
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

4. SOPC Builder Components

An SOPC Builder component is a hardware design block available within SOPC
Builder that can be instantiated in an SOPC Builder system. This chapter defines
SOPC Builder components, with emphasis on the structure of custom components.

A component includes the following:

■ The HDL description of the component’s hardware.

■ A description of the interface to the component hardware, such as the names and
types of I/O signals.

■ A description of any parameters that specify the structure of the component logic
and component.

■ A GUI for configuring an instance of the component in SOPC Builder.

■ Scripts and other information SOPC Builder requires to generate the HDL files for
the component and integrate the component instance into the SOPC Builder
system.

■ Other component-related information, such as reference to software drivers,
necessary for development steps downstream of SOPC Builder.

This chapter discusses the design flow for new and classic custom-defined SOPC
Builder components, in the following sections:

■ “Component Providers” on page 4–1

■ “Component Hardware Structure” on page 4–2

■ “Exported Connection Points—Conduit Interfaces” on page 4–4

■ “SOPC Builder Component Search Path” on page 4–4

■ “Component Structure” on page 4–7

■ “Classic Components in SOPC Builder” on page 4–8

Component Providers
SOPC Builder components can be obtained from many providers, including the
following:

■ The components automatically installed with the Quartus® II software.

■ Third-party IP developers can provide IP blocks as SOPC Builder-ready
components, including software drivers and documentation. A list of third-party
components can be found in SOPC Builder by clicking IP MegaStore on the Tools
menu.

■ Altera development kits, such as the Nios® II Development Kit, can provide SOPC
Builder components as features.

■ You can use the SOPC Builder component editor to convert your own HDL files
into custom components.

QII54004-9.0.0

4–2 Chapter 4: SOPC Builder Components
Component Hardware Structure

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

1 The GUI interfaces for classic components run slower in newer versions of SOPC
Builder when you add or modify your component settings. These components are
marked by a gray dot in the System Contents tab. You have better performance when
you upgrade to the Hardware Component Description File (_hw.tcl) component
format in newer versions of SOPC Builder. These components are marked by a green
dot.

f For more information about the _hw.tcl file, refer to the Component Editor chapter in
volume 4 of the Quartus II Handbook.

Component Hardware Structure
There are the following types of components in an SOPC Builder system, based on
where the associated component logic resides:

■ Components that include their associated logic inside the SOPC Builder system

■ Components that interface to logic outside the SOPC Builder system

Figure 4–1 shows an example of both types of components.

Figure 4–1. Component Logic Inside and Outside the SOPC Builder System

Exported Signals
from Component

System Module

Component
Logic

(HDL Files)

External
Logic

or
Off-Chip
Device

Signals
Unrelated
to SOPC
Builder

Avalon Interface
(Automatically Connected
by SOPC Builder)

Avalon Interface
(Manually Connected
by System Designer)

Conduit-Ports
(or Interface) for
Exporting Signals

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

Rest of
the System

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Chapter 4: SOPC Builder Components 4–3
Component Hardware Structure

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Components Inside the SOPC Builder System
For components that are instantiated inside the SOPC Builder system, the component
defines its logic in an associated HDL file. During system generation, SOPC Builder
instantiates the component and connects it to the rest of the system. The component
can include exported signals in conduit interfaces. Conduit interfaces become ports
on the system, so they can be connected to logic outside the SOPC Builder system in
the board-level schematic.

f For more information about conduit interfaces, refer to the Conduit Interfaces chapter
in the Avalon Interface Specifications.

In general, components connect to the system interconnect fabric using the Avalon®
Memory-Mapped (Avalon-MM) interface or the Avalon Streaming (Avalon-ST)
interface. A single component can provide more than one Avalon port. For example, a
component might provide an Avalon-ST source port for high-throughput data, in
addition to an Avalon-MM slave for control.

Static HDL Components
You can define SOPC Builder components whose parameters are all assigned values
during the initial editing session. Examples of parameters whose values are typically
known at instantiation time are address and data widths and FIFO depths. If all of a
component’s parameters are assigned when it is instantiated, the HDL for the
component is static. SOPC Builder automatically generates the top-level HDL
wrapper file to apply parameter values to your component.

