
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

2. System Interconnect Fabric for
Memory-Mapped Interfaces

Introduction
The system interconnect fabric for memory-mapped interfaces is a high-bandwidth
interconnect structure for connecting components that use the Avalon®
Memory-Mapped (Avalon-MM) interface. The system interconnect fabric consumes
minimal logic resources, provides greater flexibility, and higher throughput than a
typical shared system bus. It is a cross-connect fabric and not a tristated or time
domain multiplexed bus. This chapter describes the functions of system interconnect
fabric for memory-mapped interfaces and the implementation of those functions.

High-Level Description
The system interconnect fabric is the collection of interconnect and logic resources
that connects Avalon-MM master and slaves on components in a system. SOPC
Builder generates the system interconnect fabric to match the needs of the
components in a system. The system interconnect fabric implements the connection
details of a system. It guarantees that signals are routed correctly between master and
slaves, as long as the ports adhere to the rules of the Avalon Interface Specifications. This
chapter provides information on the following topics:

■ “Address Decoding” on page 2–4

■ “Datapath Multiplexing” on page 2–5

■ “Wait State Insertion” on page 2–5

■ “Pipelined Read Transfers” on page 2–6

■ “Dynamic Bus Sizing and Native Address Alignment” on page 2–7

■ “Arbitration for Multimaster Systems” on page 2–9

■ “Burst Adapters” on page 2–13

■ “Interrupts” on page 2–14

■ “Reset Distribution” on page 2–16

f For details about the Avalon-MM interface, refer to the Avalon Interface Specifications.

System interconnect fabric for memory-mapped interfaces supports the following
items:

■ Any number of master and slave components. The master-to-slave relationship
can be one-to-one, one-to-many, many-to-one, or many-to-many.

■ On-chip components.

■ Interfaces to off-chip devices.

■ Master and slaves of different data widths.

■ Components operating in different clock domains.

■ Components using multiple Avalon-MM ports.

QII54003-9.0.0

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2–2 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Introduction

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Figure 2–1 shows a simplified diagram of the system interconnect fabric in an
example memory-mapped system with multiple masters.

1 All figures in this chapter are simplified to show only the particular function being
discussed. In a complete system, the system interconnect fabric might alter the
address, data, and control paths beyond what is shown in any one particular figure.

SOPC Builder supports components with multiple Avalon-MM interfaces, such as the
processor component shown in Figure 2–1. Because SOPC Builder can create system
interconnect fabric to connect components with multiple interfaces, you can create
complex interfaces that provide more functionality than a single Avalon-MM
interface. For example, you can create a component with two different Avalon-MM
slaves, each with an associated interrupt interface.

System interconnect fabric can connect any combination of components, as long as
each interface conforms to the Avalon Interface Specifications. It can, for example,
connect a system comprised of only two components with unidirectional dataflow
between them. Avalon-MM interfaces are suitable for random address transactions,
such as to memories or embedded peripherals.

Figure 2–1. System Interconnect Fabric—Example System

Processor

M

DMA Controller

SDRAM
Controller

SDRAM Chip

S

Arbiter

Data
Memory

SS

Tri-State Bridge

S

Instruction

M

Data

MM

Control

Read Write

Arbiter

Instruction
Memory

System
Interconnect

Fabric

Write Data & Control Signals

Read Data

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

MUX

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–3
Introduction

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Generating system interconnect fabric is SOPC Builder’s primary purpose. In most
cases, you are not required to modify the generated HDL; however, a basic
understanding of how HDL works can help you optimize your system. For example,
knowledge of the arbitration algorithm can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation
System interconnect fabric for memory-mapped interfaces implements a partial
crossbar interconnect structure that provides concurrent paths between master and
slaves. System interconnect fabric consists of synchronous logic and routing resources
inside the FPGA.

For each component interface, system interconnect fabric manages Avalon-MM
transfers, interacting with signals on the connected component. Master and slave
interfaces can contain different signals and the system interconnect fabric handle any
adaptation necessary between them. In the path between master and slaves, the
system interconnect fabric might introduce registers for timing synchronization, finite
state machines for event sequencing, or nothing at all, depending on the services
required by the specific interfaces.

f For more information, refer to the Avalon Memory-Mapped Design Optimizations
chapter in the Embedded Design Handbook.

