
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

6. Component Editor

Introduction
This chapter describes the SOPC Builder component editor. The component editor
provides a GUI to support the creation and editing of the Hardware Component
Description File (_hw.tcl) file that describes a component to SOPC Builder. You use
the component editor to do the following:

■ Specify the Verilog HDL or VHDL files that describe the modules in your
component hardware.

■ Conversely, create an HDL template for a component by first defining its interface
using the HDL Files tab of the component editor.

■ Specify the signals for each of the component’s interfaces, and define the behavior
of each interface signal.

■ Specify relationships between interfaces, such as determining which clock
interface is used by a slave interface.

■ Declare any parameters that alter the component structure or functionality, and
define a user interface to let users parameterize instances of the component.

f For information about using the component editor in a development flow, refer to the
following pages on the Altera® website: SOPC Builder Component Development Flow
Using the Component Editor Overview. For information about Avalon® component
interfaces, refer to Avalon Component Interfaces Supported in the Component Editor
Version 7.2 and Later. For examples of changes to typical Avalon interfaces, refer to
Examples of Changes to Typical Avalon Interfaces for the Component Editor Version 7.2 and
Later. For information about upgrading components, refer to Upgrading Your
Component with SOPC Builder Component Editor Version 7.2 and Later.

For information about the use of the component editor, see the following sections:

■ “Starting the Component Editor” on page 6–2.

■ “HDL Files Tab” on page 6–2.

■ “Signals Tab” on page 6–3.

■ “Interfaces Tab” on page 6–6.

■ “Component Wizard Tab” on page 6–6.

■ “Saving a Component” on page 6–8.

■ “Editing a Component” on page 6–8.

■ “Component GUI” on page 6–8.

f For more information about components, refer to the Component Interface Tcl Reference
chapter in volume 4 of the Quartus II Handbook, For more information about the
Avalon-MM interface, refer to the Avalon Interface Specifications.

QII54005-9.0.0

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html

6–2 Chapter 6: Component Editor
Component Hardware Structure

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Component Hardware Structure
The component editor creates components with the following characteristics:

■ A component has one or more interfaces. Typically, an interface means an Avalon®
Memory-Mapped (Avalon-MM) master or slave or an Avalon Streaming
(Avalon-ST) source or sink. You can also specify exported component signals that
appear at the top-level of the SOPC Builder system, which can be connected to
logic outside the SOPC Builder system. The component editor lets you build a
component with any combination of Avalon interfaces, which include:

■ Avalon-MM master and slave

■ Avalon-ST source and sink

■ Avalon-MM tristate slave

■ Interrupt sender and receiver

■ Clock input and output

■ Nios II custom instruction master and slave interfaces

■ Conduit (for exporting signals to the top level)

■ Each interface is comprised of one or more signals.

■ The component can represent logic that is instantiated inside the SOPC Builder
system, or can represent logic outside the system with an interface to it on the
generated system.

Starting the Component Editor
To start the component editor in SOPC Builder, on the File menu, click New
Component. When the component editor starts, the Introduction tab displays, which
describes how to use the component editor.

The component editor presents several tabs that group related settings. A message
window at the bottom of the component editor displays warning and error messages.

1 Each tab in the component editor provides on-screen information that describes how
to use the tab. Click the triangle labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II online Help for additional information
about the component editor.

You navigate through the tabs from left to right as you progress through the
component creation process.

HDL Files Tab
The HDL Files tab allows you to create an SOPC Builder component from existing
Verilog HDL or VHDL files, or to create an HDL template in either Verilog HDL or
VHDL for a SOPC Builder component by first specifying its interfaces. The following
sections describe both the bottom-up and top-down approaches to component design.

Chapter 6: Component Editor 6–3
Signals Tab

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Bottom-Up Design
You can use the HDL Files tab to specify Verilog HDL or VHDL files that describe the
component logic. Files are provided to downstream tools such as the Quartus II
software and ModelSim® in the same order as they appear in the table.

You can also use the component editor to define the interface to components outside
the SOPC Builder system. In this case, you do not provide HDL files. Instead, you use
the component editor to interactively define the hardware interface.

