controller

■ File subsystems

■ Altera host based file system

■ Altera read-only zip file system

■ Timer devices

■ Timer core

■ DMA devices

■ DMA controller core

■ Scatter-gather DMA controller core

■ Ethernet devices

■ Triple Speed Ethernet MegaCore® function

■ LAN91C111 Ethernet MAC/PHY Controller

The LAN91C111 and Triple Speed Ethernet components require the MicroC/OS-II
runtime environment.

f For more information, refer to the Ethernet and the NicheStack TCP/IP Stack - Nios II
Edition chapter of the Nios II Software Developer’s Handbook. Third-party vendors offer
additional peripherals not listed here. For a list of other peripherals available for the
Nios II processor, visit the Embedded Software page of the Altera website.

All peripherals (both from Altera and third party vendors) must provide a header file
that defines the peripheral’s low-level interface to hardware. Therefore, all
peripherals support the HAL to some extent. However, some peripherals might not
provide device drivers. If drivers are not available, use only the definitions provided
in the header files to access the hardware. Do not use unnamed constants, such as
hard-coded addresses, to access a peripheral.

Inevitably, certain peripherals have hardware-specific features with usage
requirements that do not map well to a general-purpose API. The HAL handles
hardware-specific requirements by providing the UNIX-style ioctl() function.
Because the hardware features depend on the peripheral, the ioctl() options are
documented in the description for each peripheral.

Some peripherals provide dedicated accessor functions that are not based on the HAL
generic device models. For example, Altera provides a general-purpose parallel I/O
(PIO) core for use with the Nios II processor system. The PIO peripheral does not fit in
any class of generic device models provided by the HAL, and so it provides a header
file and a few dedicated accessor functions only.

f For complete details regarding software support for a peripheral, refer to the
peripheral’s description. For further details about Altera-provided peripherals, refer
to Volume 5: Embedded Peripherals of the Quartus II Handbook.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

5–6 Chapter 5: Overview of the Hardware Abstraction Layer
Referenced Documents
MPU Support
The HAL does not include explicit support for the optional memory protection unit
(MPU) hardware. However, it does support an advanced exception handler that can
handle Nios II MPU exceptions.

f For details about handling MPU and other advanced exceptions, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook. For details about the
MPU hardware implementation, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

MMU Support
The HAL does not support the optional memory management unit (MMU) hardware.
To use the MMU, you need to implement a full-featured operating system.

For details about the Nios II MMU, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Referenced Documents
This chapter references the following documents:

■ Nios II Integrated Development Environment chapter of the Nios II Software
Developer’s Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

■ Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II
Software Developer’s Handbook

■ Programming Model chapter of the Nios II Processor Reference Handbook

■ Volume 5: Embedded Peripherals of the Quartus II Handbook

■ The Embedded Software page of the Altera website

Document Revision History
Table 5–1 shows the revision history for this document.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html

Chapter 5: Overview of the Hardware Abstraction Layer 5–7
Document Revision History
Table 5–1. Document Revision History

Date &
Document

Version Changes Made Summary of Changes

March 2009

v9.0.0

■ Reorganized and updated information and terminology to clarify role
of Nios II software build tools.

■ Corrected minor typographical errors.

May 2008

v8.0.0

No change from previous release.

October 2007

v7.2.0

No change from previous release.

May 2007

v7.1.0

■ Scatter-gather DMA core

■ Triple-speed Ethernet MAC

■ Refer to HAL generation with Nios II software build tools.

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

■ Scatter-gather DMA core

■ Triple-speed Ethernet MAC

■ Nios II software build tools

March 2007

v7.0.0

No change from previous release.

November 2006

v6.1.0

NicheStack TCP/IP Stack - Nios II Edition

May 2006

v6.0.0

No change from previous release.

October 2005

v5.1.0

No change from previous release.

May 2005

v5.0.0

No change from previous release.

May 2004

v1.0

Initial Release.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

5–8 Chapter 5: Overview of the Hardware Abstraction Layer
Document Revision History
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

© March 2009 Altera Corporation

NII52004-9.0.0
6. Developing Programs Using the
Hardware Abstraction Layer
Introduction
This chapter discusses how to develop programs for the Nios® II processor based on
the Altera® hardware abstraction layer (HAL). This chapter contains the following
sections:

■ “The Nios II Project Structure” on page 6–2

■ “The system.h System Description File” on page 6–4

■ “Data Widths and the HAL Type Definitions” on page 6–5

■ “UNIX-Style Interface” on page 6–5

■ “File System” on page 6–6

■ “Using Character-Mode Devices” on page 6–8

■ “Using File Subsystems” on page 6–15

■ “Using Timer Devices” on page 6–15

■ “Using Flash Devices” on page 6–19

■ “Using DMA Devices” on page 6–24

■ “Reducing Code Footprint” on page 6–29

■ “Boot Sequence and Entry Point” on page 6–36

■ “Memory Usage” on page 6–38

■ “Working with HAL Source Files” on page 6–43

■ “Using the HAL in an IDE Project” on page 6–44

The application program interface (API) for HAL-based systems is readily accessible
to software developers who are new to the Nios II processor. Programs based on the
HAL use the ANSI C standard library functions and runtime environment, and access
hardware resources with the HAL API’s generic device models. The HAL API largely
conforms to the familiar ANSI C standard library functions, though the ANSI C
standard library is separate from the HAL. The close integration of the ANSI C
standard library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate character
mode devices and files using the ANSI C standard library I/O functions, such as
printf() and scanf().

f This document does not cover the ANSI C standard library. An excellent reference is
The C Programming Language, Second Edition, by Brian Kernighan and Dennis M.
Ritchie (Prentice-Hall).
Nios II Software Developer’s Handbook
Preliminary

6–2 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
The Nios II Project Structure
Nios II Development Flows
The Nios II Embedded Design Suite (EDS) provides two distinct development flows
for creating Nios II programs. You can work entirely in the Nios II integrated
development environment (IDE), or you can use the Nios II software build tools in
command-line and scripted environments.

HAL BSP Settings
Every Nios II board support package (BSP) has settings that determine the BSP’s
characteristics. For example, HAL BSPs have settings to identify the hardware
components associated with standard devices such as stdout. Defining and
manipulating BSP settings is an important part of Nios II project creation.

How you manipulate BSP settings depends on the development flow you use. In the
command-line software build tools flow, you manipulate BSP settings with
command-line options or Tcl scripts.

f For details about how to control BSP settings, refer to one or more of the following
documents:

■ For the Nios II IDE development flow, refer to the Nios II IDE help system.

■ For the Nios II command-line software build tools development flow, refer to the
Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

f For detailed descriptions of available BSP settings, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Many HAL settings are reflected in the system.h file, which provides a helpful
reference for details about your BSP. For information about system.h, refer to “The
system.h System Description File” on page 6–4.

1 Do not edit system.h. The Nios II EDS provides tools to manipulate system settings.

The Nios II Project Structure
The creation and management of software projects based on the HAL is integrated
tightly with the Nios II software build tools. This section discusses the Nios II projects
as a basis for understanding the HAL.

Figure 6–1 shows the blocks of a Nios II program with emphasis on how the HAL BSP
fits in. The label for each block describes what or who generated that block, and an
arrow points to each block’s dependency.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–3
The Nios II Project Structure
Every HAL-based Nios II program consists of two Nios II projects, as shown in
Figure 6–1. Your application-specific code is contained in one project (the user
application project), and it depends on a separate BSP project (the HAL BSP).

The application project contains all the code you develop. The executable image for
your program ultimately results from building both projects.

In the Nios II IDE flow, the Nios II IDE creates the HAL BSP project when you create
your application project. In the Nios II command-line software build tools flow, you
create the BSP using nios2-bsp or a related tool.

The HAL BSP project contains all information needed to interface your program to the
hardware. The HAL drivers relevant to your SOPC Builder system are incorporated in
the BSP project.

The BSP project depends on the SOPC Builder system, defined by an SOPC Builder
system (.sopcinfo) file.The Nios II software build tools can keep your BSP up-to-date
with the SOPC Builder system. This project dependency structure isolates your
program from changes to the underlying hardware, and you can develop and debug
code without concern about whether your program matches the target hardware.

When you rebuild a BSP, the Nios II software build tools can update it to match the
hardware. You control whether and when these updates occur.

f For details about how the software build tools keep your BSP up-to-date with your
hardware system, refer to the Using the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

In summary, when your program is based on a HAL BSP, you can always keep it
synchronized with the target hardware by simply rebuilding your software.

Figure 6–1. The Nios II HAL Project Structure

Nios II Program
Based on HAL

Also known as: Your program, or user project
Defined by: .c, .h, .S, .s files
Created by: You

Defined by: .sopcinfo file

Defined by: Nios II BSP settings

Also known as: Nios II processor system, or the hardware

Created by: SOPC Builder

Created by: Nios II IDE or Nios II command line tools

Application Project

HAL BSP Project

SOPC Builder System
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–4 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
The system.h System Description File
The system.h System Description File
The system.h file provides a complete software description of the Nios II system
hardware. Not all information in system.h is useful to you as a programmer, and it is
rarely necessary to include it explicitly in your C source files. Nonetheless, system.h
holds the answer to the question, “What hardware is present in this system?”

The system.h file describes each peripheral in the system and provides the following
details:

■ The hardware configuration of the peripheral

■ The base address

■ The interrupt request (IRQ) priority (if any)

■ A symbolic name for the peripheral

Both Nios II development flows generate the system.h file for HAL BSP projects. The
contents of system.h depend on both the hardware configuration and the HAL BSP
properties.

1 Do not edit system.h. Both development flows provide tools to manipulate system
settings.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6–2.

The code in Example 6–1 from a system.h file shows some of the hardware
configuration options this file defines.

Example 6–1. Excerpts from a system.h File

/*
* sys_clk_timer configuration
*
*/

#define SYS_CLK_TIMER_NAME "/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800
#define SYS_CLK_TIMER_IRQ 0
#define SYS_CLK_TIMER_ALWAYS_RUN 0
#define SYS_CLK_TIMER_FIXED_PERIOD 0

/*
* jtag_uart configuration
*
*/

#define JTAG_UART_NAME "/dev/jtag_uart"
#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820
#define JTAG_UART_IRQ 1
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–5
Data Widths and the HAL Type Definitions
Data Widths and the HAL Type Definitions
For embedded processors such as the Nios II processor, it is often important to know
the exact width and precision of data. Because the ANSI C data types do not explicitly
define data width, the HAL uses a set of standard type definitions instead. The ANSI
C types are supported, but their data widths are dependent on the compiler’s
convention.

The header file alt_types.h defines the HAL type definitions; Table 6–1 shows the
HAL type definitions.

Table 6–2 shows the data widths that the Altera-provided GNU tool-chain uses.

UNIX-Style Interface
The HAL API provides a number of UNIX-style functions. The UNIX-style functions
provide a familiar development environment for new Nios II programmers, and can
ease the task of porting existing code to run in the HAL environment. The HAL uses
these functions primarily to provide the system interface for the ANSI C standard
library. For example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list contains all of the available UNIX-style functions:

■ _exit()

■ close()

■ fstat()

■ getpid()

■ gettimeofday()

Table 6–1. The HAL Type Definitions

Type Meaning

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

alt_64 Signed 64-bit integer.

alt_u64 Unsigned 64-bit integer.

Table 6–2. GNU Toolchain Data Widths

Type Meaning

char 8 bits.

short 16 bits.

long 32 bits.

int 32 bits.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–6 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
File System
■ ioctl()

■ isatty()

■ kill()

■ lseek()

■ open()

■ read()

■ sbrk()

■ settimeofday()

■ stat()

■ usleep()

■ wait()

■ write()

The most commonly used functions are those that relate to file I/O. Refer to “File
System” on page 6–6.

f For details about the use of these functions, refer to the HAL API Reference chapter of
the Nios II Software Developer’s Handbook.

File System
The HAL provides infrastructure for UNIX-style file access. You can use this
infrastructure to build a file system on any storage devices available in your
hardware.

f For an example, refer to the Read-Only Zip File System chapter of the Nios II Software
Developer’s Handbook.

You can access files in a HAL-based file system by using either the C standard library
file I/O functions in the newlib C library (for example fopen(), fclose(), and
fread()), or using the UNIX-style file I/O provided by the HAL.

The HAL provides the following UNIX-style functions for file manipulation:

■ close()

■ fstat()

■ ioctl()

■ isatty()

■ lseek()

■ open()

■ read()

■ stat()

■ write()
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–7
File System
f For more information about these functions, refer to the HAL API Reference chapter of
the Nios II Software Developer’s Handbook.

The HAL registers a file subsystem as a mount point in the global HAL file system.
Attempts to access files below that mount point are directed to the file subsystem. For
example, if a read-only zip file subsystem (zipfs) is mounted as /mount/zipfs0, the
zipfs file subsystem handles calls to fopen() for /mount/zipfs0/myfile.

There is no concept of a current directory. Software must access all files using absolute
paths.

The HAL file infrastructure also allows you to manipulate character mode devices
with UNIX-style path names. The HAL registers character mode devices as nodes in
the HAL file system. By convention, system.h defines the name of a device node as
the prefix /dev/ plus the name assigned to the hardware component in SOPC builder.
For example, a UART peripheral uart1 in SOPC builder is /dev/uart1 in system.h.

The code in Example 6–2 reads characters from a read-only zip file subsystem rozipfs
that is registered as a node in the HAL file system. The standard header files
stdio.h, stddef.h, and stdlib.h are installed with the HAL.

f For more information about the use of these functions, refer to the newlib C library
documentation installed with the Nios II EDS. On the Windows Start menu, click
Programs > Altera > Nios II > Nios II Documentation.

Example 6–2. Reading Characters from a File Subsystem

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define BUF_SIZE (10)

int main(void)
{

FILE* fp;
char buffer[BUF_SIZE];

fp = fopen ("/mount/rozipfs/test", "r"); if (fp == NULL)
{
printf ("Cannot open file.\n");
exit (1);

}

fread (buffer, BUF_SIZE, 1, fp);

fclose (fp);

return 0;
}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6–8 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
Using Character-Mode Devices
A character-mode device is a hardware peripheral that sends and/or receives
characters serially. A common example is the UART. Character mode devices are
registered as nodes in the HAL file system. In general, a program associates a file
descriptor to a device’s name, and then writes and reads characters to or from the file
using the ANSI C file operations defined in file.h. The HAL also supports the concept
of standard input, standard output, and standard error, allowing programs to call the
stdio.h I/O functions.

Standard Input, Standard Output and Standard Error
Using standard input (stdin), standard output (stdout), and standard error
(stderr) is the easiest way to implement simple console I/O. The HAL manages
stdin, stdout, and stderr behind the scenes, which allows you to send and
receive characters through these channels without explicitly managing file
descriptors. For example, the HAL directs the output of printf() to standard out,
and perror() to standard error. You associate each channel to a specific hardware
device by manipulating BSP settings.

The code in Example 6–3 shows the classic Hello World program. This program sends
characters to whatever device is associated with stdout when the program is
compiled.

When using the UNIX-style API, you can use the file descriptors stdin, stdout, and
stderr, defined in unistd.h, to access, respectively, the standard in, standard out,
and standard error character I/O streams. unistd.h is installed with the Nios II EDS as
part of the newlib C library package.

General Access to Character Mode Devices
Accessing a character-mode device other than stdin, stdout, or stderr is as easy
as opening and writing to a file. The code in Example 6–4 writes a message to a UART
called uart1.

Example 6–3. Hello World

#include <stdio.h>
int main ()
{

printf ("Hello world!");
return 0;

}

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–9
Using Character-Mode Devices
C++ Streams
HAL-based systems can use the C++ streams API for manipulating files from C++.

/dev/null
All systems include the device /dev/null. Writing to /dev/null has no effect, and all
data is discarded. /dev/null is used for safe I/O redirection during system startup.
This device can also be useful for applications that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any physical hardware
device in the system.

Lightweight Character-Mode I/O
The HAL offers several methods of reducing the code footprint of character-mode
device drivers. For details, refer to “Reducing Code Footprint” on page 6–29.

Altera Logging Functions
The Altera logging functions provide a separate channel for sending logging and
debugging information to a character-mode device, supplementing stdout and
stderr. The Altera logging information can be printed in response to several
conditions. Altera logging can be enabled and disabled independently of any normal
stdio output, making it a powerful debugging tool.

When Altera logging is enabled, your software can print extra messages to a specified
port with HAL function calls. The logging port, specified in the BSP, can be a UART or
a JTAG UART device. In its default configuration, Altera logging prints out boot
messages, which trace each step of the boot process.

1 Avoid setting the Altera logging device to the device used for stdout or stderr. If
Altera logging output is sent to stdout or stderr, the logging output might appear
interleaved with the stdout or stderr output

Example 6–4. Writing Characters to a UART

#include <stdio.h>
#include <string.h>

int main (void)
{

char* msg = "hello world";
FILE* fp;

fp = fopen ("/dev/uart1", "w");
if (fp!=NULL)
{
fprintf(fp, "%s",msg);
fclose (fp);

}
return 0;

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–10 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
Several logging options are available, controlled by C preprocessor symbols. You can
also choose to add custom logging messages.

1 Altera logging changes system behavior. The logging implementation is designed to
be as simple as possible, loading characters directly to the transmit register. It can
have a negative impact on software performance.

Altera logging functions are conditionally compiled. When logging is disabled, it has
no impact on code footprint or performance.

1 The Altera reduced device drivers do not support Altera logging.

Enabling Altera Logging
The Nios II software build tools have a setting to enable Altera logging. The setting is
called hal.log_port. It is similar to hal.stdout, hal.stdin, and hal.stderr. To enable
Altera logging, you set hal.log_port to a JTAG UART or a UART device. The setting
allows the HAL to send log messages to the specified device when a logging macro is
invoked.

When Altera logging is enabled, the Nios II software build tools define
ALT_LOG_ENABLE in public.mk to enable log messages. The build tools also set the
ALT_LOG_PORT_TYPE and ALT_LOG_PORT_BASE values in system.h to point to the
specified device.

When Altera logging is enabled without special options, the HAL prints out boot
messages to the selected port. For typical software that uses the standard alt_main.c
(such as the Hello World software example), the messages appear as in Example 6–5.

1 A write operation to the Altera logging device stalls in ALT_LOG_PRINTF() until the
characters are read from the Altera logging device's output buffer. To ensure that the
Nios II application completes initialization, run the nios2-terminal command
from the Nios II command shell to accept the Altera logging output.