Functions of System Interconnect Fabric
System interconnect fabric logic provides the following functions:

■ “Address Decoding” on page 2–4

■ “Datapath Multiplexing” on page 2–5

■ “Wait State Insertion” on page 2–5

■ “Pipelined Read Transfers” on page 2–6

■ “Arbitration for Multimaster Systems” on page 2–9

■ “Burst Adapters” on page 2–13

■ “Interrupts” on page 2–14

■ “Reset Distribution” on page 2–16

The behavior of these functions in a specific SOPC Builder system depends on the
design of the components in the system and the settings made in SOPC Builder. The
remaining sections of this chapter describe how SOPC Builder implements each
function.

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

2–4 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Address Decoding

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Address Decoding
Address decoding logic in the system interconnect fabric forwards an appropriate
address and produces a chipselect signal for each slave. Address decoding logic
simplifies component design in the following ways:

■ The system interconnect fabric selects a slave whenever it is being addressed by a
master. Slave components do not need to decode the address to determine when
they are selected.

■ Slave addresses are properly aligned to the slave interface.

■ Changing the system memory map does not involve manually editing HDL.

Figure 2–2 shows a block diagram of the address-decoding logic for one master and
two slaves. Separate address-decoding logic is generated for every master in a system.

As Figure 2–2 shows, the address decoding logic handles the difference between the
master address width (<M>) and the individual slave address widths (<S> and <T>).
It also maps only the necessary master address bits to access words in each slave’s
address space.

In SOPC Builder, the user-configurable aspects of address decoding logic are
controlled by the Base setting in the list of active components on the System Contents
tab, as shown in Figure 2–3.

Figure 2–2. Block Diagram of Address Decoding Logic

Slave
Port 1
(8-bit)

Slave
Port 2
(32-bit)

chipselect1
address [S..0]

read/write

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

Figure 2–3. Base Settings in SOPC Builder Control Address Decoding

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–5
Datapath Multiplexing

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Datapath Multiplexing
Datapath multiplexing logic in the system interconnect fabric drives the writedata
signal from the granted master to the selected slave, and the readdata signal from
the selected slave back to the requesting master.

Figure 2–4 shows a block diagram of the datapath multiplexing logic for one master
and two slaves. SOPC Builder generates separate datapath multiplexing logic for
every master in the system.

In SOPC Builder, the generation of datapath multiplexing logic is specified using the
connections panel on the System Contents tab.

Wait State Insertion
Wait states extend the duration of a transfer by one or more cycles. Wait state insertion
logic accommodates the timing needs of each slave, and causes the master to wait
until the slave can proceed. System interconnect fabric inserts wait states into a
transfer when the target slave cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave read_enable and
write_enable signals have setup or hold time requirements.

Wait state insertion logic is a small finite-state machine that translates control signal
sequencing between the slave side and the master side. Figure 2–5 shows a block
diagram of the wait state insertion logic between one master and one slave.

Figure 2–4. Block Diagram of Datapath Multiplexing Logic

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Data
Path

Multiplexer

Slave
Port 2

Slave
Port 1

2–6 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Pipelined Read Transfers

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

System interconnect fabric can force a master to wait for several reasons in addition to
the wait state needs of a slave. For example, arbitration logic in a multimaster system
can force a master to wait until it is granted access to a slave.

SOPC Builder generates wait state insertion logic based on the properties of all slaves
in the system.

Pipelined Read Transfers
The Avalon-MM interface supports pipelined read transfers, allowing a pipelined
master to start multiple read transfers in succession without waiting for the prior
transfers to complete. Pipelined transfers allow master-slave pairs to achieve higher
throughput, even though the slave requires one or more cycles of latency to return
data for each transfer.