After you specify an HDL file, the component editor analyzes the file by invoking the
Quartus II Analysis and Elaboration module. The component editor analyzes signals
and parameters declared for all modules in the top-level file. If the file is successfully
analyzed, the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you must select the
appropriate top-level module from the Top Level Module list.

All files are managed in a single table, with options for Synth and Sim. You can select
the Top option to select the top-level file for synthesis. When the top-level module is
changed, the component editor performs best-effort signal matching against the
existing port definitions. If a port is absent from the module, it is removed from the
port list. You can use the up and down arrows to specify the HDL file analysis order.

By default, all files are added with both Synth and Sim options turned on. To add a
simulation-only file, turn off the Synth option for that file. Files that turn on the Sim
option are passed to ModelSim® for simulation. To add a synthesis-only file, turn off
the Sim file option. You can add the .sdc file for your component using the Synth
option. Only files that you mark for Synth are added to the .qip file for your project.

c The component editor determines the signals on the component when only the
top-level module or entity is added to the table, but all of the files required for the
component must be added for the component to compile in Quartus II software or
work in simulation.

Top-Down Design
The Create HDL Template button on the HDL Files tab allows you to create an HDL
template for a component if you have not provided a HDL description for it. Clicking
the Create HDL Template button shows you the component HDL and lets you choose
between Verilog HDL and VHDL. Altera recommends that you define your signals,
interfaces, parameters and basic component information, including the component
name, before creating the HDL template by clicking Save. The component editor
writes <component_name>.v or <component_name>.vhd to your project directory.

After you have component the component’s HDL code, you can add other files that
are required to define your component, including the _hw.tcl file, and synthesis and
simulation files using the Add button on the HDL Files tab.

Signals Tab
You use the Signals tab to specify the purpose of each signal on the top-level
component module. If you specified a file on the HDL Files tab, the signals on the
top-level module appear on the Signals tab.

6–4 Chapter 6: Component Editor
Signals Tab

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

The Interface list also allows creation of a new interface so that you can assign a signal
to a different interface without first switching to the Interfaces tab. Each signal must
belong to an interface and be assigned a legal signal type for that interface. In addition
to Avalon Memory-Mapped and Streaming interfaces, components typically have
clock interfaces, interrupt interfaces, and perhaps a conduit interface for exported
signals.

Naming Signals for Automatic Type and Interface Recognition
The component editor recognizes signal types and interfaces based on the names of
signals in the source HDL file, if they conform to the following naming conventions:

Signal associated with a specific interface—<interface type>_<interface name>_<signal
type>[_n]

For any value of <interface_name> the component editor automatically creates an
interface by that name, if necessary, and assigns the signal to it. The <signal_type>
must match one of the valid signal types for the type of interface. Refer to the Avalon
Interface Specifications for the signal types available for each interface type. You can
append _n to indicate an active-low signal. Table 6–1 lists the valid values for
<interface_type>.

Table 6–1. Valid Values for <Interface Type>

Value Meaning

avs Avalon-MM slave

avm Avalon-MM master

ats Avalon-MM tristate slave

aso Avalon-ST source

asi Avalon-ST sink

cso Clock output

csi Clock input

coe Conduit

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 6: Component Editor 6–5
Signals Tab

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Example 6–1 shows a Verilog HDL module declaration with signal names that infer
two Avalon-MM slaves.

Templates for Interfaces to External Logic
If the component does not use an HDL file to interface to external logic that is Avalon
compatible, you can manually add the signals that comprise the interface to the
external logic or use the Create HDL Template to generate an HDL template for the
component. You connect these signals outside of the SOPC Builder system. If your
component uses an Avalon interface to interface outside of SOPC Builder, you can use
the Templates menu in the component editor to add typical interface signals to your
signal list. There are templates for the following interfaces:

■ Avalon-MM Slave

■ Avalon-MM Slave with Interrupt

■ Avalon-MM Master

■ Avalon-MM Master with Interrupt

■ Avalon-ST Source

■ Avalon-ST Sink

After adding a typical Avalon interface using a template, you can add or delete
signals to customize the interface.