Example 6–5. Default Boot Logging Output

[crt0.S] Inst & Data Cache Initialized.
[crt0.S] Setting up stack and global pointers.
[crt0.S] Clearing BSS
[crt0.S] Calling alt_main.
[alt_main.c] Entering alt_main, calling alt_irq_init.
[alt_main.c] Done alt_irq_init, calling alt_os_init.
[alt_main.c] Done OS Init, calling alt_sem_create.
[alt_main.c] Calling alt_sys_init.
[alt_main.c] Done alt_sys_init. Redirecting IO.
[alt_main.c] Calling C++ constructors.
[alt_main.c] Calling main.
[alt_exit.c] Entering _exit() function.
[alt_exit.c] Exit code from main was 0.
[alt_exit.c] Calling ALT_OS_STOP().
[alt_exit.c] Calling ALT_SIM_HALT().
[alt_exit.c] Spinning forever.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–11
Using Character-Mode Devices
Extra Logging Options
In addition to the default boot messages, logging options are incorporated in Altera
logging. Each option is controlled by a C preprocessor symbol. The details of each
option are outlined in Table 6–3.

Table 6–3. Altera Logging Options (Part 1 of 2)

Name Description

System clock log Purpose Prints out a message from the system clock interrupt handler at a specified interval.
This indicates that the system is still running. The default interval is every 1 second.

Preprocessor
symbol

ALT_LOG_SYS_CLK_ON_FLAG_SETTING

Modifiers The system clock log has two modifiers, providing two different ways to specify the
logging interval.

■ ALT_LOG_SYS_CLK_INTERVAL—Specifies the logging interval in system
clock ticks. The default is <clock ticks per second>, that is, one second.

■ ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER—Specifies the logging
interval in seconds. The default is 1. When you modify
ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER,
ALT_LOG_SYS_CLK_INTERVAL is recalculated.

Sample Output System Clock On 0

System Clock On 1

Write echo Purpose Every time alt_write() is called (normally, whenever characters are sent to
stdout), the first <n> characters are echoed to a logging message. The message
starts with the string "Write Echo:". <n> is specified with
ALT_LOG_WRITE_ECHO_LEN. The default is 15 characters.

Preprocessor
symbol

ALT_LOG_WRITE_ON_FLAG_SETTING

Modifiers ALT_LOG_WRITE_ECHO_LEN—Number of characters to echo. Default is 15.

Sample Output Write Echo: Hello from Nio

JTAG startup log Purpose At JTAG UART driver initialization, print out a line with the number of characters in
the software transmit buffer followed by the JTAG UART control register contents.
The number of characters, prefaced by the string "SW CirBuf", might be
negative, because it is computed as (<tail_pointer> - <head_pointer>) on a circular
buffer.

For more information about the JTAG UART control register fields, refer to the
Off-Chip Interface Peripherals section in Volume 5: Embedded Peripherals of the
Quartus II Handbook.

Preprocessor
symbol

ALT_LOG_JTAG_UART_STARTUP_INFO_ON_FLAG_SETTING

Modifiers None

Sample Output JTAG Startup Info: SW CirBuf = 0, HW FIFO wspace=64
AC=0 WI=0 RI=0 WE=0 RE=1
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_01.pdf

6–12 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
Setting a preprocessor flag to 1 enables the corresponding option. Any value other
than 1 disables the option.

Several options have modifiers, which are additional preprocessor symbols
controlling details of how the options work. For example, the system clock log’s
modifiers control the logging interval. Option modifiers are also listed in Table 6–3.
An option’s modifiers are meaningful only when the option is enabled.

JTAG interval log Purpose Creates an alarm object to print out the same JTAG UART information as the JTAG
startup log, but at a repeated interval. Default interval is 0.1 second, or 10 messages
a second.

Preprocessor
symbol

ALT_LOG_JTAG_UART_ALARM_ON_FLAG_SETTING

Modifiers The JTAG interval log has two modifiers, providing two different ways to specify the
logging interval.

■ ALT_LOG_JTAG_UART_TICKS—Logging interval in ticks. Default is
<ticks_per_second> / 10.

■ ALT_LOG_JTAG_UART_TICKS_DIVISOR—Specifies the number of logs
per second. The default is 10. When you modify
ALT_LOG_JTAG_UART_TICKS_DIVISOR,
ALT_LOG_JTAG_UART_TICKS is recalculated.

Sample Output JTAG Alarm: SW CirBuf = 0, HW FIFO wspace=45 AC=0 WI=0
RI=0 WE=0 RE=1

JTAG interrupt
service routine
(ISR) log

Purpose Prints out a message every time the JTAG UART near-empty interrupt triggers.
Message contains the same JTAG UART information as in the JTAG startup log.

Preprocessor
symbol

ALT_LOG_JTAG_UART_ISR_ON_FLAG_SETTING

Modifiers None

Sample Output JTAG IRQ: SW CirBuf = -20, HW FIFO wspace=64 AC=0 WI=1
RI=0 WE=1 RE=1

Boot log Purpose Prints out messages tracing the software boot process. The boot log is turned on by
default when Altera logging is enabled.

Preprocessor
symbol

ALT_LOG_BOOT_ON_FLAG_SETTING

Modifiers None

Sample Output Refer to “Enabling Altera Logging” on page 6–10.

Table 6–3. Altera Logging Options (Part 2 of 2)

Name Description
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–13
Using Character-Mode Devices
Logging Levels
An additional preprocessor symbol, ALT_LOG_FLAGS, can be set to provide some
grouping for the extra logging options. ALT_LOG_FLAGS implements logging levels
based on performance impact. With higher logging levels, the Altera logging options
take more processor time. ALT_LOG_FLAGS levels are defined in Table 6–4

Because each logging option is controlled by an independent preprocessor symbol,
individual options in the logging levels can be overridden.

Example: Creating a BSP with Logging
Example 6–6 creates a HAL BSP with Altera logging enabled and the following
options in addition to the default boot log:

■ System clock log

■ JTAG startup log

■ JTAG interval log, logging twice a second

■ No write echo

The -DALT_LOG_FLAGS=2 argument adds -DALT_LOG_FLAGS=2 to the
ALT_CPP_FLAGS make variable in public.mk.

Custom Logging Messages
You can add custom messages that are sent to the Altera logging device. To define a
custom message, include the header file alt_log_printf.h in your C source file as
follows:

#include "sys/alt_log_printf.h"

Then use the following macro function:

ALT_LOG_PRINTF(const char *format, ...)

Table 6–4. Altera Logging Levels

Logging Level Logging

0 Boot log (default)

1 Level 0 plus system clock log and JTAG startup log

2 Level 1 plus JTAG interval log and write echo

3 Level 2 plus JTAG ISR log

-1 Silent mode—No Altera logging

Note to Table 6–4:

(1) You can use logging level -1 to turn off logging without changing the program footprint. The logging code is still
present in your executable image, as determined by other logging options chosen. This is useful when you wish
to switch the log output on or off without disturbing the memory map.

Example 6–6. BSP With Logging

nios2-bsp hal my_bsp ../my_hardware.sopcinfo \
--set hal.log_port uart1 \
--set hal.make.bsp_cflags_user_flags \
-DALT_LOG_FLAGS=2 \
-DALT_LOG_WRITE_ON_FLAG_SETTING=0 \
-DALT_LOG_JTAG_UART_TICKS_DIVISOR=2r
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–14 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Character-Mode Devices
This C preprocessor macro is a pared-down version of printf(). The format
argument supports most printf() options. It supports %c, %d, %I, %o, %s, %u, %x,
and %X, as well as some precision and spacing modifiers, such as %-9.3o. It does not
support floating point formats, such as %f or %g. This function is not compiled if
Altera logging is not enabled.

If you want your custom logging message be controlled by Altera logging
preprocessor options, use the appropriate Altera logging option preprocessor flags
from Table 6–4, or Table 6–3 on page 6–11. Example 6–7 illustrates two ways to
implement logging options with custom logging messages.

Altera Logging Files
Table 6–5 lists HAL source files which implement Altera logging functions.

Table 6–6 lists HAL source files which use Altera logging functions. These files
implement the logging options listed in table Table 6–3 on page 6–11. They also serve
as examples of logging usage.

Example 6–7. Using Preprocessor Flags

/* The following example prints "Level 2 logging message" if
logging is set to level 2 or higher */

#if (ALT_LOG_FLAGS >= 2)
ALT_LOG_PRINTF ("Level 2 logging message");

#endif

/* The following example prints "Boot logging message" if boot logging
is turned on */

#if (ALT_LOG_BOOT_ON_FLAG_SETTING == 1)
ALT_LOG_PRINTF ("Boot logging message");

#endif

Table 6–5. HAL Implementation Files for Altera Logging

Location (1) File Name

components/altera_hal/HAL/inc/sys/ alt_log_printf.h

components/altera_hal/HAL/src/ alt_log_printf.c

components/altera_nios2/HAL/src/ alt_log_macro.S

Note to Table 6–5:

(1) All file locations are relative to $SOPC_KIT_NIOS2.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–15
Using File Subsystems
Using File Subsystems
The HAL generic device model for file subsystems allows access to data stored in an
associated storage device using the C standard library file I/O functions. For example,
the Altera read-only zip file system provides read-only access to a file system stored
in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a given mount
point. For example, if a file subsystem is registered with the mount point /mnt/
rozipfs, all file access beneath this directory, such as fopen("/mnt/rozipfs/
myfile", "r"), is directed to that file subsystem.

As with character mode devices, you can manipulate files in a file subsystem using
the C file I/O functions defined in file.h, such as fopen() and fread().

f For more information about the use of these functions, refer to the newlib C library
documentation installed with the Nios II EDS. On the Windows Start menu, click
Programs > Altera > Nios II <version> > Nios II EDS <version> Documentation.

Using Timer Devices
Timer devices are hardware peripherals that count clock ticks and can generate
periodic interrupt requests. You can use a timer device to provide a number of
time-related facilities, such as the HAL system clock, alarms, the time-of-day, and
time measurement. To use the timer facilities, the Nios II processor system must
include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:

■ System clock driver—This type of driver supports alarms, such as you would use
in a scheduler.

■ Timestamp driver—This driver supports high-resolution time measurement.

An individual timer peripheral can behave as either a system clock or a timestamp,
but not both.

f The HAL-specific API functions for accessing timer devices are defined in sys/
alt_alarm.h and sys/alt_timestamp.h.

Table 6–6. HAL Example Files for Altera Logging

Location (1) File Name

components/altera_avalon_jtag_uart/HAL/src/ altera_avalon_jtag_uart.c

components/altera_avalon_timer/HAL/src/ altera_avalon_timer_sc.c

components/altera_hal/HAL/src/ alt_exit.c

components/altera_hal/HAL/src/ alt_main.c

components/altera_hal/HAL/src/ alt_write.c

components/altera_nios2/HAL/src/ crt0.S

Note to Table 6–6:

(1) All file locations are relative to $SOPC_KIT_NIOS2.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–16 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Timer Devices
System Clock Driver
The HAL system clock driver provides a periodic heartbeat, causing the system clock
to increment on each beat. Software can use the system clock facilities to execute
functions at specified times, and to obtain timing information. You select a specific
hardware timer peripheral as the system clock device by manipulating BSP settings.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6–2.

The HAL provides implementations of the following standard UNIX functions:
gettimeofday(), settimeofday(), and times(). The times returned by these
functions are based on the HAL system clock.

The system clock measures time in clock ticks. For embedded engineers who deal
with both hardware and software, do not confuse the HAL system clock with the
clock signal driving the Nios II processor hardware. The period of a HAL system
clock tick is generally much longer than the hardware system clock. system.h defines
the clock tick frequency.

At runtime, you can obtain the current value of the system clock by calling the
alt_nticks() function. This function returns the elapsed time in system clock ticks
since reset. You can get the system clock rate, in ticks per second, by calling the
function alt_ticks_per_second(). The HAL timer driver initializes the tick
frequency when it creates the instance of the system clock.

The standard UNIX function gettimeofday() is available to obtain the current
time. You must first calibrate the time of day by calling settimeofday(). In
addition, you can use the times() function to obtain information about the number
of elapsed ticks. The prototypes for these functions appear in times.h.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Alarms
You can register functions to be executed at a specified time using the HAL alarm
facility. A software program registers an alarm by calling the function
alt_alarm_start():

int alt_alarm_start (alt_alarm* alarm,
alt_u32 nticks,
alt_u32 (*callback) (void* context),
void* context);

The function callback() is called after nticks have elapsed. The input argument
context is passed as the input argument to callback() when the call occurs. The
HAL does not use the context parameter. It is only used as a parameter to the
callback() function.

Your code must allocate the alt_alarm structure, pointed to by the input argument
alarm. This data structure must have a lifetime that is at least as long as that of the
alarm. The best way to allocate this structure is to declare it as a static or global.
alt_alarm_start() initializes *alarm.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–17
Using Timer Devices
The callback function can reset the alarm. The return value of the registered callback
function is the number of ticks until the next call to callback. A return value of zero
indicates that the alarm should be stopped. You can manually cancel an alarm by
calling alt_alarm_stop().

One alarm is created for each call to alt_alarm_start(). Multiple alarms can run
simultaneously.

Alarm callback functions execute in an interrupt context. This imposes functional
restrictions which you must observe when writing an alarm callback.

f For more information about the use of these functions, refer to the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–8 demonstrates registering an alarm for a periodic
callback every second.

Timestamp Driver
Sometimes you want to measure time intervals with a degree of accuracy greater than
that provided by HAL system clock ticks. The HAL provides high resolution timing
functions using a timestamp driver. A timestamp driver provides a monotonically
increasing counter that you can sample to obtain timing information. The HAL only
supports one timestamp driver in the system.

Example 6–8. Using a Periodic Alarm Callback Function

#include <stddef.h>
#include <stdio.h>
#include "sys/alt_alarm.h"
#include "alt_types.h"

/*
* The callback function.
*/

alt_u32 my_alarm_callback (void* context)
{

/* This function is called once per second */
return alt_ticks_per_second();

}

...

/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;

...

if (alt_alarm_start (&alarm,
alt_ticks_per_second(),
my_alarm_callback,
NULL) < 0)

{
printf ("No system clock available\n");

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

6–18 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Timer Devices
You specify a hardware timer peripheral as the timestamp device by manipulating
BSP settings. The Altera-provided timestamp driver uses the timer that you specify.

If a timestamp driver is present, the following functions are available:

■ alt_timestamp_start()

■ alt_timestamp()

Calling alt_timestamp_start() starts the counter running. Subsequent calls to
alt_timestamp() return the current value of the timestamp counter. Calling
alt_timestamp_start() again resets the counter to zero. The behavior of the
timestamp driver is undefined when the counter reaches (232 - 1).

You can obtain the rate at which the timestamp counter increments by calling the
function alt_timestamp_freq(). This rate is typically the hardware frequency of
the Nios II processor system—usually millions of cycles per second. The timestamp
drivers are defined in the alt_timestamp.h header file.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–9 shows how you can use the timestamp facility to
measure code execution time.

Example 6–9. Using the Timestamp to Measure Code Execution Time

#include <stdio.h>
#include "sys/alt_timestamp.h"
#include "alt_types.h"

int main (void)
{

alt_u32 time1;
alt_u32 time2;
alt_u32 time3;

if (alt_timestamp_start() < 0)
{
printf ("No timestamp device available\n");

}
else
{
time1 = alt_timestamp();
func1(); /* first function to monitor */
time2 = alt_timestamp();
func2(); /* second function to monitor */
time3 = alt_timestamp();

printf ("time in func1 = %u ticks\n",
(unsigned int) (time2 - time1));

printf ("time in func2 = %u ticks\n",
(unsigned int) (time3 - time2));

printf ("Number of ticks per second = %u\n",
(unsigned int)alt_timestamp_freq());

}
return 0;

}

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–19
Using Flash Devices
Using Flash Devices
The HAL provides a generic device model for nonvolatile flash memory devices.
Flash memories use special programming protocols to store data. The HAL API
provides functions to write data to flash memory. For example, you can use these
functions to implement a flash-based file subsystem.

The HAL API also provides functions to read flash, although it is generally not
necessary. For most flash devices, programs can treat the flash memory space as
simple memory when reading, and do not need to call special HAL API functions. If
the flash device has a special protocol for reading data, such as the Altera erasable
programmable configurable serial (EPCS) configuration device, you must use the
HAL API to both read and write data.

This section describes the HAL API for the flash device model. The following two
APIs provide two different levels of access to the flash:

■ Simple flash access—Functions that write buffers to flash and read them back at
the block level. In writing, if the buffer is less than a full block, these functions
erase preexisting flash data above and below the newly written data.

■ Fine-grained flash access—Functions that write buffers to flash and read them
back at the buffer level. In writing, if the buffer is less than a full block, these
functions preserve preexisting flash data above and below the newly written data.
This functionality is generally required for managing a file subsystem.

The API functions for accessing flash devices are defined in sys/alt_flash.h.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook. You can get details about the
Common Flash Interface, including the organization of common flash interface (CFI)
erase regions and blocks, from JEDEC (www.jedec.org). You can find the CFI standard
by searching for document JESD68.

Simple Flash Access
This interface consists of the functions alt_flash_open_dev(),
alt_write_flash(), alt_read_flash(), and alt_flash_close_dev(). The
code “Using the Simple Flash API Functions” on page 6–21 shows the use of all of
these functions in one code example. You open a flash device by calling
alt_flash_open_dev(), which returns a file handle to a flash device. This
function takes a single argument that is the name of the flash device, as defined in
system.h.

After you obtain a handle, you can use the alt_write_flash() function to write
data to the flash device. The prototype is:

int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

A call to this function writes to the flash device identified by the handle fd. The driver
writes the data starting at offset bytes from the base of the flash device. The data
written comes from the address pointed to by src_addr, and the amount of data
written is length.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
www.jedec.org

6–20 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices
There is also an alt_read_flash() function to read data from the flash device. The
prototype is:

int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)

A call to alt_read_flash() reads from the flash device with the handle fd,
offset bytes from the beginning of the flash device. The function writes the data to
location pointed to by dest_addr, and the amount of data read is length. For most
flash devices, you can access the contents as standard memory, making it unnecessary
to use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the device.
The prototype for this function is:

void alt_flash_close_dev(alt_flash_fd* fd)

The code in Example 6–10 shows the use of simple flash API functions to access a
flash device named /dev/ext_flash, as defined in system.h.