SOPC Builder generates system interconnect fabric with pipeline management logic
to take advantage of pipelined components wherever possible, based on the pipeline
properties of each master-slave pair in the system. Regardless of the pipeline latency
of a target slave, SOPC Builder guarantees that read data arrives at each master in the
order requested. Because master and slaves often have mismatched pipeline latency,
system interconnect fabric often contains logic to reconcile the differences. Many cases
of pipeline latency are possible, as shown in Table 2–1.

Figure 2–5. Block Diagram of Wait State Insertion Logic

Master
Port

Slave
Port

Wait-State
Insertion

Logic read/writeread/write

wait request

address

data

Table 2–1. Various Cases of Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline The system interconnect fabric does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with fixed
or variable latency

The system interconnect fabric forces the master to wait through any slave-side
latency cycles. This master-slave pair gains no benefits of pipelining, because
the master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline The system interconnect fabric carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave returns data.

Pipelined Pipelined with fixed
latency

The system interconnect fabric allows the master to capture data at the exact
clock cycle when data from the slave is valid. This process enables the
master-slave pair to achieve maximum throughput performance.

Pipelined Pipelined with
variable latency

This is the simplest pipelined case, in which the slave asserts a signal when its
readdata is valid, and the master captures the data. This case enables this
master-slave pair to achieve maximum throughput.

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–7
Dynamic Bus Sizing and Native Address Alignment

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

SOPC Builder generates logic to handle pipeline latency based on the properties of the
master and slaves in the system. When configuring a system in SOPC Builder, there
are no settings that directly control the pipeline management logic in the system
interconnect fabric.

Dynamic Bus Sizing and Native Address Alignment
SOPC Builder generates system interconnect fabric to accommodate master and
slaves with unmatched data widths. Address alignment affects how slave data is
aligned in a master's address space, in the case that the master and slave data widths
are different. Address alignment is a property of each slave, and can be different for
each slave in a system. A slave can declare itself to use one of the following:

■ Dynamic bus sizing

■ Native address alignment

The following sections explain the implications of the address alignment property
slave devices.

Dynamic Bus Sizing
Dynamic bus sizing hides the details of interfacing a narrow component device to a
wider master, and vice versa. When an <N>-bit master accesses a slave with dynamic
bus sizing, the master operates exclusively on full <N>-bit words of data, without
awareness of the slave data width.

1 When using dynamic bus sizing, the slave data width in units of bytes must be a
power of two.

Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware manually.

■ Reduces design complexity of the master component.

■ Enables any master to access any memory device, regardless of the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes a small
finite state machine that reconciles the difference between master and slave data
widths. The behavior is different depending on whether the master data width is
wider or narrower than the slave.

Wider Master
In the case of a wider master, the dynamic bus-sizing logic accepts a single, wide
transfer on the master side, and then performs multiple narrow transfers on the slave
side. For a data-width ratio of <N>:1, the dynamic bus-sizing logic generates up to
<N> slave transfers for each master transfer. The master waits while multiple
slave-side transfers complete; the master transfer ends when all slave-side transfers
end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to generate
appropriate slave transfers. The dynamic bus-sizing logic performs as many
slave-side transfers as necessary to write or read the specified byte lanes.

2–8 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Dynamic Bus Sizing and Native Address Alignment

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Narrower Master
In the case of a narrower master, one transfer on the master side generates one
transfer on the slave side. In this case, multiple master word addresses map to a single
offset in the slave memory space. The dynamic bus-sizing logic maps each master
address to a subset of byte lanes in the appropriate slave offset. All bytes of the slave
memory are accessible in the master address space.

Table 2–2 demonstrates the case of a 32-bit master accessing a 64-bit slave with
dynamic bus sizing. In the table, offset refers to the offset into the slave memory
space.

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the appropriate
byte lanes of the slave data to the narrow master. In the case of a write transfer, the
dynamic bus-sizing logic uses slave-side byte-enable signals to write only to the
appropriate byte lanes.

1 Altera recommends that you select dynamic bus sizing whenever possible. Dynamic
bus sizing offers more flexibility when the master and slave components in your
system have different widths.