Dynamic HDL Components
You can also create SOPC Builder components whose parameters are defined by a
generation callback. Examples of parameters that might be assigned during
generation callback are baud rate and output directory. When you create components
that include parameters defined using a generation callback, you must provide a
custom generation callback routine to create the top-level wrapper for your
component.

f For more information about defining your own generation program, refer to the
Generation Callback section in the Component Interface Tcl Reference chapter in volume 4
of the Quartus II Handbook.

Components Outside the SOPC Builder System
For components that interface to external logic or off-chip devices with
Avalon-compatible signals outside the SOPC Builder system, the component files
describe only the interface to the external logic. During system generation, SOPC
Builder exports an interface for the component in the top-level SOPC Builder system.
You must manually connect the signals at the top-level of SOPC Builder to pins or
logic defined outside the system that already has Avalon-compatible signals.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

4–4 Chapter 4: SOPC Builder Components
Exported Connection Points—Conduit Interfaces

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Exported Connection Points—Conduit Interfaces
Conduit interfaces are brought to the top level of the system as additional ports.
Exported signals are usually either application-specific signals or the Avalon interface
signals.

Application-specific signals are exported to the top level of the system by the conduit
interface(s) defined in the _hw.tcl file. These are I/O signals in a component’s HDL
logic that are not part of any Avalon interfaces and connect to an external device, for
example DDR SDRAM memory, or logic defined outside of the SOPC Builder system.
You use conduit interfaces to connect application-specific signals of the external
device and the SOPC Builder system.

You can also export the Avalon interfaces to manually connect them to external
devices or logic defined outside a system with Avalon-compatible signals. This
method allows a direct connection to the Avalon interface from any device that has
Avalon-compatible signals. You can also export the Avalon interface in either an HDL
file using conduit interfaces, or in the _hw.tcl file without an HDL file.

You export the Avalon interface signals as an HDL file with simple wire connections
in the HDL description. The Avalon interface port signals are directly connected to
external I/O signals in the HDL description. The conduit interface in the _hw.tcl file
exports the external I/O signals to the top level of the system.

In the _hw.tcl file, no HDL files are specified and only the Avalon signals and
interface ports are declared in the file.

SOPC Builder Component Search Path
Each time SOPC Builder starts, it searches for component files. The components that
SOPC Builder finds are displayed in the list of available components on the SOPC
Builder System Contents tab. When you launch SOPC Builder certain directories are
searched for two kinds of files:

■ _hw.tcl files. Each _hw.tcl file defines a single component.

■ IP Index (.ipx) files. Each file indexes a collection of available components.

In general, .ipx files facilitate faster startup for SOPC Builder and other tools because
fewer files need to be read and analyzed.

Some directories are searched recursively; others only to a specific depth. In the
following list of search locations, a recursive descent is annotated by **. The * signifies
any file. When a directory is recursively searched, the search stops at any directory
containing a _hw.tcl or .ipx file; subdirectories are not searched.

■ $$PROJECT_DIR/*

■ $$PROJECT_DIR/ip/**/*

■ $QUARTUS_ROOTDIR/../ip/**/*

In SOPC Builder, you can extend the default search path by including additional
directories by clicking Options, then clicking IP Search Path and Add. These
additional paths apply to all projects; that is, the paths are global to the current
version of SOPC Builder.

Chapter 4: SOPC Builder Components 4–5
SOPC Builder Component Search Path

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Installing Additional Components
There are two additional ways to make your components available to SOPC Builder
projects. The following sections describe these methods.

Copy to the IP Root Directory
The simplest strategy is to copy your components into the standard IP directory
provided by Altera. Figure 4–2 illustrates this approach.

In Figure 4–2, the circled numbers identify three steps of the algorithm that SOPC
follows during initialization. These steps are explained in the following paragraphs.

1. SOPC Builder recursively searches the <install_dir>/ip/ directory by default. It
finds the file in the altera subdirectory, which tells it about all of the Altera
components. library.ipx includes listings for all components found in its
subdirectories. The recursive search stops when SOPC Builder finds this .ipx file.