Block Erasure or Corruption
Generally, flash memory is divided into blocks. alt_write_flash() might need to
erase the contents of a block before it can write data to it. In this case, it makes no
attempt to preserve the existing contents of the block. This action can lead to
unexpected data corruption (erasure), if you are performing writes that do not fall on
block boundaries. If you wish to preserve existing flash memory contents, use the
fine-grained flash functions. These are discussed in the following section.

Table 6–7 on page 6–22 shows how you can cause unexpected data corruption by
writing using the simple flash-access functions. Table 6–7 shows the example of an 8
Kbyte flash memory comprising two 4 Kbyte blocks. First write 5 Kbytes of all 0xAA
to flash memory at address 0x0000, and then write 2 Kbytes of all 0xBB to address
0x1400. After the first write succeeds (at time t(2)), the flash memory contains 5
Kbyte of 0xAA, and the rest is empty (that is, 0xFF). Then the second write begins, but
before writing to the second block, the block is erased. At this point, t(3), the flash
contains 4 Kbyte of 0xAA and 4 Kbyte of 0xFF. After the second write finishes, at time
t(4), the 2 Kbyte of 0xFF at address 0x1000 is corrupted.

Fine-Grained Flash Access
Three additional functions provide complete control for writing flash contents at the
highest granularity:

■ alt_get_flash_info()

■ alt_erase_flash_block()

■ alt_write_flash_block()

By the nature of flash memory, you cannot erase a single address in a block. You must
erase (that is, set to all ones) an entire block at a time. Writing to flash memory can
only change bits from 1 to 0; to change any bit from 0 to 1, you must erase the entire
block along with it.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–21
Using Flash Devices
Therefore, to alter a specific location in a block while leaving the surrounding contents
unchanged, you must read out the entire contents of the block to a buffer, alter the
value(s) in the buffer, erase the flash block, and finally write the whole block-sized
buffer back to flash memory. The fine-grained flash access functions automate this
process at the flash block level.

alt_get_flash_info() gets the number of erase regions, the number of erase
blocks in each region, and the size of each erase block. The function prototype is as
follows:

int alt_get_flash_info (
alt_flash_fd* fd,
flash_region** info,
int* number_of_regions)

If the call is successful, on return the address pointed to by number_of_regions
contains the number of erase regions in the flash memory, and *info points to an
array of flash_region structures. This array is part of the file descriptor.

Example 6–10. Using the Simple Flash API Functions

#include <stdio.h>
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 1024

int main ()
{

alt_flash_fd* fd;
int ret_code;
char source[BUF_SIZE];
char dest[BUF_SIZE];

/* Initialize the source buffer to all 0xAA */
memset(source, 0xAA, BUF_SIZE);

fd = alt_flash_open_dev("/dev/ext_flash");
if (fd!=NULL)
{
ret_code = alt_write_flash(fd, 0, source, BUF_SIZE);
if (ret_code==0)
{

ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
if (ret_code==0)
{

/*
* Success.
* At this point, the flash is all 0xAA and we
* should have read that all back to dest
*/

}
}
alt_flash_close_dev(fd);

}
else
{
printf("Can’t open flash device\n");

}
return 0;

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–22 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using Flash Devices
The flash_region structure is defined in sys/alt_flash_types.h. The data structure
is defined as follows:

typedef struct flash_region
{

int offset; /* Offset of this region from start of the flash */
int region_size; /* Size of this erase region */
int number_of_blocks; /* Number of blocks in this region */
int block_size; /* Size of each block in this erase region */

}flash_region;

With the information obtained by calling alt_get_flash_info(), you are in a
position to erase or program individual blocks of the flash device.

alt_erase_flash() erases a single block in the flash memory. The function
prototype is as follows:

int alt_erase_flash_block (alt_flash_fd* fd, int offset, int length)

The flash memory is identified by the handle fd. The block is identified as being
offset bytes from the beginning of the flash memory, and the block size is passed in
length.

alt_write_flash_block() writes to a single block in the flash memory. The
prototype is:

int alt_write_flash_block(alt_flash_fd* fd,
int block_offset,
int data_offset,
const void *data,
int length)

This function writes to the flash memory identified by the handle fd. It writes to the
block located block_offset bytes from the start of the flash device. The function
writes length bytes of data from the location pointed to by data to the location
data_offset bytes from the start of the flash device.

Table 6–7. Example of Writing Flash and Causing Unexpected Data Corruption

Address Block

Time t(0) Time t(1) Time t(2) Time t(3) Time t(4)

Before
First Write

First Write Second Write

After Erasing
Block(s)

After
Writing
Data 1

After Erasing
Block(s)

After
Writing
Data 2

0x0000 1 ?? FF AA AA AA

0x0400 1 ?? FF AA AA AA

0x0800 1 ?? FF AA AA AA

0x0C00 1 ?? FF AA AA AA

0x1000 2 ?? FF AA FF FF (1)

0x1400 2 ?? FF FF FF BB

0x1800 2 ?? FF FF FF BB

0x1C00 2 ?? FF FF FF FF

Note to Table 6–7:

(1) Unintentionally cleared to FF during erasure for second write.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–23
Using Flash Devices
1 These program and erase functions do not perform address checking, and do not
verify whether a write operation spans into the next block. You must pass in valid
information about the blocks to program or erase.

The code in Example 6–11 on page 6–23 demonstrates the use of the fine-grained flash
access functions.

Example 6–11. Using the Fine-Grained Flash Access API Functions

#include <string.h>
#include "sys/alt_flash.h"
#include "stdtypes.h"
#include "system.h"#define BUF_SIZE 100

int main (void)
{

flash_region* regions;
alt_flash_fd* fd;
int number_of_regions;
int ret_code;
char write_data[BUF_SIZE];

/* Set write_data to all 0xa */
memset(write_data, 0xA, BUF_SIZE);

fd = alt_flash_open_dev(EXT_FLASH_NAME);

if (fd)
{
ret_code = alt_get_flash_info(fd, ®ions, &number_of_regions);

if (number_of_regions && (regions->offset == 0))
{

/* Erase the first block */
ret_code = alt_erase_flash_block(fd,

regions->offset,
regions->block_size);

if (ret_code == 0) {
/*
* Write BUF_SIZE bytes from write_data 100 bytes to
* the first block of the flash
*/
ret_code = alt_write_flash_block (

fd,
regions->offset,
regions->offset+0x100,
write_data,
BUF_SIZE);

}
}

}
return 0;

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–24 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices
Using DMA Devices
The HAL provides a device abstraction model for direct memory access (DMA)
devices. These are peripherals that perform bulk data transactions from a data source
to a destination. Sources and destinations can be memory or another device, such as
an Ethernet connection.

In the HAL DMA device model, there are two categories of DMA transactions:
transmit and receive. The HAL provides two device drivers to implement transmit
channels and receive channels. A transmit channel takes data in a source buffer and
transmits it to a destination device. A receive channel receives data from a device and
deposits it in a destination buffer. Depending on the implementation of the
underlying hardware, software might have access to only one of these two endpoints.

Figure 6–2 shows the three basic types of DMA transactions. Copying data from
memory to memory involves both receive and transmit DMA channels
simultaneously.

The API for access to DMA devices is defined in sys/alt_dma.h.

f For more information about the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore when reading
and writing data you must consider cache interactions.

f For more information about cache memory, refer to the Cache and Tightly-Coupled
Memory chapter of the Nios II Software Developer’s Handbook.

Figure 6–2. Three Basic Types of DMA Transactions

1. Receiving Data
 from a Peripheral

DMA
Recieve
Channel

Peripheral Memory

 2. Transmitting Data
 to a Peripheral

DMA
Receive
Channel

Peripheral

DMA
Transmit
Channel

DMA
Receive
Channel

DMA
Transmit
Channel

3. Transferring Data
 from Memory to
 Memory

Memory

MemoryMemory
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–25
Using DMA Devices
DMA Transmit Channels
DMA transmit requests are queued using a DMA transmit device handle. To obtained
a handle, use the function alt_dma_txchan_open(). This function takes a single
argument, the name of a device to use, as defined in system.h.

The code in Example 6–12 shows how to obtain a handle for a DMA transmit device
dma_0.

You can use this handle to post a transmit request using alt_dma_txchan_send().
The prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
const void* from,
alt_u32 length,
alt_txchan_done* done,
void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel dma.
Argument length specifies the number of bytes of data to transmit, and argument
from specifies the source address. The function returns before the full DMA
transaction completes. The return value indicates whether the request is successfully
queued. A negative return value indicates that the request failed. When the
transaction completes, the user-supplied function done is called with argument
handle to provide notification.

Two additional functions are provided for manipulating DMA transmit channels:
alt_dma_txchan_space(), and alt_dma_txchan_ioctl(). The
alt_dma_txchan_space() function returns the number of additional transmit
requests that can be queued to the device. The alt_dma_txchan_ioctl()function
performs device-specific manipulation of the transmit device.

Example 6–12. Obtaining a File Handle for a DMA Device

#include <stddef.h>
#include "sys/alt_dma.h"

int main (void)
{

alt_dma_txchan tx;

tx = alt_dma_txchan_open ("/dev/dma_0");
if (tx == NULL)
{
/* Error */

}
else
{
/* Success */

}
return 0;

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–26 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices
1 If you are using the Avalon Memory-Mapped® (Avalon-MM) DMA device to transmit
to hardware (not memory-to-memory transfer), call the
alt_dma_txchan_ioctl()function with the request argument set to
ALT_DMA_TX_ONLY_ON.

f For further information, refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

DMA Receive Channels
DMA receive channels operate similarly to DMA transmit channels. Software can
obtain a handle for a DMA receive channel using the alt_dma_rxchan_open()
function. You can then use the alt_dma_rxchan_prepare() function to post
receive requests. The prototype for alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
void* data,
alt_u32 length,
alt_rxchan_done* done,
void* handle);

A call to this function posts a receive request to channel dma, for up to length bytes
of data to be placed at address data. This function returns before the DMA
transaction completes. The return value indicates whether the request is successfully
queued. A negative return value indicates that the request failed. When the
transaction completes, the user-supplied function done() is called with argument
handle to provide notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically this is caused
by a catastrophic hardware failure; for example, if a component involved in the
transfer fails to respond to a read or write request. If the DMA transfer does not
complete (that is, less than length bytes are transferred), function done() is never
called.

Two additional functions are provided for manipulating DMA receive channels:
alt_dma_rxchan_depth() and alt_dma_rxchan_ioctl().

1 If you are using the Avalon-MM DMA device to receive from hardware (not
memory-to-memory transfer), call the alt_dma_rxchan_ioctl() function with
the request argument set to ALT_DMA_RX_ONLY_ON.

alt_dma_rxchan_depth() returns the maximum number of receive requests that
can be queued to the device. alt_dma_rxchan_ioctl() performs device-specific
manipulation of the receive device.

f For further details, refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

The code in Example 6–13 shows a complete example application that posts a DMA
receive request, and blocks in main() until the transaction completes.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–27
Using DMA Devices
Memory-to-Memory DMA Transactions
Copying data from one memory buffer to another buffer involves both receive and
transmit DMA drivers. The code in Example 6–14 shows the process of queuing up a
receive request followed by a transmit request to achieve a memory-to-memory DMA
transaction.

Example 6–13. A DMA Transaction on a Receive Channel

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "sys/alt_dma.h"
#include "alt_types.h"

/* flag used to indicate the transaction is complete */
volatile int dma_complete = 0;

/* function that is called when the transaction completes */
void dma_done (void* handle, void* data)
{

dma_complete = 1;
}

int main (void)
{

alt_u8 buffer[1024];
alt_dma_rxchan rx;

/* Obtain a handle for the device */
if ((rx = alt_dma_rxchan_open ("/dev/dma_0")) == NULL)
{
printf ("Error: failed to open device\n");
exit (1);

}
else
{
/* Post the receive request */
if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL) < 0)
{

printf ("Error: failed to post receive request\n");
exit (1);

}

/* Wait for the transaction to complete */
while (!dma_complete);
printf ("Transaction complete\n");
alt_dma_rxchan_close (rx);

}
return 0;

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–28 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using DMA Devices
Example 6–14. Copying Data from Memory to Memory (Part 1 of 2)

#include <stdio.h>
#include <stdlib.h>

#include "sys/alt_dma.h"
#include "system.h"

static volatile int rx_done = 0;

/*
* Callback function that obtains notification that the data
* is received.
*/

static void done (void* handle, void* data)
{

rx_done++;
}

/*
*
*/

int main (int argc, char* argv[], char* envp[])
{

int rc;

alt_dma_txchan txchan;
alt_dma_rxchan rxchan;

void* tx_data = (void*) 0x901000; /* pointer to data to send */
void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */

/* Create the transmit channel */

if ((txchan = alt_dma_txchan_open("/dev/dma_0")) == NULL)
{
printf ("Failed to open transmit channel\n");
exit (1);
}

/* Create the receive channel */

if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
{
printf ("Failed to open receive channel\n");
exit (1);

}

/* Post the transmit request */

if ((rc = alt_dma_txchan_send (txchan,
tx_data,
128,
NULL,
NULL)) < 0)

{
printf ("Failed to post transmit request, reason = %i\n", rc);
exit (1);
}

/* Continued... */
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–29
Reducing Code Footprint
Reducing Code Footprint
Code size is always a concern for embedded systems developers, because there is a
cost associated with the memory device that stores code. The ability to control and
reduce code size is important in controlling this cost.

The HAL environment is designed to include only those features that you request,
minimizing the total code footprint. If your Nios II hardware system contains exactly
the peripherals used by your program, the HAL contains only the drivers necessary to
control the hardware.

The following sections describe options to consider when you need to further reduce
code size. The hello_world_small example project demonstrates the use of some of
these options to reduce code size to the absolute minimum.

Implementing the options in the following sections entails making changes to BSP
settings. For detailed information about manipulating BSP settings, refer to “HAL
BSP Settings” on page 6–2.

Enable Compiler Optimizations
To enable compiler optimizations, use the -O3 compiler optimization level for the
nios2-elf-gcc compiler. You can specify this command-line option through a BSP
setting.

With this option turned on, the Nios II compiler compiles code with the maximum
optimization available, for both size and speed.

1 You must set this option for both the BSP and the application project.

/* Post the receive request */

if ((rc = alt_dma_rxchan_prepare (rxchan,
rx_buffer,
128,
done,
NULL)) < 0)

{
printf ("Failed to post read request, reason = %i\n", rc);
exit (1);

}

/* wait for transfer to complete */

while (!rx_done);

printf ("Transfer successful!\n");

return 0;
}

Example 6–14. Copying Data from Memory to Memory (Part 2 of 2)
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–30 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint
Use Reduced Device Drivers
Some devices provide two driver variants, a fast variant and a small variant. The
feature sets provided by these two variants are device specific. The fast variant is
full-featured, and the small variant provides a reduced code footprint.

By default the HAL always uses the fast driver variants. You can select the reduced
device driver for all hardware components, or for an individual component, through
HAL BSP settings.

Table 6–8 lists the Altera Nios II peripherals that currently provide small footprint
drivers. The small footprint option might also affect other peripherals. Refer to each
peripheral’s data sheet for complete details of its driver’s small footprint behavior.

Reduce the File Descriptor Pool
The file descriptors that access character mode devices and files are allocated from a
file descriptor pool. You can change the size of the file descriptor pool through a BSP
setting. The default is 32.

Use /dev/null
At boot time, standard input, standard output, and standard error are all directed
towards the null device, that is, /dev/null. This direction ensures that calls to
printf() during driver initialization do nothing and therefore are harmless. After
all drivers are installed, these streams are redirected to the channels configured in the
HAL. The footprint of the code that performs this redirection is small, but you can
eliminate it entirely by selecting null for stdin, stdout, and stderr. This selection
assumes that you want to discard all data transmitted on standard out or standard
error, and your program never receives input through stdin. You can control the
assignment of stdin, stdout, and stderr channels by manipulating BSP settings.

Use a Smaller File I/O Library

Use the Small newlib C Library
The full newlib ANSI C standard library is often unnecessary for embedded systems.
The GNU Compiler Collection (GCC) provides a reduced implementation of the
newlib ANSI C standard library, omitting features of newlib that are often
superfluous for embedded systems. The small newlib implementation requires a
smaller code footprint. When you use nios2-elf-gcc at the command line, the
-msmallc command-line option enables the small C library.

Table 6–8. Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven

JTAG UART Polled operation, rather than IRQ-driven

Common flash interface
controller

Driver excluded in small footprint mode

LCD module controller Driver excluded in small footprint mode

EPCS serial configuration device Driver excluded in small footprint mode
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–31
Reducing Code Footprint
You can select the small newlib library through BSP settings. Table 6–9 summarizes
the limitations of the Nios II small newlib C library implementation.

Table 6–9. Limitations of the Nios II Small newlib C Library (Part 1 of 2)

Limitation Functions Affected

No floating-point support for printf() family of routines. The functions
listed are implemented, but %f and %g options are not supported. (1)

asprintf()

fiprintf()

fprintf()

iprintf()

printf()

siprintf()

snprintf()

sprintf()

No floating-point support for vprintf() family of routines. The functions
listed are implemented, but %f and %g options are not supported.

vasprintf()

vfiprintf()

vfprintf()

vprintf()

vsnprintf()

vsprintf()

No support for scanf() family of routines. The functions listed are not
supported.

fscanf()

scanf()

sscanf()

vfscanf()

vscanf()

vsscanf()

No support for seeking. The functions listed are not supported. fseek()

ftell()

No support for opening/closing FILE *. Only pre-opened stdout, stderr,
and stdin are available. The functions listed are not supported.

fopen()

fclose()

fdopen()

fcloseall()

fileno()
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–32 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint
1 The small newlib C library does not support MicroC/OS-II.

f For details about the GCC small newlib C library, refer to the newlib documentation
installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera
> Nios II > Nios II Documentation.

1 The Nios II implementation of the small newlib C library differs slightly from GCC.
Table 6–9 provides details about the differences.

Use UNIX-Style File I/O
If you need to reduce the code footprint further, you can omit the newlib C library,
and use the UNIX-style API. For details, refer to “UNIX-Style Interface” on page 6–5.

No buffering of stdio.h output routines. functions supported with no buffering:

fiprintf()

fputc()

fputs()

perror()

putc()

putchar()

puts()

printf()

functions not supported:

setbuf()

setvbuf()

No stdio.h input routines. The functions listed are not supported. fgetc()

gets()

fscanf()

getc()

getchar()

gets()

getw()

scanf()

No support for locale. setlocale()

localeconv()

No support for C++, because the functions listed in this table are not supported.