Native Address Alignment
Table 2–3 demonstrates native address alignment and dynamic bus sizing for a 32-bit
master connected to a 16-bit slave (a 2:1 ratio). In this example, the slave is mapped to
base address <BASE> in the master’s address space. In Table 2–3, OFFSET refers to the
offset into the 16-bit slave address space.

SOPC Builder generates appropriate address-alignment logic based on the properties
of the master and slaves in the system. When configuring a system in SOPC Builder,
there are no settings that directly control the address alignment in the system
interconnect fabric.

Table 2–2. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing

32-bit Address Data

0×00000000 (word 0) OFFSET[0]31..0

0×00000004 (word 1) OFFSET[0]63..32

0×00000008 (word 2) OFFSET[1]31..0

0×0000000C (word 3) OFFSET[1]63..32

Table 2–3. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

BASE + 0x0 (word 0) 0×0000:OFFSET[0] OFFSET[1]:OFFSET[0]

BASE + 0x4 (word 1) 0×0000:OFFSET[1] OFFSET[3]:OFFSET[2]

BASE + 0x8 (word 2) 0×0000:OFFSET[2] OFFSET[5]:OFFSET[4]

BASE + 0xC (word 3) 0×0000:OFFSET[3] OFFSET[7]:OFFSET[6]

...

BASE + 4N (word N) 0×0000:OFFSET[N] OFFSET[2N+1]:OFFSET[2N]

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–9
Arbitration for Multimaster Systems

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Arbitration for Multimaster Systems
System interconnect fabric supports systems with multiple master components. In a
system with multiple masters, such as the system pictured in Figure 2–1 on page 2–2,
the system interconnect fabric provides shared access to slaves using a technique
called slave-side arbitration. Slave-side arbitration moves the arbitration logic close to
the slave, such that the algorithm that determines which master gains access to a
specific slave in the event that multiple masters attempt to access the same slave at the
same time.

The multimaster architecture used by system interconnect fabric offers the following
benefits:

■ Eliminates having to create arbitration hardware manually.

■ Allows multiple masters to transfer data simultaneously. Unlike traditional
host-side arbitration architectures where each master must wait until it is granted
access to the shared bus, multiple Avalon-MM masters can simultaneously
perform transfers with independent slaves. Arbitration logic stalls a master only
when multiple masters attempt to access the same slave during the same cycle.

■ Eliminates unnecessary master-slave connections. The connection between a
master and a slave exists only if it is specified in SOPC Builder. If a master never
initiates transfers to a specific slave, no connection is necessary, and therefore
SOPC Builder does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each slave is
specified independently. For example, you can grant one master more arbitration
shares than others, allowing it to gain more access cycles to the slave. The
arbitration share settings are defined for each slave independently.

■ Simplifies master component design. The details of arbitration are encapsulated
inside the system interconnect fabric. Each Avalon-MM master connects to the
system interconnect fabric as if it is the only master in the system. As a result, you
can reuse a component in single-master and multimaster systems without
requiring design changes to the component.

Traditional Shared Bus Architectures
This section discusses the architecture of the system interconnect fabric generated by
SOPC Builder for multimaster systems. As a frame of reference for the discussion of
multiple masters and arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves connect to a
shared bus, consisting of wires on a printed circuit board or on-chip routing. A single
arbiter controls the bus (that is, the path between bus masters and bus slaves), so that
multiple bus masters do not simultaneously drive the bus. Each bus master requests
control of the bus from the arbiter, and the arbiter grants access to a single master at a
time. Once a master has control of the bus, the master performs transfers with any bus
slave. When multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master, forcing all other masters to wait.

Figure 2–6 illustrates the bus architecture for a traditional processor system. Access to
the shared system bus becomes the bottleneck for throughput: only one master has
access to the bus at a time, which means that other masters are forced to wait and only
one slave can transfer data at a time.

2–10 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Slave-Side Arbitration
The system interconnect fabric uses multimaster architecture to eliminate the
bottleneck for access to a shared bus. Multiple masters can be active at the same time,
simultaneously transferring data with independent slaves. For example, Figure 2–1
on page 2–2 demonstrates a system with two masters (a CPU and a DMA controller)
sharing a slave (an SDRAM controller). Arbitration is performed at the SDRAM slave;
the arbiter dictates which master gains access to the slave if both masters initiate a
transfer with the slave in the same cycle.