2. As part of its recursive search, SOPC Builder also looks in the adjacent
user_components directory. One level down SOPC Builder finds the component1
directory, which contains component1_hw.tcl. SOPC Builder finds that
component stops the recursive descent.

3. SOPC Builder then searches in the adjacent component2 directory, which includes
component2_hw.tcl. If SOPC Builder finds that component, the recursive descent
stops.

1 If you save your .ipx file in the <install_dir>/ip/ directory, SOPC Builder finds your
.ipx file and stops. SOPC Builder does not conduct the search just described.

Figure 4–2. User Library Included In Subdirectory of $IP_ROOTDIR

library.ipx
<components>

.

 user_components

 component1

component2

<install_dir>

 quartus

 ip

altera

component1_hw.tcl
component1.v

component2_hw.tcl
component2.v

2

1

3

4–6 Chapter 4: SOPC Builder Components
SOPC Builder Component Search Path

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Reference Components in an .ipx File
A second approach is to specify your IP directory in a user_components.ipx file
under <install_dir>/ip path. Figure 4–3 illustrates this approach.

The user_components.ipx file includes a single line of code redirecting SOPC Builder
to the location of the user library. Example 4–1 shows the code for this redirection.

1 For both of these approaches, if you install a new version of the Quartus II software,
you must also update the installation to include your libraries.

Understanding IPX File Syntax
An .ipx file is an XML file whose top-level element is <library> with a <path>
subelements are <path> and <component>. Altera recommends that you only add or
edit the <path> subelement.

A <path> element contains a single attribute, also called path and may reference a
directory with a wildcard, (*), or reference a single file. Two asterisks designate any
number of subdirectories. A single asterisk designates a match to a single file or
directory. In searching down the designated path, the following three types of files are
identified:

■ .ipx—additional index files

■ _hw.tcl—SOPC Builder component definitions

■ _sw.tcl—Nios II board support package (BSP) software component definitions

A <component> element contains several attributes to define a component. If you
provide all the required details for each component in an .ipx file, the start-up time for
SOPC Builder is less than if SOPC Builder must discover the files in a directory.
Example 4–2 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Figure 4–3. Specifying A User .ipx directory

Example 4–1. Redirect to User Library

<library>
 <path path="c:/<user_install_dir>/user_ip/**/*" />
<library>

library.ipx
<components>

user_components.ipx
 user_components

<install_dir>

 ip

altera

quartus

Chapter 4: SOPC Builder Components 4–7
Component Structure

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Upgrading from Earlier Versions
If you specified a custom search path in SOPC Builder prior to v8.1 using the IP
Search Path option, or by adding it to the $SOPC_BUILDER_PATH, SOPC Builder
automatically adds those directories to the user_components.ipx file in your home
directory. This file is saved in
<home_dir>/altera.quartus/ip/8.1/ip_search_path/user_components.ipx. Go to the IP
Search Path option in the Options dialog box to see the directories listed here.

Component Structure
Most components are defined with a _hw.tcl file, a text file written in the Tcl scripting
language that describes the components in to SOPC Builder. You can add a
component to SOPC Builder by either writing a Tcl description or you can use the
component editor to generate an automatic Tcl description of it. This section describes
the structure of Tcl components and how they are stored.

f For details about the SOPC Builder component editor, refer to the Component Editor
chapter in volume 4 of the Quartus II Handbook. For details about the SOPC Builder Tcl
commands, refer to the Component Interface Tcl Reference chapter in volume 4 of the
Quartus II Handbook.

Component Description File (_hw.tcl)
A Tcl component consists of:

■ A component description file, which is a Tcl file with file name of the form <entity
name>_hw.tcl.

■ Verilog HDL or VHDL files that define the top-level module of the custom
component (optional).

The _hw.tcl file defines everything that SOPC Builder requires about the name and
location of component design files.