Note to Table 6–9:

(1) These functions are a Nios II extension. GCC does not implement them in the small newlib C library.

Table 6–9. Limitations of the Nios II Small newlib C Library (Part 2 of 2)

Limitation Functions Affected
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–33
Reducing Code Footprint
The Nios II EDS provides ANSI C file I/O, in the newlib C library, because there is a
per-access performance overhead associated with accessing devices and files using
the UNIX-style file I/O functions. The ANSI C file I/O provides buffered access,
thereby reducing the total number of hardware I/O accesses performed. Also the
ANSI C API is more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Emulate ANSI C Functions
If you choose to omit the full implementation of newlib, but you need a limited
number of ANSI-style functions, you can implement them easily using UNIX-style
functions. The code in Example 6–15 shows a simple, unbuffered implementation of
getchar().

f This example is from The C Programming Language, Second Edition, by Brian W.
Kernighan and Dennis M. Ritchie. This standard textbook contains many other useful
functions.

Use the Lightweight Device Driver API
The lightweight device driver API allows you to minimize the overhead of accessing
device drivers. It has no direct effect on the size of the drivers themselves, but lets you
eliminate driver API features which you might not need, reducing the overall size of
the HAL code.

The lightweight device driver API is available for character-mode devices. The
following device drivers support the lightweight device driver API:

■ JTAG UART

■ UART

■ Optrex 16207 LCD

For these devices, the lightweight device driver API conserves code space by
eliminating the dynamic file descriptor table and replacing it with three static file
descriptors, corresponding to stdin, stdout, and stderr. Library functions related
to opening, closing, and manipulating file descriptors are unavailable, but all other
library functionality is available. You can refer to stdin, stdout, and stderr as you
would to any other file descriptor. You can also refer to the following predefined file
numbers:

#define STDIN 0
#define STDOUT 1
#define STDERR 2

Example 6–15. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)
{

char c;
return (read (0, &c, 1) == 1) ? (unsigned char) c : EOF;

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–34 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Reducing Code Footprint
This option is appropriate if your program has a limited need for file I/O. The Altera
host-based file system and the Altera read-only zip file system are not available with
the reduced device driver API. You can select the reduced device drivers through BSP
settings.

By default, the lightweight device driver API is disabled.

f For further details about the lightweight device driver API, refer to the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Use the Minimal Character-Mode API
If you can limit your use of character-mode I/O to very simple features, you can
reduce code footprint by using the minimal character-mode API. This API includes
the following functions:

■ alt_printf()

■ alt_putchar()

■ alt_putstr()

■ alt_getchar()

These functions are appropriate if your program only needs to accept command
strings and send simple text messages. Some of them are helpful only in conjunction
with the lightweight device driver API, discussed in “Use the Lightweight Device
Driver API” on page 6–33.

To use the minimal character-mode API, include the header file sys/alt_stdio.h.

The following sections outline the effects of the functions on code footprint.

alt_printf()
This function is similar to printf(), but supports only the %c, %s, %x, and %%
substitution strings. alt_printf() takes up substantially less code space than
printf(), regardless whether you select the lightweight device driver API.
alt_printf() occupies less than 1Kbyte with compiler optimization level -O2.

alt_putchar()
Equivalent to putchar(). In conjunction with the lightweight device driver API, this
function further reduces code footprint. In the absence of the lightweight API, it calls
putchar().

alt_putstr()
Similar to puts(), except that it does not append a newline character to the string. In
conjunction with the lightweight device driver API, this function further reduces code
footprint. In the absence of the lightweight API, it calls puts().

alt_getchar()
Equivalent to getchar(). In conjunction with the lightweight device driver API, this
function further reduces code footprint. In the absence of the lightweight API, it calls
getchar().
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–35
Reducing Code Footprint
f For further details about the minimal character-mode functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Eliminate Unused Device Drivers
If a hardware device is present in the system, by default the Nios II development
flows assume the device needs drivers, and configure the HAL BSP accordingly. If the
HAL can find an appropriate driver, it creates an instance of this driver. If your
program never actually accesses the device, resources are being used unnecessarily to
initialize the device driver.

If the hardware includes a device that your program never uses, consider removing
the device from the hardware. This reduces both code footprint and FPGA resource
usage.

However, there are cases when a device must be present, but runtime software does
not require a driver. The most common example is flash memory. The user program
might boot from flash, but not use it at runtime; thus, it does not need a flash driver.

In the Nios II IDE, you can prevent the HAL from including the flash driver by
defining the ALT_EXCLUDE_CFI_FLASH preprocessor option in the properties for the
BSP project.

You can selectively omit any individual driver, select a specific driver version, or
substitute your own driver.

f For further information about controlling driver configurations, refer to the Using the
Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Another way to control the device driver initialization process is to use the
free-standing environment. For details, refer to “Boot Sequence and Entry Point” on
page 6–36.

Eliminate Unneeded Exit Code
The HAL calls the exit() function at system shutdown to provide a clean exit from
the program. exit() flushes all of the C library internal I/O buffers and calls any
C++ functions registered with atexit(). In particular, exit() is called on return
from main(). Two HAL options allow you to minimize or eliminate this exit code.

Eliminate Clean Exit
To avoid the overhead associated with providing a clean exit, your program can use
the function _exit() in place of exit(). This function does not require you to
change source code. You can select the _exit() function through a BSP setting.

Eliminate All Exit Code
Many embedded systems never exit at all. In such cases, exit code is unnecessary. You
can eliminate all exit code through a BSP setting.

1 If you enable this option, ensure that your main() function (or alt_main()
function) does not return.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–36 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Boot Sequence and Entry Point
Turn off C++ Support
By default, the HAL provides support for C++ programs, including default
constructors and destructors. You can disable C++ support through a BSP setting.

Boot Sequence and Entry Point
Normally, your program’s entry point is the function main(). There is an alternate
entry point, alt_main(), that you can use to gain greater control of the boot
sequence. The difference between entering at main() and entering at alt_main() is
the difference between hosted and free-standing applications.

Hosted versus Free-Standing Applications
The ANSI C standard defines a hosted application as one that calls main() to begin
execution. At the start of main(), a hosted application presumes the runtime
environment and all system services are initialized and ready to use. This is true in the
HAL environment. If you are new to Nios II programming, the HAL’s hosted
environment helps you come up to speed more easily, because you need not consider
what devices exist in the system or how to initialize each one. The HAL initializes the
whole system.

The ANSI C standard also provides for an alternate entry point that avoids automatic
initialization, and assumes that the Nios II programmer initializes any needed
hardware explicitly. The alt_main() function provides a free-standing
environment, giving you complete control over the initialization of the system. The
free-standing environment places on the programmer the responsibility to initialize
any system features used in the program. For example, calls to printf() do not
function correctly in the free-standing environment, unless alt_main() first
instantiates a character-mode device driver, and redirects stdout to the device.

1 Using the free-standing environment increases the complexity of writing Nios II
programs, because you assume responsibility for initializing the system. If your main
interest is to reduce code footprint, you should use the suggestions described in
“Reducing Code Footprint” on page 6–29. It is easier to reduce the HAL BSP footprint
by using BSP settings, than to use the free-standing mode.

The Nios II EDS provides examples of both free-standing and hosted programs.

f For more information, refer to the Nios II IDE help system.

Boot Sequence for HAL-Based Programs
The HAL provides system initialization code in the C runtime library (crt0.S). This
code performs the following boot sequence:

■ Flushes the instruction and data cache.

■ Configures the stack pointer.

■ Configures the global pointer register.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–37
Boot Sequence and Entry Point
■ Initializes the BSS region to zeroes using the linker-supplied symbols
__bss_start and __bss_end. These are pointers to the beginning and the end
of the BSS region.

■ If there is no boot loader present in the system, copies to RAM any linker section
whose run address is in RAM, such as.rwdata, .rodata, and .exceptions.
Refer to “Global Pointer Register” on page 6–42.

■ Calls alt_main().

The HAL provides a default implementation of the alt_main() function, which
performs the following steps:

■ Calls ALT_OS_INIT() to perform any necessary operating system specific
initialization. For a system that does not include an operating system (OS)
scheduler, this macro has no effect.

■ If you are using the HAL with an operating system, initializes the
alt_fd_list_lock semaphore, which controls access to the HAL file systems.

■ Initializes the interrupt controller, and enable interrupts.

■ Calls the alt_sys_init() function, which initializes all device drivers and
software packages in the system. The Nios II development flow creates the file
alt_sys_init.c for each HAL BSP.

■ Redirects the C standard I/O channels (stdin, stdout, and stderr) to use the
appropriate devices.

■ Calls the C++ constructors, using the _do_ctors() function.

■ Registers the C++ destructors to be called at system shutdown.

■ Calls main().

■ Calls exit(), passing the return code of main() as the input argument for
exit().

alt_main.c, installed with the Nios II EDS, provides this default implementation. The
software build tools copy alt_main.c to your BSP directory.

Customizing the Boot Sequence
You can provide your own implementation of the start-up sequence by simply
defining alt_main() in your Nios II project. This gives you complete control of the
boot sequence, and allows you to selectively enable HAL services. If your application
requires an alt_main() entry point, you can copy the default implementation as a
starting point and customize it to your needs.

Function alt_main() calls function main(). After main() returns, the default
alt_main() enters an infinite loop. Alternatively, your custom alt_main() might
terminate by calling exit(). Do not use a return statement.

The prototype for alt_main() is:

void alt_main (void)

The HAL build environment includes mechanisms to override default HAL BSP code.
This lets you override boot loaders, as well as default device drivers and other system
code, with your own implementation.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–38 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage
alt_sys_init.c is a generated file, which you should not modify. However, the Nios II
software build tools enable you to control the generated contents of alt_sys_init.c. To
specify the initialization sequence in alt_sys_init.c, you manipulate the
auto_initialize and alt_sys_init_priority properties of each driver, using
the set_sw_property Tcl command.

f For more information about generated files and how to control the contents of
alt_sys_init.c, refer to the Using the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook. For general information about alt_sys_init.c, refer to
the Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. For details about the set_sw_property Tcl
command, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Memory Usage
This section describes how the HAL uses memory and arranges code, data, stack, and
other logical memory sections, in physical memory.

Memory Sections
By default, HAL-based systems are linked using a generated linker script that is
created and managed by the Nios II IDE or the Nios II software build tools. This linker
script controls the mapping of code and data to the available memory sections. The
auto-generated linker script creates standard code and data sections (.text,
.rodata, .rwdata, and .bss), plus a section for each physical memory device in
the system. For example, if a memory component named sdram is defined in the
system.h file, there is a memory section named .sdram. Figure 6–3 shows the
organization of a typical HAL link map.

The memory devices that contain the Nios II processor’s reset and exception
addresses are a special case. The Nios II tools construct the 32-byte .entry section
starting at the reset address. This section is reserved exclusively for the use of the reset
handler. Similarly, the tools construct a .exceptions section, starting at the
exception address.

In a memory device containing the reset or exception address, the linker creates a
normal (non-reserved) memory section above the .entry or .exceptions section.
If there is a region of memory below the .entry or .exceptions section, it is
unavailable to the Nios II software. Figure 6–3 illustrates an unavailable memory
region below the .exceptions section.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–39
Memory Usage
Assigning Code and Data to Memory Partitions
This section describes how to control the placement of program code and data in
specific memory sections. In general, the Nios II development flow specifies a sensible
default partitioning. However, you might wish to change the partitioning in special
situations.

For example, to enhance performance, it is a common technique to place
performance-critical code and data in RAM with fast access time. It is also common
during the debug phase to reset (that is, boot) the processor from a location in RAM,
but then boot from flash memory in the released version of the software. In these
cases, you must specify manually which code belongs in which section.

Figure 6–3. Sample HAL Link Map

ext_flash

sdram

ext_ram

epcs_controller

HAL Memory
Sections

Physical
Memory

.entry

.ext_flash

(unused)

.exceptions

.text

.rodata

.rwdata

.bss

.sdram

.ext_ram

.epcs_controller
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–40 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage
Simple Placement Options
The reset handler code is always placed at the base of the .reset partition. The
exception handler code is always the first code in the section that contains the
exception address. By default, the remaining code and data are divided into the
following output sections:

■ .text—All remaining code

■ .rodata—The read-only data

■ .rwdata—Read-write data

■ .bss—Zero-initialized data

You can control the placement of .text, .rodata, .rwdata, and all other memory
partitions by manipulating BSP settings. For details about how to control BSP settings,
refer to “HAL BSP Settings” on page 6–2.

The BSP editor is a very convenient way to manipulate the linker’s memory map. The
BSP editor displays memory section and region assignments graphically, allowing
you to see overlapping or unused sections of memory. The BSP editor is available at
the command line of the Nios II software build tools.

f For details, refer to the Introduction to the Nios II Software Build Tools chapter of the
Nios II Software Developer’s Handbook.

Advanced Placement Options
In your program source code, you can specify a target memory section for each piece
of code. In C or C++, you can use the section attribute. This attribute must be
placed in a function prototype; you cannot place it in the function declaration itself.
The code in Example 6–16 places a variable foo in the memory named ext_ram, and
the function bar() in the memory named sdram.

In assembly you do this using the .section directive. For example, all code after the
following line is placed in the memory device named ext_ram:

.section .ext_ram.txt

Example 6–16. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".ext_ram.rwdata"))) = 0;

void bar (void) __attribute__ ((section (".sdram.txt")));

void bar (void)
{

foo++;
}

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–41
Memory Usage
1 The section names ext_ram and sdram are examples. You need to use section names
corresponding to your hardware. When creating section names, use the following
extensions:

■ .txt for code: for example, .sdram.txt

■ .rodata for read-only data: for example, .cfi_flash.rodata

■ .rwdata for read-write data: for example, .ext_ram.rwdata

f For details about the use of these features, refer to the GNU compiler and assembler
documentation. This documentation is installed with the Nios II EDS. To find it, open
the Nios II EDS documentation launchpad, scroll down to Software Development,
and click Using the GNU Compiler Collection (GCC).

1 A powerful way to manipulate the linker memory map is by using the BSP editor.
With the BSP editor, you can assign linker sections to specific physical regions, and
then review a graphical representation of memory showing unused or overlapping
regions. You start the BSP editor from the Nios II command shell. For details about
using the BSP editor, refer to the editor’s tool tips.

Placement of the Heap and Stack
By default, the heap and stack are placed in the same memory partition as the
.rwdata section. The stack grows downwards (toward lower addresses) from the
end of the section. The heap grows upwards from the last used memory in the
.rwdata section. You can control the placement of the heap and stack by
manipulating BSP settings.

By default, the HAL performs no stack or heap checking. This makes function calls
and memory allocation faster, but it means that malloc() (in C) and new (in C++) are
unable to detect heap exhaustion. You can enable run-time stack checking by
manipulating BSP settings. With stack checking on, malloc() and new() can detect
heap exhaustion.

To specify the heap size limit, set the preprocessor symbol ALT_MAX_HEAP_BYTES to
the maximum heap size in decimal. For example, the preprocessor argument
-DALT_MAX_HEAP_SIZE=1048576 sets the heap size limit to 0x100000. You can
specify this command-line option through a BSP setting. For more information about
manipulating BSP settings, refer to “HAL BSP Settings” on page 6–2.

Stack checking has performance costs. If you choose to leave stack checking turned
off, you must code your program so as to ensure that it operates within the limits of
available heap and stack memory.

f Refer to the Nios II IDE help system for details about selecting stack and heap
placement, and setting up stack checking.

For details about how to control BSP settings, refer to “HAL BSP Settings” on
page 6–2.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–42 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Memory Usage
Global Pointer Register
The global pointer register enables fast access to global data structures in Nios II
programs. The Nios II compiler implements the global pointer, and determines which
data structures to access with it. You do not need to do anything unless you want to
change the default compiler behavior.

The global pointer register can access a single contiguous region of 64 Kbytes. To
avoid overflowing this region, the compiler only uses the global pointer with small
global data structures. A data structure is considered “small” if its size is less than a
specified threshold. By default, this threshold is 8 bytes.

The small data structures are allocated to the small global data sections, .sdata,
.sdata2, .sbss, and .sbss2. The small global data sections are subsections of the
.rwdata and .bss sections. They are located together, as shown in Figure 6–4, to
enable the global pointer to access them.

If the total size of the small global data structures is more than 64 Kbytes, these data
structures overflow the global pointer region. The linker produces an error message
saying "Unable to reach <variable name> ... from the global pointer
... because the offset ... is out of the allowed range, -32678
to 32767."

Figure 6–4. Small Global Data sections

RAM

.rwdata

.bss.sbss2

.sbss

.sdata2

.sdata
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–43
Working with HAL Source Files
You can fix this with the -G compiler option. This option sets the threshold size. For
example, -G 4 restricts global pointer usage to data structures 4 bytes long or smaller.
Reducing the global pointer threshold reduces the size of the small global data
sections.

The -G option’s numeric argument is in decimal. You can specify this compiler option
through a project setting. For information about manipulating project settings, refer to
“HAL BSP Settings” on page 6–2.

1 You must set this option to the same value for both the BSP and the application
project.

Boot Modes
The processor’s boot memory is the memory that contains the reset vector. This device
might be an external flash or an Altera EPCS serial configuration device, or it might be
an on-chip RAM. Regardless of the nature of the boot memory, HAL-based systems
are constructed so that all program and data sections are initially stored in it. The
HAL provides a small boot loader program that copies these sections to their run time
locations at boot time. You can specify run time locations for program and data
memory by manipulating BSP settings.

If the runtime location of the .text section is outside of the boot memory, the Altera
flash programmer places a boot loader at the reset address. This boot loader is
responsible for loading all program and data sections before the call to _start. When
booting from an EPCS device, this loader function is provided by the hardware.

However, if the runtime location of the .text section is in the boot memory, the
system does not need a separate loader. Instead the _reset entry point in the HAL
executable program is called directly. The function _reset initializes the instruction
cache and then calls _start. This initialization sequence lets you develop
applications that boot and execute directly from flash memory.

When running in this mode, the HAL executable program must take responsibility for
loading any sections that require loading to RAM. The .rwdata, .rodata, and
.exceptions sections are loaded before the call to alt_main(), as required. This
loading is performed by the function alt_load(). To load any additional sections,
use the alt_load_section() function.

f For more information about alt_load_section(), refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Working with HAL Source Files
You might wish to view files in the HAL, especially header files, for reference. This
section describes how to find HAL source files.