Figure 2–7 focuses on the two masters and the shared slave and shows additional
detail of the data, address, and control paths. The arbiter logic multiplexes all address,
data, and control signals from a master to a shared slave.

Arbiter Details
SOPC Builder generates an arbiter for every slave, based on arbitration parameters
specified in SOPC Builder. The arbiter logic performs the following functions for its
slave:

■ Evaluates the address and control signals from each master and determines which
master, if any, gains access to the slave next.

Figure 2–6. Bus Architecture in a Traditional Microprocessor System

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbiter

System Bus

Masters

Slaves

Bottleneck

Figure 2–7. Detailed View of Multimaster Connections

Master 1

Master 2

Slave

A
rb

ite
r

Write Data

Control

Request Control

M1 Write Data

M2 Write Data

Request Control

Slave Read Data

Address

M2 Address

M1 Address

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–11
Arbitration for Multimaster Systems

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

■ Grants access to the chosen master and forces all other requesting masters to wait.

■ Uses multiplexers to connect address, control, and datapaths between the multiple
masters and the slave.

Figure 2–8 shows the arbiter logic in an example multimaster system with two
masters, each connected to two slaves.

Arbitration Rules
This section describes the rules by which the arbiter grants access to masters when
they contend.

Setting Arbitration Parameters in SOPC Builder
You specify the arbitration shares for each master using the connection panel on the
System Contents tab of SOPC Builder, as shown in Figure 2–9.

Figure 2–8. Block Diagram of Arbiter Logic

Master 1
(M1)

Data-Path
Multiplexing

Logic

Slave 1
(S1)

Slave 2
(S2)

Master 2
(M2)

M1 Address, Write
Data & Control

M2 Address, Write
Data & Control

S1 Read Data & Control

S2 Read Data & Control

Data-Path
Multiplexing

Logic

Slave 1
Arbiter Master Select

 M1 wait
 M2 wait

Slave 2
Arbiter Master Select

 M1 wait

 M2 wait

2–12 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

The arbitration settings are hidden by default. To see them, on the View menu, click
Show Arbitration.

Fairness-Based Shares
Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based arbitration
scheme, each master pair has an integer value of transfer shares with respect to a slave.
One share represents permission to perform one transfer.

For example, assume that two masters continuously attempt to perform back-to-back
transfers to a slave. Master 1 is assigned three shares and Master 2 is assigned four
shares. In this case, the arbiter grants Master 1 access for three transfers, then Master 2
for four transfers. This cycle repeats indefinitely. Figure 2–10 demonstrates this case,
showing each master’s transfer request output, wait request input (which is driven by
the arbiter logic), and the current master with control of the slave.

If a master stops requesting transfers before it exhausts its shares, it forfeits all its
remaining shares, and the arbiter grants access to another requesting master. Refer to
Figure 2–11. After completing one transfer, Master 2 stops requesting for one clock
cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished
supply of shares.

Figure 2–9. Arbitration Settings on the System Contents Tab

Figure 2–10. Arbitration of Continuous Transfer Requests from Two Masters

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–13
Burst Adapters

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Round-Robin Scheduling
When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Round-robin scheduling drives a request interface according to
space available and data available credit interfaces. At every slave transfer, only
requesting masters are included in the arbitration.

Burst Transfers
Avalon-MM burst transfers grant a master uninterrupted access to a slave for a
specified number of transfers. The master specifies the number of transfers when it
initiates the burst. Once a burst begins between a master-slave pair, arbiter logic does
not allow any other master to access the slave until the burst completes. For burst
masters, the size of the burst determines the number of cycles that the master has
access to the slave, and the selected arbitration shares have no effect.

Burst Adapters
System interconnect fabric provides burst adaptation logic to accommodate the burst
capabilities of each port in the system, including ports that do not support burst
transfers. Burst adaptation logic consists of a finite state machine that translates the
sequencing of address and control signals between the slave side and the master side.