Example 6–1. Verilog HDL Module With Automatically Recognized Signal Names

module my_slave_irq_component (

// Signals for Avalon-MM slave port “s1” with irq

csi_clockreset_clk; //clockreset clock interface
csi_clockreset_reset_n;//clockreset clock interface

avs_s1_address;//s1 slave interface
avs_s1_read; //s1 slave interface
avs_s1_write; //s1 slave interface
avs_s1_writedata; //s1 slave interface
avs_s1_readdata; //s1 slave interface
ins_irq0_irq; //irq0 interrupt sender interface
);

input csi_clockreset_clk;
input csi_clockreset_reset_n;
input [7:0]avs_s1_address;
input avs_s1_read;
input avs_s1_write;
input [31:0]avs_s1_writedata;
output [31:0]avs_s1_readdata;
output ins_irq0_irq;

/* Insert your logic here */

endmodule

6–6 Chapter 6: Component Editor
Interfaces Tab

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Interfaces Tab
The Interfaces tab allows you to configure the interfaces on your component and
specify a name for each interface. The interface name identifies the interface and
appears in the SOPC Builder connection panel. The interface name is also used to
uniquely identify any signals that are ports on the top-level SOPC Builder system.

The Interfaces tab allows you to configure the type and properties of each interface.
For example, an Avalon-MM slave interface has timing parameters that you must set
appropriately. The Interfaces tab displays waveforms that illustrate the timing that
you specified. If you update the timing parameters, the waveforms automatically
update to illustrate the new timing. The waveforms are available for the following
interface types:

■ Avalon Memory-Mapped

■ Avalon Memory-Mapped tristate

■ Avalon Streaming

■ Interrupts

If you convert a component from a class.ptf to a _hw.tcl file, you may require three
interfaces: a clock input, the Avalon slave, and an interrupt sender. A parameter in the
interrupt sender must be set to reference the Avalon slave.

Component Wizard Tab
The Component Wizard tab provides options that affect the presentation of your new
component.

Identifying Information
You can specify information that identifies the component as follows:

■ Folder—Specifies the location of the component, determined by the location of the
top-level HDL file.

■ Class Name—Specifies the name used internally to store the component in the
component library. The class name is stored in the .sopc file. Use the class name
when saving a system that contains an instance of this component. It is also the
name you use for the component type when you create a system using a .tcl script.
If you change the class name of a component, existing .sopc files that use the
component may break.

1 SOPC builder uses the class name and version to find components. If two
components with the same class name and version are available to SOPC
builder at the same time, the behavior of SOPC builder is undefined.

■ Display Name—Specifies the user-visible name for this component in SOPC
Builder.

■ Version—Specifies the version number of the component.

■ Group—Specifies which group in SOPC Builder displays your component in the
list of available components. If you enter a previously unused group name, SOPC
Builder creates a new group by that name.

Chapter 6: Component Editor 6–7
Component Wizard Tab

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

■ Description—Allows you to describe the component.

■ Created By—Allows you to specify the author of the component.

■ Icon—Allows you to place an image in the title bar of your component, in place of
the MegaCore logo. The icon can be a .jpg, .gif, or .png file. The directory for the
icon is relative to the directory that contains the _hw.tcl file.

■ Data sheet URL—Allows you to specify a URL for the datasheet. You can use this
property to specify a file on the internet or in your company’s file system. The
specified file can be in either .html or .pdf format. To specify an internet file, begin
your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html. To specify a file
in your company’s file system, you begin you path with file:/// for Linux and
file://// for Windows, for example:
file:////company_server/datasheets/my_memory_controller.pdf. For handwritten
_hw.tcl files, you can specify a relative path using the following Tcl command:
set_module_property DATASHEET_URL [get_module_property
MODULE_DIRECTORY]/<relative_path_to_hw.tcl>

■ Parameters—Allows you to specify the parameters for creating the component, as
described in the next section.

Parameters
The Parameters table allows you to specify the user-configurable parameters for the
component.

If the top-level module of the component HDL declares any parameters (parameters
for Verilog HD or generics for VHDL), those parameters appear in the Parameters
table. The parameters are presented to you when you create or edit an instance of
your component. Using the Parameters table, you can specify whether or not each
parameter is user-editable.

The following rules apply to HDL parameters exposed via the component GUI:

■ Editable parameters cannot contain computed expressions.