Finding HAL Files
You determine the location of HAL source files when you create the BSP.

HAL source files (and other BSP files) are copied to the BSP directory. You are free to
modify copied HAL source files.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

6–44 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Using the HAL in an IDE Project
f For details, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Overriding HAL Functions
HAL source files are copied to your BSP directory when you create your BSP. You can
freely modify copied files, without losing your changes when you update your BSP.

f For more information, refer to “Board Support Packages” in the Using the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Using the HAL in an IDE Project
Like the Nios II software build tools development flow, the Nios II IDE flow can
automatically keep your system library up to date with the SOPC Builder system. In
an IDE project, the Nios II IDE manages the system library and updates the driver
configurations to accurately reflect the system hardware. If the SOPC Builder system
changes — i.e., the SOPC Builder system (.ptf) file is updated — the IDE rebuilds the
system library the next time you build or run your C/C++ application program.

Generated Files
The IDE development flow uses different file name and directory structure
conventions for some generated system library files, as described in this section.

generated.x
In an IDE project, the generated.x file is the same as the linker.x file created by the
Nios II build tools.

generated.gdb
In an IDE project, the generated.gdb file is the same as the memory.gdb file created by
the Nios II build tools.

alt_main.c
In an IDE project, you can find alt_main.c in <Nios II EDS install path>/components/
altera_hal/HAL/src.

System Library Settings
In an IDE project, you manage the system library project settings with the System
Library page of the Properties dialog box.

f For details of how to control system library settings, refer to the Nios II IDE help
system.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–45
Using the HAL in an IDE Project
Reducing Code Footprint
The basic techniques for reducing code footprint are the same in the Nios II IDE flow
as in the software build tools flow, but you use a different procedure to specify the
system library options. You control the following system library options through the
Nios II IDE system properties dialog box:

Paths to Hardware Abstraction Layer Files
In IDE projects, hardware abstraction layer (HAL) source files are in several
directories because of the custom nature of Nios II systems. You can find HAL-related
files in the following locations:

■ The <Nios II EDS install path>/components directory contains most HAL source
files.

■ <Nios II EDS install path>/components/altera_hal/HAL/inc/sys contains header
files defining the HAL generic device models. In a #include directive, reference
these files relative to <Nios II EDS install path>/components/altera_hal/HAL/inc/.
For example, to include the direct memory access (DMA) drivers, use #include
sys/alt_dma.h

■ <Nios II EDS install path>/bin contains the newlib ANSI C library header files.

■ The Quartus® II Complete Design Suite includes HAL drivers for SOPC Builder
components distributed with the Quartus II Complete Design Suite. For example,
if the design suite is installed in c:\altera\80, you can find the drivers under c:\
altera\80\ip\sopc_builder_ip.

1 Do not edit HAL files in IDE projects.

Overriding HAL Functions
In the IDE build flow, you can override any HAL source file, including alt_sys_init.c,
by placing your own implementation in your system project directory. When building
the executable, the Nios II IDE finds your function, and uses it in place of the HAL
version.

Table 6–10. System Library Options for Reducing Code Footprint

Technique System Library Option Name

Use Reduced Device Drivers Reduced device drivers

Reduce the File Descriptor Pool Max file descriptors

Use a Smaller File I/O Library Small C library

Use the Lightweight Device Driver API Lightweight device driver API

Eliminate Clean Exit Clean exit (flush buffers)

Eliminate All Exit Code Program never exits

Turn off C++ Support Support C++
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–46 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

■ Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook

■ Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook

■ Read-Only Zip File System chapter of the Nios II Software Developer’s Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

■ Off-Chip Interface Peripherals section in Volume 5: Embedded Peripherals of the
Quartus II Handbook

■ The C Programming Language, Second Edition, by Brian Kernighan and Dennis M.
Ritchie (Prentice-Hall)

■ GNU documentation on the Nios II EDS documentation launchpad

Document Revision History
Table 6–11 shows the revision history for this document.

Table 6–11. Document Revision History (Part 1 of 2)

Date &
Document

Version Changes Made Summary of Changes

March 2009

v9.0.0

■ Reorganized and updated information and terminology to clarify role
of Nios II software build tools.

■ Add documentation for Altera logging.

■ Corrected minor typographical errors.

Altera logging

May 2008

v8.0.0

No change from previous release.

October 2007

v7.2.0

■ Added documentation for HAL program development with the Nios II
software build tools.

■ Additional documentation of alarms functions

■ Correct alt_erase_flash_block() example

—

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3_01.pdf

Chapter 6: Developing Programs Using the Hardware Abstraction Layer 6–47
Document Revision History
March 2007

v7.0.0

No change from previous release.

November 2006

v6.1.0

■ Program never exits system library option

■ Support C++ system library option

■ Lightweight device driver API system library option

■ Minimal character-mode API

May 2006

v6.0.0

■ Revised text on instruction emulation.

■ Added section on global pointers.

October 2005

v5.1.0

■ Added alt_64 and alt_u64 types to Table 6–1 on page 6–5.

■ Made changes to section “Placement of the Heap and Stack”.

May 2005

v5.0.0

Added alt_load_section() function information.

December 2004

v1.2

■ Added boot modes information.

■ Amended compiler optimizations.

■ Updated Reducing Code Footprint section.

September
2004

v1.1

Corrected DMA receive channels example code.

May 2004

v1.0

Initial Release.

Table 6–11. Document Revision History (Part 2 of 2)

Date &
Document

Version Changes Made Summary of Changes
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

6–48 Chapter 6: Developing Programs Using the Hardware Abstraction Layer
Document Revision History
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

© March 2009 Altera Corporation

NII52005-9.0.0
7. Developing Device Drivers for the
Hardware Abstraction Layer
Introduction
Embedded systems typically have application-specific hardware features that require
custom device drivers. This chapter describes how to develop device drivers and
integrate them with the hardware abstraction layer (HAL).

This chapter also describes how to develop software packages for use with HAL
board support packages (BSPs). The process of integrating a software package with
the HAL is nearly identical with the process for integrating a device driver.

This chapter contains the following sections:

■ “Development Flow for Creating Device Drivers” on page 7–2

■ “SOPC Builder Concepts” on page 7–3

■ “Accessing Hardware” on page 7–3

■ “Creating Drivers for HAL Device Classes” on page 7–5

■ “Creating a Custom Device Driver for the HAL” on page 7–15

■ “Integrating a Device Driver in the HAL” on page 7–17

■ “Reducing Code Footprint” on page 7–30

■ “Namespace Allocation” on page 7–32

■ “Overriding the Default Device Drivers” on page 7–32

■ “Device Drivers for IDE Projects” on page 7–33

Direct interaction with the hardware should be confined to device driver code. In
general, most of your program code should be free of low-level access to the
hardware. Wherever possible, use the high-level HAL application program interface
(API) functions to access hardware. This makes your code more consistent and more
portable to other Nios® II systems that might have different hardware configurations.

When you create a new driver, you can integrate the driver with the HAL framework
at one of the following two levels:

■ Integration in the HAL API

■ Peripheral-specific API

1 As an alternative to creating a driver, you can compile the device-specific code as a
user library, and link it with the application. This approach is workable if the
device-specific code is independent of the BSP, and does not require any of the extra
services offered by the BSP, such as the ability to add definitions to the system.h file.

Integration in the HAL API
Integration in the HAL API is the preferred option for a peripheral that belongs to one
of the HAL generic device model classes, such as character-mode or direct memory
access (DMA) devices.
Nios II Software Developer’s Handbook
Preliminary

7–2 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Development Flow for Creating Device Drivers
f For descriptions of the HAL generic device model classes, refer to the Overview of the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

For integration in the HAL API, you write device access functions as specified in this
chapter, and the device becomes accessible to software through the standard HAL
API. For example, if you have a new LCD screen device that displays ASCII
characters, you write a character-mode device driver. With this driver in place,
programs can call the familiar printf() function to stream characters to the LCD
screen.

Peripheral-Specific API
If the peripheral does not belong to one of the HAL generic device model classes, you
need to provide a device driver with an interface that is specific to the hardware
implementation. In this case, the API to the device is separate from the HAL API.
Programs access the hardware by calling the functions you provide, not the HAL API.

The up-front effort to implement integration in the HAL API is higher, but you gain
the benefit of the HAL and C standard library API to manipulate devices.

For details about integration in the HAL API, refer to “Integrating a Device Driver in
the HAL” on page 7–17.

All the other sections in this chapter apply to integrating drivers in the HAL API and
creating drivers with a peripheral-specific API.

1 Although C++ is supported for programs based on the HAL, HAL drivers should not
be written in C++. Restrict your driver code to either C or assembly language. C is
preferred for portability.

Before You Begin
This chapter assumes that you are familiar with C programming for the HAL.

f Refer to the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook for information you need before reading this
chapter.

1 This chapter uses the variable <Altera installation> to represent the location where the
Altera® complete design suite is installed. On a Windows system, by default, that
location is c:/altera/<version number>.

Development Flow for Creating Device Drivers
The steps to develop a new driver for the HAL depend on your device details.
However, the following generic steps apply to all device classes.

1. Create the device header file that describes the registers. This header file might be
the only interface required.

2. Implement the driver functionality.

3. Test from main().

4. Proceed to the final integration of the driver in the HAL environment.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–3
SOPC Builder Concepts
5. Integrate the device driver in the HAL framework.

SOPC Builder Concepts
This section discusses basic concepts of the Altera SOPC Builder hardware design tool
that enhance your understanding of the driver development process. You can develop
Nios II device drivers without using SOPC Builder.

The Relationship between system.h and SOPC Builder
The system.h header file provides a complete software description of the Nios II
system hardware, and is a fundamental part of developing drivers. Because drivers
interact with hardware at the lowest level, it is worth mentioning the relationship
between system.h and SOPC Builder that generates the Nios II processor system
hardware. Hardware designers use SOPC Builder to specify the architecture of the
Nios II processor system and integrate the necessary peripherals and memory.
Therefore, the definitions in system.h, such as the name and configuration of each
peripheral, are a direct reflection of design choices made in SOPC Builder.

f For more information about the system.h header file, refer to the Developing Programs
Using the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook.

Using SOPC Builder for Optimal Hardware Configuration
If you find less-than-optimal definitions in system.h, remember that you can modify
the contents of system.h by changing the underlying hardware with SOPC Builder.
Before you write a device driver to accommodate imperfect hardware, it is worth
considering whether the hardware can be improved easily with SOPC Builder.

Components, Devices, and Peripherals
SOPC Builder uses the term “component” to describe hardware modules included in
the system. In the context of Nios II software development, SOPC Builder
components are devices, such as peripherals or memories. In the following sections,
“component” is used interchangeably with “device” and “peripheral” when the
context is closely related to SOPC Builder.

Accessing Hardware
Software accesses the hardware with macros that abstract the memory-mapped
interface to the device. This section describes the macros that define the hardware
interface for each device.

All SOPC Builder components provide a directory that defines the device hardware
and software. For example, each component provided in the Quartus® II software has
its own directory in the <Altera installation>/ip/altera/sopc_builder_ip directory.
Many components provide a header file that defines their hardware interface. The
header file is named <component name>_regs.h, included in the inc subdirectory for
the specific component. For example, the Altera-provided JTAG UART component
defines its hardware interface in the file <Altera installation>/ip/altera/
sopc_builder_ip/altera_avalon_jtag_uart/inc/altera_avalon_jtag_uart_regs.h.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

7–4 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Accessing Hardware
The _regs.h header file defines the following access macros for the component:

■ Register access macros that provide a read and/or write macro for each register in
the component that supports the operation. The macros are:

■ IORD_<component name>_<register name> (<component base address>)

■ IOWR_<component name>_<register name> (<component base address>, <data>)

For example, altera_avalon_jtag_uart_regs.h defines the following macros:

■ IORD_ALTERA_AVALON_JTAG_UART_DATA()

■ IOWR_ALTERA_AVALON_JTAG_UART_DATA()

■ IORD_ALTERA_AVALON_JTAG_UART_CONTROL()

■ IOWR_ALTERA_AVALON_JTAG_UART_CONTROL()

■ Register address macros that return the physical address for each register in a
component. The address register returned is the component’s base address + the
specified register offset value. These macros are named
IOADDR_<component name>_<register name> (<component base address>).

For example, altera_avalon_jtag_uart_regs.h defines the following macros:

■ IOADDR_ALTERA_AVALON_JTAG_UART_DATA()

■ IOADDR_ALTERA_AVALON_JTAG_UART_CONTROL()

Use these macros only as parameters to a function that requires the specific
address of a data source or destination. For example, a routine that reads a stream
of data from a particular source register in a component might require the physical
address of the register as a parameter.

■ Bit-field masks and offsets that provide access to individual bit-fields in a register.
These macros have the following names:

■ <component name>_<register name>_<name of field>_MSK—A bit-mask of the
field

■ <component name>_<register name>_<name of field>_OFST—The bit offset of the
start of the field

For example, ALTERA_AVALON_UART_STATUS_PE_MSK and
ALTERA_AVALON_UART_STATUS_PE_OFST access the pe field of the status
register.

Access a device’s registers only with the macros defined in the _regs.h file. You must
use the register access functions to ensure that the processor bypasses the data cache
when reading and or writing the device. Do not use hard-coded constants, because
they make your software susceptible to changes in the underlying hardware.

If you are writing the driver for a completely new hardware device, you must prepare
the _regs.h header file.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–5
Creating Drivers for HAL Device Classes
f For detailed information about developing device drivers for HAL BSPs, refer to AN
459: Guidelines for Developing a Nios II HAL Device Driver. For a complete example of
the _regs.h file, refer to the component directory for any of the Altera-supplied SOPC
Builder components, such as <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart/inc. For more information about the effects of cache
management and device access, refer to the Cache and Tightly-Coupled Memory chapter
of the Nios II Software Developer’s Handbook.

Creating Drivers for HAL Device Classes
The HAL supports a number of generic device model classes. By writing a device
driver as described in this section, you describe to the HAL an instance of a specific
device that falls into one of its known device classes. This section defines a consistent
interface for driver functions so that the HAL can access the driver functions
uniformly.

f Generic device model classes are defined in the Overview of the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

The following sections define the API for the following classes of devices:

■ Character-mode devices

■ File subsystems

■ DMA devices

■ Timer devices used as system clock

■ Timer devices used as timestamp clock

■ Flash memory devices

■ Ethernet devices

The following sections describe how to implement device drivers for each class of
device, and how to register them for use in HAL-based systems.

Character-Mode Device Drivers
This section describes how to create a device instance and register a character device.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf

7–6 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
Create a Device Instance
For a device to be made available as a character mode device, it must provide an
instance of the alt_dev structure. The following code defines the alt_dev structure:

typedef struct {
alt_llist llist; /* for internal use */
const char* name;
int (*open) (alt_fd* fd, const char* name, int flags, int mode);
int (*close) (alt_fd* fd);
int (*read) (alt_fd* fd, char* ptr, int len);
int (*write) (alt_fd* fd, const char* ptr, int len);
int (*lseek) (alt_fd* fd, int ptr, int dir);
int (*fstat) (alt_fd* fd, struct stat* buf);
int (*ioctl) (alt_fd* fd, int req, void* arg);

} alt_dev;

The alt_dev structure, defined in <Nios II EDS install path>/components/altera_hal/
HAL/inc/sys/alt_dev.h, is essentially a collection of function pointers. These functions
are called in response to application accesses to the HAL file system. For example, if
you call the function open() with a file name that corresponds to this device, the
result is a call to the open() function provided in this structure.

f For more information about open(), close(), read(), write(), lseek(),
fstat(), and ioctl(), refer to the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

None of these functions directly modifies the global error status, errno. Instead, the
return value is the negation of the appropriate error code provided in errno.h.

For example, the ioctl() function returns -ENOTTY if it cannot handle a request
rather than set errno to ENOTTY directly. The HAL system routines that call these
functions ensure that errno is set accordingly.

The function prototypes for these functions differ from their application level
counterparts in that they each take an input file descriptor argument of type alt_fd*
rather than int.

A new alt_fd structure is created on a call to open(). This structure instance is then
passed as an input argument to all function calls made for the associated file
descriptor.

The following code defines the alt_fd structure:

typedef struct
{

alt_dev* dev;
void* priv;
int fd_flags;

} alt_fd;

where:

■ dev is a pointer to the device structure for the device being used.

■ fd_flags is the value of flags passed to open().
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–7
Creating Drivers for HAL Device Classes
■ priv is a reserved, implementation-dependent argument, defined by the driver. If
the driver requires any special, non-HAL-defined values to be maintained for each
file or stream, you can store them in a data structure, and use priv maintains a
pointer to the structure. The HAL ignores priv.

Allocate storage for the data structure in your open() function (pointed to by the
alt_dev structure). Free the storage in your close() function.

1 To avoid memory leaks, ensure that the close() function is called when
the file or stream is no longer needed.

A driver is not required to provide all of the functions in the alt_dev structure. If a
given function pointer is set to NULL, a default action is used instead. Table 7–1 shows
the default actions for each of the available functions.

In addition to the function pointers, the alt_dev structure contains two other fields:
llist and name. llist is for internal use, and should always be set to the value
ALT_LLIST_ENTRY. name is the location of the device in the HAL file system and is
the name of the device as defined in system.h.

Register a Character Device
After you create an instance of the alt_dev structure, the device must be made
available to the system by registering it with the HAL and by calling the following
function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register.
The return value is zero upon success. A negative return value indicates that the
device cannot be registered.

After a device is registered with the HAL file system, you can access it through the
HAL API and the ANSI C standard library. The node name for the device is the name
specified in the alt_dev structure.

f For more information, refer to the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

Table 7–1. Default Behavior for Functions Defined in alt_dev

Function Default Behavior

open Calls to open() for this device succeed, unless the device was previously locked by a
call to ioctl() with req = TIOCEXCL.

close Calls to close() for a valid file descriptor for this device always succeed.

read Calls to read() for this device always fail.

write Calls to write() for this device always fail.

lseek Calls to lseek() for this device always fail.

fstat The device identifies itself as a character mode device.

ioctl ioctl() requests that cannot be handled without reference to the device fail.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

7–8 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
File Subsystem Drivers
A file subsystem device driver is responsible for handling file accesses beneath a
specified mount point in the global HAL file system.

Create a Device Instance
Creating and registering a file system is very similar to creating and registering a
character-mode device. To make a file system available, create an instance of the
alt_dev structure (refer to “Character-Mode Device Drivers” on page 7–5). The only
distinction is that the name field of the device represents the mount point for the file
subsystem. Of course, you must also provide any necessary functions to access the file
subsystem, such as read() and write(), similar to the case of the character-mode
device.