The maximum burst length for each port is determined by the component design and
is independent of other ports in the system. Therefore, a particular master might be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst management logic translates the master burst into smaller slave
bursts, or into individual slave transfers if the slave does not support bursts. Until the
master completes the burst, the arbiter logic prevents other masters from accessing
the target slave.

For example, if a master initiates a burst of 16 transfers to a slave with maximum burst
length of 8, the burst adapter logic initiates two bursts of length 8 to the slave. If the
master initiates a burst of 14, the burst adapter logic segments the burst transfer into a
burst of 8 words followed by a burst of 6 words, because the slave can only handle a
maximum burst length of 8. If a master initiates a burst of 16 transfers to a slave that
does not support bursts, the burst management logic initiates 16 separate transfers to
the slave.

1 The burst adapter inserts one idle cycle at the start of each burst. System throughput is
maximized when burst sizes are as large as possible.

Figure 2–11. Arbitration of Two Masters with a Gap in Transfer Requests

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

2–14 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Interrupts

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

In the case of a non-linewrap burst master connected to a slave with the
linewrapBursts property set to TRUE, it is not always possible to issue the
maximum-sized burst to the slave. In cases where a burst would cross a slave burst
boundary, the burst adapter must issue the appropriate smaller bursts according to
the master request. For example, if a non-linewrap burst master, data width=32 issues
a burst of 8 at byte address 0xC to a linewrap burst slave, data width=32, the burst
adapter issues a burst read of 5 at byte address 0xC followed by a burst read of size 3
at address 0x20. This example assumes a maximum burst size of 8 for both the master
and slave. Table 2–3 provides some examples that show how bursts are handled
between master and slaves with and without linewrapping. (Linewrap bursts are
common for SDRAM components.) In these examples the following conditions are
true:

■ The master and slave have the same data width.

■ Masters with the linewrapBursts property set to TRUE must also set
alwaysBurstMaxBurst to TRUE due to a limitation in the burst adapter.

f For more information about the linewrapBursts property, refer to the Avalon
Memory-Mapped Slave Interfaces chapter in the Avalon Interface Specifications.

Interrupts
In systems where components have interrupt request (IRQ) sender interfaces, the
system interconnect fabric includes interrupt controller logic. A separate interrupt
controller is generated for each interrupt receiver. The interrupt controller aggregates
IRQ signals from all interrupt senders, and maps them to user-specified values on the
receiver inputs.

f For further information, refer to the Interrupt Interfaces chapter in the Avalon Interface
Specifications.

Table 2–4. Burst Behavior for Masters and Slaves with and without Linewrapping

Master Max Burst Size 8 4

Slave Max Burst Size 8 4 8

Master Linewrap
Bursts True False True False True False

Slave Linewrap Bursts T F T F T F T F T F T F

Master bursts 8@0 8@0 2@0 2@0 8@0 8@0 2@0 2@0 4@0 4@0 2@0 2@0

Slave receives 8@0 8@0 2@0 2@0 4@0,
4@4

8@0 2@0 2@0 4@0 4@0 2@0 2@0

Master bursts 8@3 8@3 6@3 6@3 8@3 4@0
4@4

6@3 6@3 4@7 4@7 4@7 4@3

Slave Receives 8@3 5@3,
3@0

5@3,
1@8

6@3 1@3,
4@4,
3@0

1@3,
4@4,
3@0

1@3,
4@4,
1@8

4@3,
2@7

1@7,
3@4

1@7,
3@4

1@7,
3@8

4@3

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–15
Interrupts

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Individual Requests IRQ Scheme
In the individual requests IRQ scheme, the system interconnect fabric passes IRQs
directly from the sender to the receiver, without making any assumptions about IRQ
priority. In the event that multiple senders assert their IRQs simultaneously, the
receiver logic (presumably under software control) determines which IRQ has highest
priority, then responds appropriately.

Using individual requests, the interrupt controller can handle up to 32 IRQ inputs.
The interrupt controller generates a 32-bit signal irq[31:0] to the receiver, and
simply maps slave IRQ signals to the bits of irq[31:0]. Any unassigned bits of
irq[31:0] are disabled. Figure 2–12 shows an example of the interrupt controller
mapping the IRQs on four senders to irq[31:0] on a receiver.