■ If a parameter <N> defines the width of a signal, the signal width must be of the
form <N-1>:0.

■ When a VHDL component is used in a Verilog HDL SOPC Builder system, or vice
versa, numeric parameters must be 32-bit decimal integers. When passing other
numeric parameter types, unpredictable results occur.

Click Preview the Wizard at any time to see how the component GUI appears.

f Refer to Component Interface Tcl Reference chapter in the Quartus II Handbook for
detailed information about creating and displaying parameters using Tcl scripts.

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

6–8 Chapter 6: Component Editor
Saving a Component

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Saving a Component
You can save the component by clicking Finish on any of the tabs, or by clicking Save
on the File menu. Based on the settings you specify in the component editor, the
component editor creates a component description file with the file name
<class-name>_hw.tcl. The component editor saves the file in the same directory as the
HDL file that describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you choose.

You can relocate component files later. For example, you could move component files
into a subdirectory and store it in a central network location so that other users can
instantiate the component in their systems. The _hw.tcl file contains relative paths to
the other files, so if you move the _hw.tcl file you should move all the HDL and other
files associated with it.

1 Altera recommends that you store _hw.tcl files for a project is in the
ip/<class-name> directory for the project. You should store the HDL and other files in
the same directory as the _hw.tcl file.

Editing a Component
After you save a component and exit the component editor, you can edit it in SOPC
Builder. To edit a component, right-click it in the list of available components on the
System Contents tab and click Edit Component.

1 You cannot edit components that were created outside of the component editor, such
as Altera-provided components.

If you edit the HDL for a component and change the interface to the top-level module,
you need to edit the component to reflect the changes you made to the HDL.

Software Assignments
You can use Tcl commands to create software assignments.You can register any
software assignment that you want, as arbitrary key-value pairs. Example 6–2 shows
a typical Tcl API script:

The result is that the assignments go into the .sopcinfo file, available for use for
downstream components.

Component GUI
To edit component instance parameters, select a component in the System Contents
tab of the SOPC Builder window and click Edit.

Example 6–2. Typical Software Assignment with Tcl API Scripting

set_module_assignment name value
set_interface_assignment name value

Chapter 6: Component Editor 6–9
Referenced Documents

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 4: SOPC Builder

Referenced Documents
This chapter references the following documents:

■ Avalon Component Interfaces Supported in the Component Editor Version 7.2

■ Avalon Interface Specifications

■ Component Interface Tcl Reference chapter in volume 4 of the Quartus II Handbook

■ Examples of Changes to Typical Avalon Interfaces for the Component Editor Version 7.2
and Later

■ Nios II Software Developer's Handbook

■ SOPC Builder Components chapter in volume 4 of the Quartus II Handbook

■ SOPC Builder Component Development Flow Using the Component Editor Overview

■ Upgrading Your Component with SOPC Builder Component Editor Version 7.2 and Later

Document Revision History
Table 6–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 6–2. Document Revision History

Date and Document
Version Changes Made Summary of Changes

March 2009, v9.0.0 ■ Revised description of the Create HDL Template
functionality and the Templates menu.

■ Interfaces tab now includes waveforms that illustrate timing
parameters.

■ Added reference to Component Interface Tcl Reference
chapter for detailed information about defining and
displaying GUI parameters.

■ Added data sheet URL to Component Wizard tab.

Updated to reflect new
functionality.

November 2008, v8.1.0 ■ Added information about new HDL template feature

■ Changed page size to 8.5 x 11 inches
—

May 2008, v8.0.0 Extensive edits to this chapter, including:

■ Chapter renumbered.

■ Added new section on software assignments.

—

http://www/literature/hb/qts/qts_qii54004.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

6–10 Chapter 6: Component Editor
Document Revision History

Quartus II Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

	6. Component Editor
	Introduction
	Component Hardware Structure
	Starting the Component Editor
	HDL Files Tab
	Bottom-Up Design
	Top-Down Design

	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Templates for Interfaces to External Logic

	Interfaces Tab
	Component Wizard Tab
	Identifying Information
	Parameters

	Saving a Component
	Editing a Component
	Software Assignments
	Component GUI
	Referenced Documents
	Document Revision History