1 If you do not provide an implementation of fstat(), the default behavior returns
the value for a character-mode device, which is incorrect behavior for a file
subsystem.

Register a File Subsystem Device
You can register a file subsystem using the following function:

int alt_fs_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register.
A negative return value indicates that the file system cannot be registered.

After a file subsystem is registered with the HAL file system, you can access it
through the HAL API and the ANSI C standard library. The mount point for the file
subsystem is the name specified in the alt_dev structure.

f For more information, refer to the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

Timer Device Drivers
This section describes the system clock and timestamp drivers.

System Clock Driver
A system clock device model requires a driver to generate the periodic clock tick.
There can be only one system clock driver in a system. You implement a system clock
driver as an interrupt service routine (ISR) for a timer peripheral that generates a
periodic interrupt. The driver must provide periodic calls to the following function:

void alt_tick (void)

The expectation is that alt_tick() is called in interrupt context.

To register the presence of a system clock driver, call the following function:

int alt_sysclk_init (alt_u32 nticks)

The input argument nticks is the number of system clock ticks per second, which is
determined by your system clock driver. The return value of this function is zero on
success, and non-zero otherwise.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–9
Creating Drivers for HAL Device Classes
f For more information about writing interrupt service routines, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

Timestamp Driver
A timestamp driver provides implementations for the three timestamp functions:
alt_timestamp_start(), alt_timestamp(), and alt_timestamp_freq().
The system can only have one timestamp driver.

f For more information about using these functions, refer to the Developing Programs
Using the Hardware Abstraction Layer and HAL API Reference chapters of the Nios II
Software Developer’s Handbook.

Flash Device Drivers
This section describes how to create a flash driver and register a flash device.

Create a Flash Driver
Flash device drivers must provide an instance of the alt_flash_dev structure,
defined in sys/alt_flash_dev.h. The following code shows the structure:

struct alt_flash_dev
{

alt_llist llist; // internal use only
const char* name;
alt_flash_open open;
alt_flash_close close;
alt_flash_write write;
alt_flash_read read;
alt_flash_get_flash_info get_info;
alt_flash_erase_block erase_block;
alt_flash_write_block write_block;
void* base_addr;
int length;
int number_of_regions;
flash_region region_info[ALT_MAX_NUMBER_OF_FLASH_REGIONS];

};

The first parameter llist is for internal use, and should always be set to the value
ALT_LLIST_ENTRY. name is the location of the device in the HAL file system and is
the name of the device as defined in system.h.

The seven fields open to write_block are function pointers that implement the
functionality behind the application API calls to the following functions:

■ alt_flash_open_dev()

■ alt_flash_close_dev()

■ alt_write_flash()

■ alt_read_flash()

■ alt_get_flash_info()

■ alt_erase_flash_block()

■ alt_write_flash_block()
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7–10 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
where:

■ the base_addr parameter is the base address of the flash memory

■ length is the size of the flash in bytes

■ number_of_regions is the number of erase regions in the flash

■ region_info contains information about the location and size of the blocks in
the flash device

f For more information about the format of the flash_region structure, refer to
“Using Flash Devices” in the Developing Programs Using the Hardware Abstraction Layer
chapter of the Nios II Software Developer’s Handbook.

Some flash devices, such as common flash interface (CFI)-compliant devices, allow
you to read out the number of regions and their configuration at run time. For all
other flash devices, these two fields must be defined at compile time.

Register a Flash Device
After creating an instance of the alt_flash_dev structure, you must make the
device available to the HAL system by calling the following function:

int alt_flash_device_register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure to register.
The return value is zero upon success. A negative return value indicates that the
device cannot be registered.

DMA Device Drivers
The HAL models a DMA transaction as being controlled by two endpoint devices: a
receive channel and a transmit channel. This section describes the drivers for each
type of DMA channel separately.

f For a complete description of the HAL DMA device model, refer to “Using DMA
Devices” the Developing Programs Using the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook.

The DMA device driver interface is defined in sys/alt_dma_dev.h.

DMA Transmit Channel
A DMA transmit channel is constructed by creating an instance of the
alt_dma_txchan structure, shown in Example 7–1.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–11
Creating Drivers for HAL Device Classes
Table 7–2 shows the available fields and their functions.

Both the space and send functions need to be defined. If the ioctl field is set to
null, calls to alt_dma_txchan_ioctl() return -ENOTTY for this device.

After creating an instance of the alt_dma_txchan structure, you must register the
device with the HAL system to make it available by calling the following function:

int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

The input argument dev is the device to register. The return value is zero on success,
or negative if the device cannot be registered.

DMA Receive Channel
A DMA receive channel is constructed by creating an instance of the
alt_dma_rxchan structure, shown in Example 7–2.

Example 7–1. alt_dma_txchan Structure

typedef struct alt_dma_txchan_dev_s alt_dma_txchan_dev;
struct alt_dma_txchan_dev_s
{
 alt_llist llist;
 const char* name;
 int (*space) (alt_dma_txchan dma);
 int (*send) (alt_dma_txchan dma,
 const void* from,
 alt_u32 len,
 alt_txchan_done* done,
 void* handle);
 int (*ioctl) (alt_dma_txchan dma, int req, void* arg);
};

Table 7–2. Fields in the alt_dma_txchan Structure

Field Function

llist This field is for internal use, and must always be set to the value ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_txchan_open().
name is the name of the device as defined in system.h.

space A pointer to a function that returns the number of additional transmit requests that
can be queued to the device. The input argument is a pointer to the
alt_dma_txchan_dev structure.

send A pointer to a function that is called as a result of a call to the application API function
alt_dma_txchan_send(). This function posts a transmit request to the DMA
device. The parameters passed to alt_txchan_send() are passed directly to
send(). For a description of parameters and return values, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

ioctl This function provides device specific I/O control. Refer to sys/alt_dma_dev.h for a
list of the generic options that you might want your device to support.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

7–12 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
Table 7–3 shows the available fields and their functions.

The prepare() function must be defined. If the ioctl field is set to null, calls to
alt_dma_rxchan_ioctl() return -ENOTTY for this device.

After creating an instance of the alt_dma_rxchan structure, you must register the
device driver with the HAL system to make it available by calling the following
function:

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

The input argument dev is the device to register. The return value is zero on success,
or negative if the device cannot be registered.

Ethernet Device Drivers
The HAL generic device model for Ethernet devices provides access to the
NicheStack® TCP/IP Stack - Nios II Edition running on the MicroC/OS-II operating
system. You can provide support for a new Ethernet device by supplying the driver
functions that this section defines.

Before you consider writing a device driver for a new Ethernet device, you need a
basic understanding of the Altera implementation of the NicheStack TCP/IP Stack
and its usages.

Example 7–2. alt_dma_rxchan Structure

typedef alt_dma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s
{
 alt_llist list;
 const char* name;
 alt_u32 depth;
 int (*prepare) (alt_dma_rxchan dma,
 void* data,
 alt_u32 len,
 alt_rxchan_done* done,
 void* handle);
 int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);
};

Table 7–3. Fields in the alt_dma_rxchan Structure

Field Function

llist This function is for internal use and should always be set to the value
ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_rxchan_open(). name
is the name of the device as defined in system.h.

depth The total number of receive requests that can be outstanding at any given time.

prepare A pointer to a function that is called as a result of a call to the application API function
alt_dma_rxchan_prepare(). This function posts a receive request to the
DMA device. The parameters passed to alt_dma_rxchan_prepare() are
passed directly to prepare(). For a description of parameters and return values,
refer to the HAL API Reference chapter of the Nios II Software Developer’s Handbook.

ioctl This is a function that provides device specific I/O control. Refer to sys/
alt_dma_dev.h for a list of the generic options that a device might wish to support.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–13
Creating Drivers for HAL Device Classes
f For more information, refer to the Ethernet and the NicheStack TCP/IP Stack - Nios II
Edition chapter of the Nios II Software Developer’s Handbook.

The easiest way to write a new Ethernet device driver is to start with Altera’s
implementation for the SMSC lan91c111 device, and modify it to suit your Ethernet
media access controller (MAC). This section assumes you take this approach. Starting
from a known-working example makes it easier for you to learn the most important
details of the NicheStack TCP/IP Stack implementation.

The source code for the lan91c111 driver is provided with the Quartus II software in
<Altera installation>/ip/altera/sopc_builder_ip/altera_avalon_lan91c111/UCOSII. For
the sake of brevity, this section refers to this directory as <SMSC path>. The source
files are in the <SMSC path>/src/iniche and <SMSC path>/inc/iniche directories.

A number of useful NicheStack TCP/IP Stack files are installed with the Nios II
Embedded Design Suite (EDS), under the <Nios II EDS install path>/components/
altera_iniche/UCOSII directory. For the sake of brevity, this chapter refers to this
directory as <iniche path>.

f For more information about the NicheStack TCP/IP Stack implementation, refer to
the NicheStack Technical Reference Manual, available on the Literature: Nios II Processor
page of the Altera website.

You need not edit the NicheStack TCP/IP Stack source code to implement a
NicheStack-compatible driver. Nevertheless, Altera provides the source code for your
reference. The files are installed with the Nios II EDS in the <iniche path> directory.
The Ethernet device driver interface is defined in <iniche path>/inc/alt_iniche_dev.h.

The following sections describe how to provide a driver for a new Ethernet device.

Provide the NicheStack Hardware Interface Routines
The NicheStack TCP/IP Stack architecture requires several network hardware
interface routines:

■ Initialize hardware

■ Send packet

■ Receive packet

■ Close

■ Dump statistics
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp

7–14 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating Drivers for HAL Device Classes
These routines are fully documented in the Porting Engineer Provided Functions chapter
of the NicheStack Technical Reference. The corresponding functions in the SMSC
lan91c111 device driver are shown in Table 7–4.

The NicheStack TCP/IP Stack system code uses the net structure internally to define
its interface to device drivers. The net structure is defined in net.h, in <iniche path>/
src/downloads/30src/h. Among other things, the net structure contains the following
things:

■ A field for the IP address of the interface

■ A function pointer to a low-level function to initialize the MAC device

■ Function pointers to low-level functions to send packets

Typical NicheStack code refers to type NET, which is defined as *net.

Provide *INSTANCE and *INIT Macros
To enable the HAL to use your driver, you must provide two HAL macros. The names
of these macros are based on the name of your network interface component,
according to the following templates:

■ <component name>_INSTANCE

■ <component name>_INIT

For examples, refer to ALTERA_AVALON_LAN91C111_INSTANCE and
ALTERA_AVALON_LAN91C111_INIT in <SMSC path>/inc/iniche/
altera_avalon_lan91c111_iniche.h, which is included in <iniche path>/inc/
altera_avalon_lan91c111.h.

You can copy altera_avalon_lan91c111_iniche.h and modify it for your own driver.
The HAL expects to find the *INIT and *INSTANCE macros in <component name>.h,
as discussed in “Header Files and alt_sys_init.c” on page 7–16. You can accomplish
this with a #include directive as in altera_avalon_lan91c111.h, or you can define the
macros directly in <component name>.h.

Table 7–4. SMSC lan91c111 Hardware Interface Routines

Prototype
function lan91c111 function File Notes

n_init() s91_init() smsc91x.c The initialization routine can install an ISR if applicable

pkt_send() s91_pkt_send() smsc91x.c

Packet receive
mechanism

s91_isr() smsc91x.c Packet receive includes three key actions:

■ pk_alloc()—Allocate a netbuf structure

■ putq()—Place netbuf structure on rcvdq

■ SignalPktDemux()—Notify the Internet
protocol (IP) layer that it can demux the packet

s91_rcv() smsc91x.c

s91_dma_rx_done() smsc_mem.c

n_close() s91_close() smsc91x.c

n_stats() s91_stats() smsc91x.c
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–15
Creating a Custom Device Driver for the HAL
Your *INSTANCE macro declares data structures required by an instance of the MAC.
These data structures must include an alt_iniche_dev structure. The *INSTANCE
macro must initialize the first three fields of the alt_iniche_dev structure, as
follows:

■ The first field, llist, is for internal use, and must always be set to the value
ALT_LLIST_ENTRY.

■ The second field, name, must be set to the device name as defined in system.h. For
example, altera_avalon_lan91c111_iniche.h uses the C preprocessor’s ##
(concatenation) operator to reference the LAN91C111_NAME symbol defined in
system.h.

■ The third field, init_func, must point to your software initialization function, as
described in “Provide a Software Initialization Function”. For example,
altera_avalon_lan91c111_iniche.h inserts a pointer to
alt_avalon_lan91c111_init().

Your *INIT macro initializes the driver software. Initialization must include a call to
the alt_iniche_dev_reg() macro, defined in alt_iniche_dev.h. This macro
registers the device with the HAL by adding the driver instance to
alt_iniche_dev_list.

When your driver is included in a Nios II BSP project, the HAL automatically
initializes your driver by invoking the *INSTANCE and *INIT macros from its
alt_sys_init() function. Refer to “Header Files and alt_sys_init.c” on page 7–16
for further detail about the *INSTANCE and *INIT macros.

Provide a Software Initialization Function
The *INSTANCE() macro inserts a pointer to your initialization function in the
alt_iniche_dev structure, as described in “Provide *INSTANCE and *INIT
Macros” on page 7–14. Your software initialization function must perform at least the
following three tasks:

■ Initialize the hardware and verify its readiness

■ Finish initializing the alt_iniche_dev structure

■ Call get_mac_addr()

The initialization function must perform any other initialization your driver needs,
such as creation and initialization of custom data structures and ISRs.

f For details about the get_mac_addr() function, refer to the Ethernet and the
NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II Software Developer’s
Handbook.

For an example of a software initialization function, refer to
alt_avalon_lan91c111_init() in <SMSC path>/src/iniche/smsc91x.c.

Creating a Custom Device Driver for the HAL
This section describes how to provide appropriate files to integrate your device driver
in the HAL. The “Integrating a Device Driver in the HAL” section on page 7–17
describes the correct locations for the files.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

7–16 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Creating a Custom Device Driver for the HAL
Header Files and alt_sys_init.c
At the heart of the HAL is the auto-generated source file, alt_sys_init.c. This file
contains the source code that the HAL uses to initialize the device drivers for all
supported devices in the system. In particular, this file defines the alt_sys_init()
function, which is called before main() to initialize device drivers software packages,
and make them available to the program.

When you create the driver or software package, you specify in a Tcl script whether
you want the alt_sys_init() function to invoke your INSTANCE and INIT
macros. Refer to “Enabling Software Initialization” on page 7–24 for details.

Example 7–3 shows excerpts from an alt_sys_init.c file.

1 The remainder of this section assumes that you are using the alt_sys_init() HAL
initialization mechanism.

The software build tools create alt_sys_init.c based on the header files associated with
each device driver and software package. For a device driver, the header file must
define the macros <component name>_INSTANCE and <component name>_INIT.

Like a device driver, a software package provides an INSTANCE macro, which
alt_sys_init() invokes once. A software package header file can optionally
provide an INIT macro.

For example, altera_avalon_jtag_uart.h must define the macros
ALTERA_AVALON_JTAG_UART_INSTANCE and
ALTERA_AVALON_JTAG_UART_INIT. The purpose of these macros is as follows:

■ The *_INSTANCE macro performs any required static memory allocation. For
drivers, *_INSTANCE is invoked once per device instance, so that memory can be
initialized on a per-device basis. For software packages, *_INSTANCE is invoked
once.

Example 7–3. Excerpt from an alt_sys_init.c File Performing Driver Initialization

#include "system.h"
#include "sys/alt_sys_init.h"

/*
* device headers
*/
#include "altera_avalon_timer.h"
#include "altera_avalon_uart.h"

/*
* Allocate the device storage
*/
ALTERA_AVALON_UART_INSTANCE(UART1, uart1);
ALTERA_AVALON_TIMER_INSTANCE(SYSCLK, sysclk);

/*
* Initialize the devices
*/
void alt_sys_init(void)
{

ALTERA_AVALON_UART_INIT(UART1, uart1);
ALTERA_AVALON_TIMER_INIT(SYSCLK, sysclk);

}

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–17
Integrating a Device Driver in the HAL
■ The *_INIT macro performs runtime initialization of the device driver or
software package.

In the case of a device driver, both macros take two input arguments:

■ The first argument, name, is the capitalized name of the device instance.

■ The second argument, dev, is the lower case version of the device name. dev is the
name given to the component in SOPC Builder at system generation time.

You can use these input parameters to extract device-specific configuration
information from the system.h file.

The name of the header file must be as follows:

■ Device driver: <hardware component class>.h. For example, if your driver targets the
altera_avalon_uart component, the file name is altera_avalon_uart.h.

■ Software packages <package name>.h. For example, if you create the software
package with the following command:

create_sw_package my_sw_package

the header file is called my_sw_package.h.

f For a complete example, refer to any of the Altera-supplied device drivers, such as the
JTAG UART driver in <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart.

1 For optimal project rebuild time, do not include the peripheral header in system.h. It
is included in alt_sys_init.c.

Device Driver Source Code
In addition to the header file, the component driver might need to provide compilable
source code, to be incorporated in the BSP. This source code is specific to the hardware
component, and resides in one or more C files (or assembly language files).

Integrating a Device Driver in the HAL
The Nios II software build tools can incorporate device drivers and software packages
supplied by Altera, supplied by other third-party developers, or created by you. This
section describes how to prepare device drivers and software packages so the BSP
generator recognizes and adds them to a generated BSP.

You can take advantage of this service, whether you created a device driver for one of
the HAL generic device models, or you created a peripheral-specific device driver.

1 The process required to integrate a device driver is nearly identical to that required to
develop a software package. The following sections describe the process for both.
Certain steps are not needed for software packages, as noted in the text.

Overview
To publish a device driver or a software package, you provide the following items:

■ A header file defining the package or driver interface
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–18 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
■ A Tcl script specifying how to add the package or driver to a BSP

The header file and Tcl script are described in the following sections.

Assumptions and Requirements
This section assumes that you are developing a device driver or software package for
eventual incorporation in a BSP. The driver or package is to be incorporated in the BSP
by an end user who has limited knowledge of the driver or package internal
implementation. To add your driver or package to a BSP, the end user must rely on the
driver or package settings that you create with the tools described in this section.