Priority Encoded Interrupt Scheme
In the priority encoded interrupt scheme, in the event that multiple slaves assert their
IRQs simultaneously, the system interconnect fabric provides the interrupt receiver
with a 1-bit interrupt signal, and the number of the highest priority active interrupt.
An IRQ of lesser priority is undetectable until all IRQs of higher priority have been
serviced.

Using priority encoded interrupts, the interrupt controller can handle up to 64 slave
IRQ signals. The interrupt controller generates a 1-bit irq signal to the receiver,
signifying that one or more senders have generated an IRQ. The controller also
generates a 6-bit irqnumber signal, which outputs the encoded value of the highest
pending IRQ. See Figure 2–13.

Figure 2–12. IRQ Mapping Using Software Priority

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

2–16 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Reset Distribution

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Assigning IRQs in SOPC Builder
You specify IRQ settings on the System Contents tab of SOPC Builder. After adding
all components to the system, you make IRQ settings for all interrupt senders, with
respect to each interrupt receiver. For each slave, you can either specify an IRQ
number, or specify not to connect the IRQ.

Reset Distribution
SOPC Builder generates the logic used in the system interconnect fabric, which drives
the reset pulse to all the logic. The system interconnect fabric distributes the reset
signal conditioned for each clock domain. The duration of the reset signal is at least
one clock period.

The system interconnect fabric asserts the system-wide reset in the following
conditions:

■ The global reset input to the SOPC Builder system is asserted.

■ Any component asserts its resetrequest signal.

The global reset and reset requests are ORed together. This signal is then synchronized
to each clock domain associated to an Avalon-MM port, which causes the
asynchronous resets to be de-asserted synchronously.

Figure 2–13. IRQ Mapping Using Hardware Priority

Interrupt
Controller

Receiver

irq

irq

irq

irq

irq1
irq2

irq4
irq5
irq6

irq3

irq0

irq63

Priority
Encoder

irqnumber [5..0]

irqSender
1

Sender
2

Sender
3

Sender
4

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–17
Referenced Documents

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ Avalon Memory-Mapped Bridges chapter in volume 4 of the Quartus II Handbook

■ Avalon Memory-Mapped Design Optimizations chapter in the Embedded Design
Handbook

Document Revision History
Table 2–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 2–5. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

March 2009,
v9.0.0

■ Added table showing the behavior of the burst adapter for
master and slaves with and without linewrapBursts set to
TRUE.

Clarification of burst behavior.

November 2008,
v8.1.0

■ Added discussion of a non-bursting Avalon-MM master
connected to a Avalon-MM slave with linewrapBursts =
TRUE. Removed discussion on minimum arbitration shares;
this feature is no longer supported.

■ Changed page size to 8.5 x 11 inches

Minor update to reflect software
changes.

May 2008, v8.0.0 ■ Updated references to Avalon Memory-Mapped and Streaming
Interface Specifications and changed to Avalon Interface
Specifications.

■ Moved clock-crossing bridge section from this chapter to
chapter 11.

The two specifications have been
combined into one for all Avalon
interfaces.

http://www.altera.com/literature/hb/qts/qts_qii54020.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Avalon Memory-Mapped bridges
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

2–18 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Document Revision History

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

	2. System Interconnect Fabric for Memory-Mapped Interfaces
	Introduction
	High-Level Description
	Fundamentals of Implementation
	Functions of System Interconnect Fabric

	Address Decoding
	Datapath Multiplexing
	Wait State Insertion
	Pipelined Read Transfers
	Dynamic Bus Sizing and Native Address Alignment
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Native Address Alignment

	Arbitration for Multimaster Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbiter Details
	Arbitration Rules
	Setting Arbitration Parameters in SOPC Builder
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers

	Burst Adapters
	Interrupts
	Individual Requests IRQ Scheme
	Priority Encoded Interrupt Scheme
	Assigning IRQs in SOPC Builder

	Reset Distribution
	Referenced Documents
	Document Revision History