Example 4–2. Component Elements

<library>
 <component
 name="An SOPC Component"
 displayName="SOPC Component"
 version="2.1"
 file="./components/sopc_component/sc_hw.tcl"
 />
 <component

name="legacy_component"
 displayName="Legacy Component (Classic Edition!)"
 version="0.9"
 file="./components/legacy/old_component/class.ptf"
 />
<library>

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

4–8 Chapter 4: SOPC Builder Components
Classic Components in SOPC Builder

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

The SOPC Builder component editor saves components in the _hw.tcl format. You can
use these Tcl files as a template for editing components by hand. When you edit a
previously saved _hw.tcl file, SOPC Builder automatically saves the earlier version as
_hw.tcl~.

For more information about the information that you can include in the _hw.tcl file,
refer to the Component Interface Tcl Reference chapter in volume 4 of the Quartus II
Handbook.

Component File Organization
A typical component uses the following directory structure. The precise names of the
directories are not significant.

■ <component_directory>/

■ <hdl>/— a directory that contains the component HDL design files and the
_hw.tcl file

■ <component name>_hw.tcl—the component description file

■ <component name>.v or .vhd—the HDL file that contains the top-level module

■ <component_name>_sw.tcl—the software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component.

■ You are not required to create a special sub-directory for component HDL files.
However, you are required to follow the naming conventions given here.

■ <component_dir>/

■ <name>_hw.tcl

■ <name>.v or .vhd

■ <name>_sw.tcl

■ <software>/—a directory that contains software drivers or libraries related to the
component, if any. Altera recommends that the software directory be subdirectory
of the directory that contains the _hw.tcl file.

f For information on writing a device driver or software package suitable
for use with the Nios® II IDE design flow, refer to the Hardware Abstraction
Layer section of the Nios II Software Developer’s Handbook. The Nios II
Software Build Tool Reference chapter of the Nios II Software Developer’s
Handbook describes the commands you can use in the Tcl script.

Classic Components in SOPC Builder
If you use classic components created with an earlier version of SOPC Builder, read
through this section to familiarize yourself with the differences. This document uses
the term classic components to refer to class.ptf-based components created with a
previous version of the Quartus II software. If you do not use classic components, skip
this section.

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: SOPC Builder Components 4–9
Referenced Documents

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Classic components are compatible with newer versions of SOPC Builder, but be
aware of the following caveats:

■ Classic components configured with the More Options tab in SOPC Builder, such
as complex IP components provided by third-party IP developers, are not
supported in the Quartus II software in version 7.1 and beyond. If your
component has a bind program, you cannot use the component without recreating
it with the component editor or with Tcl scripting.

■ To make changes to a classic component with the component editor, you must first
upgrade the component by editing the classic component and saving it in the
_hw.tcl component format in the component editor.

Referenced Documents
This chapter references the following documents:

■ Component Interface Tcl Reference chapter in volume 4 of the Quartus II Handbook

■ Component Editor chapter in volume 4 of the Quartus II Handbook

■ Conduit Interfaces chapter in the Avalon Interface Specifications

■ Embedded Peripherals section in volume 5 of the Quartus II Handbook

■ Hardware Abstraction Layer section of the Nios II Software Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

Document Revision History
Table 4–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 4–1. Document Revision History

Date and Document
Version

Changes Made
Summary of Changes

March 2009, v9.0.0 ■ Added 2 paragraphs introducing custom
generations for dynamic components.

Updated component descriptions.

November 2008, v8.1.0 ■ Revised section on component search paths.

■ Added meaning of green and gray dots next to
components on the System Contents tab.

■ Changed page size to 8.5 x 11 inches

Revised to reflect changes to the
component search path in 8.1.

May 2008, v8.0.0 ■ Added paragraph about IP Search Path. —

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

4–10 Chapter 4: SOPC Builder Components
Document Revision History

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

	4. SOPC Builder Components
	Component Providers
	Component Hardware Structure
	Components Inside the SOPC Builder System
	Static HDL Components
	Dynamic HDL Components

	Components Outside the SOPC Builder System

	Exported Connection Points—Conduit Interfaces
	SOPC Builder Component Search Path
	Installing Additional Components
	Copy to the IP Root Directory
	Reference Components in an .ipx File

	Understanding IPX File Syntax
	Upgrading from Earlier Versions

	Component Structure
	Component Description File (_hw.tcl)
	Component File Organization

	Classic Components in SOPC Builder
	Referenced Documents
	Document Revision History