For a device driver or software package to work with the Nios II software build tools,
it must meet the following criteria:

■ It must have a defining Tcl script. The Tcl script for each driver or software
package provides the Nios II software build tools with a complete description of
the driver or software. This description includes the following information:

■ Name—A unique name identifying the driver or software package

■ Source files—The location, name, and type of each C/C++ or assembly
language source or header file

■ Associated hardware class (device drivers only)—The name of the hardware
peripheral class the driver supports

■ Versioning and compatibility information

■ BSP type(s)—Supported operating system(s)

■ Settings—Visible parameters controlling software build and runtime
configuration

■ The Tcl script resides in the driver or software package root directory.

■ The Tcl script’s file name ends with _sw.tcl. Example: custom_ip_block_sw.tcl.

■ The root directory of the driver or software package is in one of the following
places:

■ In any directory included in the SOPC_BUILDER_PATH environment variable,
or in any directory located one level beneath such a directory. This approach is
recommended if your driver or software packages are installed in a
distribution you create.

■ In a directory named ip, one level beneath the Quartus II project directory
containing the design your BSP targets. This approach is recommended if your
driver or software package is used only once, in a specific hardware project.

■ File names and directory structures conform to certain conventions, described in
“File Names and Locations” on page 7–20.

■ If your driver or software package uses the HAL autoinitialization mechanism
(alt_sys_init()), certain macros must be defined in a header file. For details
about this header file, refer to “Header Files and alt_sys_init.c” on page 7–16.

■ If your driver needs to be compatible with the Nios II integrated development
environment (IDE) development flow, it has a component.mk file. (Software
packages do not have a component.mk file.)
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–19
Integrating a Device Driver in the HAL
f The Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook describes the commands you can use in the Tcl script.

The Nios II BSP Generator
This section describes the process by which the Nios II BSP generator adds device
drivers and software packages to your BSP. The Nios II BSP generator, a subset of the
Nios II software build tools, is a combination of command utilities and scripts that
enable you to create and manage BSPs and their settings.

f For an overview of the Nios II software build tools, refer to the Overview and
Introduction to the Nios II Software Build Tools chapters of the Nios II Software Developer’s
Handbook.

Component Discovery
When you run any BSP generator utility, a library of available drivers and software
packages is populated.

The BSP generator locates software packages and drivers by inspecting a list of
known locations determined by the Altera Nios II EDS, Quartus II software, and
MegaCore® IP Library installers, as well as searching locations specified in certain
system environment variables.

The Nios II BSP tools identify drivers and software packages by locating and sourcing
Tcl scripts with file names ending in _sw.tcl in these locations.

1 For run-time efficiency, the BSP generator only looks at driver files that conform to the
criteria listed in this section.

After locating each driver and software package, the Nios II software build tools
search for a suitable driver for each hardware module in the SOPC Builder system
(mastered by the Nios II processor that the BSP is generated for), as well as software
packages that the BSP creator requested.

Device Driver Versions
In the case of device drivers, the highest version of driver that is compatible with the
associated hardware peripheral is added to the BSP, unless specified otherwise by the
device driver management commands.

f For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Device Driver and Software Package Inclusion
The BSP generator adds software packages to the BSP if they are specifically
requested during BSP generation, with the enable_sw_package command.

f For further details, refer to “Tcl Commands for BSP Settings” in the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–20 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
If no specific device driver is requested, and no compatible device driver is located for
a particular hardware module, the BSP generator issues an informative message
visible in either the debug or verbose generation output. This behavior is normal for
many types of hardware in the SOPC Builder system, such as memory devices, that
do not have device drivers. If a software package or specific driver is requested and
cannot be located, an error is generated and BSP generation or settings update halts.

Creating a Tcl script allows you to add extra definitions in the system.h file, enable
automatic driver initialization through the alt_sys_init.c structure, and enable the
Nios II software build tools to control any extra parameters that might exist.

With the Tcl software definition files in place, the software build tools read in the Tcl
file and populate the makefiles and other support files accordingly.

When the Nios II software build tools add each driver or software package to the
system, they use the data in the Tcl script defining the driver or software package to
control each file copied in to the BSP. This rule also affects generated BSP files such as
the BSP Makefile, public.mk, system.h, and the BSP settings and summary HTML
files.

When you create a new software project, the Nios II software build tools generate the
contents of alt_sys_init.c to match the specific hardware contents of the SOPC Builder
system.

File Names and Locations
As described in “The Nios II BSP Generator” on page 7–19, the Nios II build tools find
a device driver or software package by locating a Tcl script with the file name ending
in _sw.tcl, and sourcing it.

Each peripheral in a Nios II system is associated with a specific SOPC Builder
component directory. This directory contains a file defining the software interface to
the peripheral. Refer to “Accessing Hardware” on page 7–3.

To enable the software build tools to find your component device driver, place the Tcl
script in a directory named ip under your hardware project directory.

Figure 7–1 illustrates a file hierarchy suitable for the Nios II software build tools. This
file hierarchy is located in the <Altera installation>/ip/altera/sopc_builder_ip
directory. This example assumes a device driver supporting a hardware component
named custom_component.

Source Code Discovery

You use Tcl scripts to specify the location of driver source files. For further details,
refer to “The Nios II BSP Generator” on page 7–19.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–21
Integrating a Device Driver in the HAL
Driver and Software Package Tcl Script Creation
This section discusses writing a Tcl script to describe your software package or driver.
The exact contents of the Tcl script depends on the structure and complexity of your
driver or software. For many simple device drivers, you need only include a few
commands. For more complex software, the Nios II software build tools provide
powerful features that give the BSP end user control of your software or driver’s
operation.

f The Tcl command and argument descriptions in this section are not exhaustive. For a
detailed explanation of each command and all arguments, refer to the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

Figure 7–1. Example Device Driver File Hierarchy and Naming

SOPC Builder generation files

custom_component_sw.tcl

custom_component_regs.h

HAL
Contains software files required to integrate the device with the Nios II hardware
abstraction layer. Files in this directory pertain specifically to the HAL.

inc

custom_component

inc
Contains header file(s) that define the device's hardware interfaces. Contents in
this directory are not HAL-specific, and apply to a driver, regardless of whether
it is based on the HAL, MicroC/OS-II, or any other RTOS environment.

custom_component.h

Additional header files

src

component.mk

driver_source_file.c

Additional source files
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–22 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
For a reference in creating your own driver or software Tcl files, you can also view the
driver and software package Tcl scripts included with the Nios II EDS and the
MegaCore IP library. These scripts are in the <Nios II EDS install path>/components
and <MegaCore IP library install path>/sopc_builder_ip folders, respectively.

Tcl Command Walkthrough for a Typical Driver or Software Package
The following Tcl excerpts describe a typical device driver or software package.

The example in this section creates a device driver for a hardware peripheral whose
SOPC Builder component class name is my_custom_component. The driver
supports both HAL and MicroC/OS-II BSP types. It has a single C source (.c) file and
two C header (.h) files, organized as in the example in Figure 7–1.

Creating and Naming the Driver or Package

The first command in any driver or software package Tcl script must be the
create_driver or create_sw_package command. The remaining commands
can be in any order. Use the appropriate create command only once per Tcl file.
Choose a unique driver or package name. For drivers, Altera recommends appending
_driver to the associated hardware class name. The following example illustrates
this convention.

create_driver my_custom_component_driver

Identifying the Hardware Component Class

Each driver must identify the hardware component class the driver is associated with
in the set_sw_property command's hw_class_name argument. The following
example associates the driver with a hardware class called my_custom_component:

set_sw_property hw_class_name my_custom_component

1 The set_sw_property command accepts several argument types. Each call to
set_sw_property sets or overwrites a property to the value specified in the second
argument.

f For further information about the set_sw_property command, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

The hw_class_name argument does not apply to software packages.

If you are creating your own driver to use in place of an existing one (for example, a
custom UART driver for the altera_avalon_uart component), specify a driver
name different from the standard driver. The Nios II software build tools use your
driver only if you specify it explicitly.

f For further details, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–23
Integrating a Device Driver in the HAL
Choose a name for your driver or software package that does not conflict with other
Altera-supplied software or IP, or any third-party software or IP installed on your
host system. The BSP generator uses the name you specify to look up the software
package or driver during BSP creation. If the Nios II software build tools find multiple
compatible drivers or software packages with the same name, they might pick any of
them.

If you intend to distribute your driver or software package, Altera recommends
prefixing all names with your organization's name.

Setting the BSP Type

You must specify each operating system (or BSP type) that your driver or software
package supports. Use the add_sw_property command's supported_bsp_type
argument to specify each compatible operating system. In most cases, a driver or
software package supports both Altera HAL (hal) and Micrium MicroC/OS-II
(ucosii) BSP types, as in the following example:

add_sw_property supported_bsp_type hal
add_sw_property supported_bsp_type ucosii

1 The add_sw_property command accepts several argument types. Each call to
add_sw_property adds the final argument to the property specified in the second
argument.

1 Support for additional operating system and BSP types is not present in this release of
the Nios II software build tools.

Specifying an Operating System

Many drivers and software packages do not require any particular operating system.
However, you can structure your software to provide different source files depending
on the operating system used.

If your driver or software has different source files, paths, or settings that depend on
the operating system used, write a Tcl script for each variant of the driver or software
package. Each script must specify the same software package or driver name in the
create_driver or create_sw_package command, and same hw_class_name
in the case of device drivers. Each script must specify only the files, paths, and other
settings that pertain to that operating system. During BSP generation, only drivers or
software packages that specify compatibility with the selected operating system (OS)
type are eligible to add to the BSP.

Specifying Source Files

Using the Tcl command interface, you must specify each source file in your driver or
software package that you want in the generated BSP. The commands discussed in
this section add driver source files and specify their location in the file system and
generated BSP.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–24 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
The add_sw_property command's c_source and asm_source arguments add a
single .c or Nios II assembly language source (.s or .S) file to your driver or software
package. You must express path information to the source relative to the driver root
(the location of the Tcl file). add_sw_property copies source files to BSPs that
incorporate the driver, using the path information specified, and adds them to source
file list in the generated BSP makefile. When you build the BSP using make, the driver
source files are compiled as follows:

add_sw_property c_source HAL/src/my_driver.c

The add_sw_property command's include_source argument adds a single
header file in the path specified to the driver. The paths are relative to the driver root.
add_sw_property copies header files to the BSP during generation, using the path
information specified at generation time. It does not include header files in the
makefile.

add_sw_property include_source inc/my_custom_component_regs.h
add_sw_property include_source HAL/inc/my_custom_component.h

Specifying a Subdirectory

You can optionally specify a subdirectory in the generated BSP for your driver or
software package files using the bsp_subdirectory argument to
set_sw_property. All driver source and header files are copied to this directory,
along with any path or hierarchy information specified with each source or header
file. If no bsp_subdirectory is specified, your driver or software package is placed
under the drivers folder of the generated BSP. Set the subdirectory as follows:

set_sw_property bsp_subdirectory my_driver

1 If the path begins with the BSP type (e.g HAL or UCOSII), the BSP type is removed
and replaced with the value of the bsp_subdirectory property.

Enabling Software Initialization

If your driver or software package uses the HAL autoinitialization mechanism, your
source code includes INSTANCE and INIT macros, to create storage for each driver
instance, and to call any initialization routines. The generated alt_sys_init.c file
invokes these macros, which must be defined in a header file named
<hardware component class>.h.

For further details, refer to “Provide *INSTANCE and *INIT Macros” on page 7–14.

To support this functionality in Nios II BSPs, you must set the set_sw_property
command's auto_initialize argument to true using the following Tcl command:

set_sw_property auto_initialize true

If you do not turn on this attribute, alt_sys_init.c does not invoke the INIT and
INSTANCE macros.

Adding Include Paths

By default, the generated BSP Makefile and public.mk add include paths to find
header files in /inc or <BSP type>/inc folders.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–25
Integrating a Device Driver in the HAL
You might need to set up a header file directory hierarchy to logically organize your
code. You can add additional include paths to your driver or software package using
the add_sw_property command's include_directory argument as follows:

add_sw_property include_directory UCOSII/inc/protocol/h

1 If the path begins with the BSP type (e.g HAL or UCOSII), the BSP type is removed
and replaced with the value of the bsp_subdirectory property.

Additional include paths are added to the preprocessor flags in the BSP public.mk
file. These preprocessor flags allow BSP source files, as well as application and library
source files that reference the BSP, to find the include path while each source file is
compiled.

1 Adding additional include paths is not required if your source code includes header
files with explicit path names. You can also specify the location of the header files with
a #include directive similar to the following:

#include "protocol/h/<filename>"

Version Compatibility

Your device driver or software package can optionally specify versioning information
through the Tcl command interface. The driver and software package Tcl commands
specifying versioning information allow the following functionality:

■ You can request a specific version of your driver or software package with BSP
settings.

■ You can make updates to your device driver and specify that the driver is still
compatible with a minimum hardware class version, or specific hardware class
versions. This facility is especially useful in situations in which a hardware design
is stable and you foresee making software updates over time.

The <version> argument in each of the following versioning-related commands can be
a string containing numbers and characters. Examples of version strings are 8.0,
5.1.1, 6.1, and 6.1sp1. The . character is a separator. The BSP generator compares
versions against each other to determine if one is more recent than the other, or if two
are equal, by successively comparing the strings between each separator. Thus, 2.1 is
greater than 2.0, and 2.1sp1 is greater than 2.1. Two versions are equal if their
version assignment strings are identical.

Use the version argument of set_sw_property to assign a version to your driver
or software package. If you do not assign a version to your software or device driver,
the version of the Nios II EDS installation (containing the Nios II BSP commands
being executed) is set for your driver or software package:

set_sw_property version 7.1

Device drivers (but not software packages) can use the
min_compatible_hw_version and specific_compatible_hw_version
arguments to establish compatibility with their associated hardware class, as follows:

set_sw_property min_compatible_hw_version 5.0.1add_sw_property
specific_compatible_hw_version 6.1sp1
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–26 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
You can add multiple specific compatible versions. This functionality allows you to
roll out a new version of a device driver that tracks changes supporting a hardware
peripheral change.

For device drivers, if no compatible version information is specified, the version of the
device driver must be equal to the associated hardware class. Thus, if you do not wish
to use this feature, Altera recommends setting the min_compatible_hw_version
of your driver to the lowest version of the associated hardware class your driver is
compatible with.

Creating Settings for Device Drivers and Software Packages
The BSP generator allows you to publish settings for individual device drivers and
software packages. These settings are visible and can be modified by the BSP user, if
the BSP includes your driver or software package. Use the Tcl command interface to
create settings.

The Tcl command that publishes settings is especially useful if your driver or software
package has build or runtime options that are normally specified with #define
statements or makefile definitions at software build time. Settings can also add
custom variable declarations to the BSP Makefile.

Settings affect the generated BSP in several ways:

■ Settings are added either to the BSP system.h or public.mk, or to the BSP
Makefile as variable.

■ Settings are stored in the BSP settings file, named with hierarchy information to
prevent namespace collision.

■ A default value of your choice is assigned to the setting so that the end user of the
driver or package does not need to explicitly specify the setting when creating or
updating a BSP.

■ Settings are displayed in the BSP summary.html document, along with description
text of your choice.

Use the add_sw_setting Tcl command to add a setting. To specify the details,
add_sw_setting requires each of the following arguments, in the order shown:

1. type—The data type, which controls formatting of the setting's value assignment
in the appropriate generated file.

2. destination—The destination file in the BSP.

3. displayName—The name that is used to identify the setting when changing BSP
settings or viewing the BSP summary.html document

4. identifier—Conceptually, this argument is the macro defined in a C language
definition (the text immediately following #define), or the name of a variable in
a makefile.

5. value—A default value assigned to the setting if the BSP user does not manually
change it

6. description—Descriptive text, shown in the BSP summary.html document.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–27
Integrating a Device Driver in the HAL
Data Types

Several setting data types are available, controlled by the type argument to
add_sw_setting. They correspond to the data types you can express as #define
statements or values concatenated to makefile variables. The specific setting type
depends on your software's structure or BSP build needs. The available data types,
and their typical uses, are shown in Table 7–5.

Setting Destination Files

The destination argument of add_sw_setting specifies settings and their
assigned values. This argument controls the file to which the setting is saved in the
BSP. The BSP generator formats the setting's assigned value based on the definition
file and type of setting. Table 7–6 shows possible values of the destination
argument.

Table 7–5. Data Type Settings

Data Type Setting Value Notes

Boolean definition boolean_define_only A definition that is generated when true, and
absent when false. Use a boolean definition in your
C source files with the #ifdef <setting> ...
#endif construct.

Boolean assignment boolean A definition assigned to 1 when true, 0 when false.
Use a boolean assignment in your C source files
with the #if <setting> ... #else ...
construct.

Character character A definition with one character surrounded by
single quotation marks (')

Decimal number decimal_number A definition with an unquoted, unformatted
decimal number, such as 123. Useful for defining
values in software that, for example, might have a
configurable buffer size, such as
int buffer[SIZE];

Double precision
number

double A definition with a double-precision floating point
number such as 123.4

Floating point number float A definition with a single-precision floating point
number such as 234.5

Hexadecimal number hex_number A definition with a number prefixed with 0x, such
as 0x1000. Useful for specifying memory
addresses or bit masks

Quoted string quoted_string A definition with a string in quotes, such as
"Buffer"

Unquoted string unquoted_string A definition with a string not in quotes, such as
BUFFER
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–28 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Integrating a Device Driver in the HAL
1 Certain setting types are not compatible with the public.mk or Makefile destination
file types.

f For detailed information, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

Setting Display Name

The setting displayName controls what the end user of the driver or package (the
BSP developer) types to control the setting in their BSP. BSPs append the
displayName text after a . (dot) separator to your driver or software package's name
(as defined in the create_driver or create_sw_package command). For
example, if your driver is named my_peripheral_driver and your setting's
displayName is small_driver, BSPs with your driver have a setting
my_peripheral_driver.small_driver. Thus each driver and software package
has its own settings namespace.

Setting Generation Name

The setting generationName of add_sw_setting controls the physical name of
the setting in the generated BSP files. The physical name corresponds to the definition
being created in public.mk and system.h, or the make variable created in the BSP
Makefile. The generationName is commonly the text that your software uses in
conditionally-compiled code. For example, suppose your software creates a buffer as
follows:

unsigned int driver_buffer[MY_DRIVER_BUFFER_SIZE];

You can enter the exact text, MY_DRIVER_BUFFER_SIZE, in the generationName
argument.

Setting Default Value

The value argument of add_sw_setting holds the default value of your setting.
This value propagates to the generated BSP unless the end user of the driver or
package (the BSP developer) changes the setting's assignment before BSP generation.

Table 7–6. Destination File Settings

Destination File Setting Value Notes

system.h system_h_define This destination file is recommended in most cases. Your
source code must use a #include <system.h>
statement to make the setting definitions available.
Settings appear as #define statements in system.h.

public.mk public_mk_define Definitions appear as -D statements in public.mk, in the
C preprocessor flags assembly. This setting type is
passed directly to the compiler during BSP and is visible
during compilation of application and libraries
referencing the BSP.

BSP makefile makefile_variable Settings appear as makefile variable assignments in the
BSP makefile.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–29
Integrating a Device Driver in the HAL
1 The value assigned to any setting, whether it is the default value in the driver or
software package Tcl script, or entered by the user configuring the BSP, must be
compatible with the selected setting.

f For details, refer to the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

Setting Description

The description argument of add_sw_setting contains a brief description of the
setting. The description argument is required. Place quotation marks ("") around
the text of the description. The description text appears in the generated BSP
summary.html document.

Setting Creation Example

Example 7–4 implements a setting for a driver that has two variants of a function, one
implementing a small driver (minimal code footprint) and the other a fast driver
(efficient execution).

In Example 7–4, a simple Boolean definition setting is added to your driver Tcl file.
This feature allows BSP users to control your driver through the BSP settings
interface. When users set the setting to true or 1, the BSP defines
MY_CUSTOM_DRIVER_SMALL in either system.h or the BSP public.mk file. When the
user compiles the BSP, your driver is compiled with the appropriate routine
incorporated in the object file. When a user disables the setting,
MY_CUSTOM_DRIVER_SMALL is not defined.

You add the MY_CUSTOM_DRIVER_SMALL setting to your driver as follows using the
add_sw_setting Tcl command:

add_sw_setting boolean_define_only system_h_define small_driver
MY_CUSTOM_DRIVER_SMALL false
"Enable the small implementation of the driver for my_peripheral"

1 Each Tcl command must reside on a single line of the Tcl file. This example is wrapped
due to space constraints.

f Each argument has several variants. For detailed usage and restrictions, refer to the
Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Example 7–4. Supporting Driver Settings

#include "system.h"
#ifdef MY_CUSTOM_DRIVER_SMALL
int send_data(<args>)
{
// Small implementation
}
#else
int send_data(<args>)
{
// fast implementation
}
#endif
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–30 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Reducing Code Footprint
Reducing Code Footprint
The HAL provides several options for reducing the size, or footprint, of the BSP code.
Some of these options require explicit support from device drivers. If you need to
minimize the size of your software, consider using one or both of the following
techniques in your custom device driver:

■ Provide reduced footprint drivers. This technique usually reduces driver
functionality.

■ Support the lightweight device driver API. This technique reduces driver
overhead. It need not reduce functionality, but it might restrict your flexibility in
using the driver.

These techniques are discussed in the following sections.

Provide Reduced Footprint Drivers
The HAL defines a C preprocessor macro named ALT_USE_SMALL_DRIVERS that
you can use in driver source code to provide alternate behavior for systems that
require a minimal code footprint. If ALT_USE_SMALL_DRIVERS is not defined, driver
source code implements a fully featured version of the driver. If the macro is defined,
the source code might provide a driver with restricted functionality. For example a
driver might implement interrupt-driven operation by default, but polled (and
presumable smaller) operation if ALT_USE_SMALL_DRIVERS is defined.

When writing a device driver, if you choose to ignore the value of
ALT_USE_SMALL_DRIVERS, the same version of the driver is used regardless of the
definition of this macro.

You can enable ALT_USE_SMALL_DRIVERS in a BSP with the
hal.enable_reduced_device_drivers BSP setting.

f For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Support the Lightweight Device Driver API
The lightweight device driver API allows you to minimize the overhead of
character-mode device drivers. It does this by removing the need for the alt_fd file
descriptor table, and the alt_dev data structure required by each driver instance.

If you want to support the lightweight device driver API on a character-mode device,
you need to write at least one of the lightweight character-mode functions listed in
Table 7–7. Implement the functions needed by your software. For example, if you only
use the device for stdout, you only need to implement the
<component class>_write() function.

To support the lightweight device driver API, name your driver functions based on
the component class name, as shown in Table 7–7.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–31
Reducing Code Footprint
When you build your BSP with ALT_USE_DIRECT_DRIVERS enabled, instead of
using file descriptors, the HAL accesses your drivers with the following macros:

■ ALT_DRIVER_READ(instance, buffer, len, flags)

■ ALT_DRIVER_WRITE(instance, buffer, len, flags)

■ ALT_DRIVER_IOCTL(instance, req, arg)

These macros are defined in <Nios II EDS install path>/components/altera_hal/HAL/
inc/sys/alt_driver.h.

These macros, together with the system-specific macros that the Nios II software build
tools create in system.h, generate calls to your driver functions. For example, with
lightweight drivers turned on, printf() calls the HAL write() function, which
directly calls your driver’s <component class>_write() function, bypassing file
descriptors.

You can enable ALT_USE_DIRECT_DRIVERS in a BSP with the
hal.enable_lightweight_device_driver_api BSP setting.

f For further information, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

You can also take advantage of the lightweight device driver API by invoking
ALT_DRIVER_READ(), ALT_DRIVER_WRITE() and ALT_DRIVER_IOCTL() in
your application software. To use these macros, include the header file sys/
alt_driver.h. Replace the instance argument with the device instance name macro
from system.h; or if you are confident that the device instance name will never
change, you can use a literal string, for example custom_uart_0.

Another way to use your driver functions is to call them directly, without macros. If
your driver includes functions other than <component class>_read(),
<component class>_write() and <component class>_ioctl(), you must call those
functions directly from your application.

Table 7–7. Driver Functions for Lightweight Device Driver API

Function Purpose Example (1)

<component class>_read() Implements character-mode read
functions

altera_avalon_jtag_uart_read()

<component class>_write() Implements character-mode write
functions

altera_avalon_jtag_uart_write()

<component class>_ioctl() Implements device-dependent
functions

altera_avalon_jtag_uart_ioctl()

(1) Based on component altera_avalon_jtag_uart
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

7–32 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Namespace Allocation
Namespace Allocation
To avoid conflicting names for symbols defined by devices in the SOPC Builder
system, all global symbols need a defined prefix. Global symbols include global
variable and function names. For device drivers, the prefix is the name of the SOPC
Builder component followed by an underscore. Because this naming can result in long
strings, an alternate short form is also permitted. This short form is based on the
vendor name, for example alt_ is the prefix for components published by Altera. It is
expected that vendors test the interoperability of all components they supply.

For example, for the altera_avalon_jtag_uart component, the following
function names are valid:

■ altera_avalon_jtag_uart_init()

■ alt_jtag_uart_init()

The following names are invalid:

■ avalon_jtag_uart_init()

■ jtag_uart_init()

As source files are located using search paths, these namespace restrictions also apply
to file names for device driver source and header files.

Overriding the Default Device Drivers
All SOPC Builder components can elect to provide a HAL device driver. Refer to
“Integrating a Device Driver in the HAL” on page 7–17. However, if the driver
supplied with a component is inappropriate for your application, you can override
the default driver by supplying a different driver.

Overriding with Tcl
You specify a custom driver with the following BSP Tcl command:

set_driver <driver name> <component name>

For example, if you are using the nios2-bsp command, you replace the default
driver for uart0 with a driver called custom_driver as follows:

nios2-bsp hal my_bsp --cmd set_driver custom_driver uart0r

Overriding by Replacement
The Nios II software build tools find the driver source files and copy them to the
drivers directory of your BSP, as described in “The Nios II BSP Generator” on
page 7–19. If you choose to edit or replace these files, your BSP is built with the
updated files.

f For further details about BSP source files, refer to “Board Support Packages” in the
Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–33
Device Drivers for IDE Projects
Device Drivers for IDE Projects
HAL device drivers work the same in the IDE flow as in the software build tools flow.
However, there are slight differences in how you create a device driver.

Compared with the Nios II IDE, Nios II software build tools provide a less rigid set of
file naming and location requirements for your drivers. However, Altera recommends
using the Nios II IDE conventions to maintain build-flow compatibility. Provided you
use the file hierarchy described in “File Names and Locations” on page 7–20, your
device driver is compatible with the Nios II IDE development flow.

This section describes how to develop device drivers for Nios II IDE projects.

Integrating a Device Driver into the HAL
This section discusses how to take advantage of the HAL’s ability to instantiate and
register device drivers during system initialization. You can take advantage of this
service, whether you created a device driver for one of the HAL generic device
models, or you created a peripheral-specific device driver. Taking advantage of the
automation provided by the HAL is mainly a process of placing files in the
appropriate place in the HAL directory structure.

Device Driver Files for the HAL
This section describes how to provide appropriate files to integrate your device driver
into the HAL.

A Device’s HAL Header File and alt_sys_init.c

At the heart of the HAL is the auto-generated source file, alt_sys_init.c. alt_sys_init.c
contains the source code that the HAL uses to initialize the device drivers for all
supported devices in the system. In particular, this file defines the alt_sys_init()
function, which is called before main() to initialize all devices and make them
available to the program.

Example 7–3 on page 7–16 shows excerpts from an alt_sys_init.c file.

A Device’s HAL Header File and alt_sys_init.c

In the IDE development flow, for each device visible to the processor, the generator
utility searches for an associated header file in the device’s HAL/inc directory. The
name of the header file depends on the SOPC Builder component name. For example,
for Altera’s JTAG UART component, the generator finds the file
altera_avalon_jtag_uart/HAL/inc/altera_avalon_jtag_uart.h. If the generator utility
finds such a header file, it inserts code into alt_sys_init.c to perform the following
actions:

■ Include the device’s header file.

■ Call the macro <name of device>_INSTANCE to allocate storage for the device.

■ Call the macro <name of device>_INIT inside the alt_sys_init() function to
initialize the device.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

7–34 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Referenced Documents
Device Driver Source Code

Place any required source code in the HAL/src directory. In addition, you should
include a makefile fragment, component.mk. The component.mk file lists the source
files to include in the system library. You can list multiple files by separating filenames
with a space. Example 7–5 shows an example makefile fragment for Altera’s JTAG
UART device.

The Nios II IDE includes the component.mk file into the top-level makefile when
compiling system library projects and application projects. component.mk can only
modify the make variables listed in Table 7–8.

component.mk can add additional make rules and macros as required, but
interoperability macro names should conform to the namespace rules.

For details about namespace rules, refer to “Namespace Allocation” on page 7–32.

Overriding the Default Device Drivers
The Nios II IDE locates all include and source files using search paths. The system
library project directory is always searched first. If you place an alternative driver in
the system library project directory, it overrides drivers installed with the Nios II EDS.
For example, if a component provides the header file alt_my_component.h, and the
system library project directory also contains a file alt_my_component.h, the version
provided in the system library project directory is used at compile time. This same
mechanism can override C and assembler source files.

Referenced Documents
This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook

■ Introduction to the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

■ Using the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook

Example 7–5. component.mk for a UART Driver

C_LIB_SRCS += altera_avalon_uart.c
ASM_LIB_SRCS +=
INCLUDE_PATH +=

Table 7–8. Make Variables Defined in component.mk

Make Variable Meaning

C_LIB_SRCS The list of C source files to build into the system library.

ASM_LIB_SRCS The list of assembler source files to build into the system library (these are
preprocessed with the C preprocessor).

INCLUDE_PATH A list of directories to add to the include search path. The directory
<component>/HAL/inc is added automatically and so does not need to be
explicitly defined by the component.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer 7–35
Document Revision History
■ Overview of the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook

■ Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II
Software Developer’s Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

■ AN 459: Guidelines for Developing a Nios II HAL Device Driver

■ NicheStack Technical Reference Manual, available on the Literature: Nios II Processor
page of the Altera website

Document Revision History
Table 7–9 shows the revision history for this document.

Table 7–9. Document Revision History (Part 1 of 2)

Date &
Document

Version Changes Made Summary of Changes

March 2009

v9.0.0

■ Reorganized and updated information and terminology to clarify role
of Nios II software build tools.

■ Incorporated information about Tcl-based device drivers and
software packages, formerly in Using the Nios II Software Build
Tools.

■ Described use of the INSTANCE macro in software packages.

■ Corrected minor typographical errors.

Tcl-based device drivers and
software packages

May 2008

v8.0.0

No change from previous release.

October 2007

v7.2.0

Added documentation for HAL device driver development with the
Nios II software build tools.

—

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

No change from previous release.

November 2006

v6.1.0

■ Add section “Reducing Code Footprint”

■ Replace lwIP driver section with NicheStack TCP/IP Stack driver
section

Lightweight device driver API
and minimal file I/O API;
NicheStack TCP/IP Stack

support.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/an/an459.pdf
http://www.altera.com/literature/ug/NicheStackRef.zip
http://www.altera.com/literature/lit-nio2.jsp

7–36 Chapter 7: Developing Device Drivers for the Hardware Abstraction Layer
Document Revision History
May 2006

v6.0.0

No change from previous release.

October 2005

v5.1.0

Added IOADDR_* macro details to section “Accessing Hardware”.

May 2005

v5.0.0

Updated reference to version of lwIP from 0.7.2 to 1.1.0.

December 2004

v1.1

Updated reference to version of lwIP from 0.6.3 to 0.7.2.

May 2004

v1.0

Initial Release.

Table 7–9. Document Revision History (Part 2 of 2)

Date &
Document

Version Changes Made Summary of Changes
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

	Section II. Hardware Abstraction Layer
	5. Overview of the Hardware Abstraction Layer
	Introduction
	Getting Started
	HAL Architecture
	Services
	Applications versus Drivers
	Generic Device Models
	Device Model Classes
	Benefits to Application Developers
	Benefits to Device Driver Developers

	C Standard Library—Newlib

	Supported Hardware
	Nios II Processor Core Support
	Supported Peripherals
	MPU Support
	MMU Support

	Referenced Documents
	Document Revision History

	6. Developing Programs Using the Hardware Abstraction Layer
	Introduction
	Nios II Development Flows
	HAL BSP Settings

	The Nios II Project Structure
	The system.h System Description File
	Data Widths and the HAL Type Definitions
	UNIX-Style Interface
	File System
	Using Character-Mode Devices
	Standard Input, Standard Output and Standard Error
	General Access to Character Mode Devices
	C++ Streams
	/dev/null
	Lightweight Character-Mode I/O
	Altera Logging Functions
	Enabling Altera Logging
	Extra Logging Options
	Logging Levels
	Example: Creating a BSP with Logging
	Custom Logging Messages
	Altera Logging Files

	Using File Subsystems
	Using Timer Devices
	System Clock Driver
	Alarms
	Timestamp Driver

	Using Flash Devices
	Simple Flash Access
	Block Erasure or Corruption
	Fine-Grained Flash Access

	Using DMA Devices
	DMA Transmit Channels
	DMA Receive Channels
	Memory-to-Memory DMA Transactions

	Reducing Code Footprint
	Enable Compiler Optimizations
	Use Reduced Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use a Smaller File I/O Library
	Use the Small newlib C Library
	Use UNIX-Style File I/O
	Emulate ANSI C Functions

	Use the Lightweight Device Driver API
	Use the Minimal Character-Mode API
	alt_printf()
	alt_putchar()
	alt_putstr()
	alt_getchar()

	Eliminate Unused Device Drivers
	Eliminate Unneeded Exit Code
	Eliminate Clean Exit
	Eliminate All Exit Code

	Turn off C++ Support

	Boot Sequence and Entry Point
	Hosted versus Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code and Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options

	Placement of the Heap and Stack
	Global Pointer Register
	Boot Modes

	Working with HAL Source Files
	Finding HAL Files
	Overriding HAL Functions

	Using the HAL in an IDE Project
	Generated Files
	generated.x
	generated.gdb
	alt_main.c

	System Library Settings
	Reducing Code Footprint
	Paths to Hardware Abstraction Layer Files
	Overriding HAL Functions

	Referenced Documents
	Document Revision History

	7. Developing Device Drivers for the Hardware Abstraction Layer
	Introduction
	Integration in the HAL API
	Peripheral-Specific API
	Before You Begin

	Development Flow for Creating Device Drivers
	SOPC Builder Concepts
	The Relationship between system.h and SOPC Builder
	Using SOPC Builder for Optimal Hardware Configuration
	Components, Devices, and Peripherals

	Accessing Hardware
	Creating Drivers for HAL Device Classes
	Character-Mode Device Drivers
	Create a Device Instance
	Register a Character Device

	File Subsystem Drivers
	Create a Device Instance
	Register a File Subsystem Device

	Timer Device Drivers
	System Clock Driver
	Timestamp Driver

	Flash Device Drivers
	Create a Flash Driver
	Register a Flash Device

	DMA Device Drivers
	DMA Transmit Channel
	DMA Receive Channel

	Ethernet Device Drivers
	Provide the NicheStack Hardware Interface Routines
	Provide *INSTANCE and *INIT Macros
	Provide a Software Initialization Function

	Creating a Custom Device Driver for the HAL
	Header Files and alt_sys_init.c
	Device Driver Source Code

	Integrating a Device Driver in the HAL
	Overview
	Assumptions and Requirements
	The Nios II BSP Generator
	Component Discovery
	Device Driver Versions
	Device Driver and Software Package Inclusion

	File Names and Locations
	Source Code Discovery

	Driver and Software Package Tcl Script Creation
	Tcl Command Walkthrough for a Typical Driver or Software Package
	Creating and Naming the Driver or Package
	Identifying the Hardware Component Class
	Setting the BSP Type
	Specifying an Operating System
	Specifying Source Files
	Specifying a Subdirectory
	Enabling Software Initialization
	Adding Include Paths
	Version Compatibility

	Creating Settings for Device Drivers and Software Packages
	Data Types
	Setting Destination Files
	Setting Display Name
	Setting Generation Name
	Setting Default Value
	Setting Description
	Setting Creation Example

	Reducing Code Footprint
	Provide Reduced Footprint Drivers
	Support the Lightweight Device Driver API

	Namespace Allocation
	Overriding the Default Device Drivers
	Overriding with Tcl
	Overriding by Replacement

	Device Drivers for IDE Projects
	Integrating a Device Driver into the HAL
	Device Driver Files for the HAL
	A Device’s HAL Header File and alt_sys_init.c
	A Device’s HAL Header File and alt_sys_init.c
	Device Driver Source Code

	Overriding the Default Device Drivers

	Referenced Documents
	Document Revision History

