

Grundlagen der Rechnerarchitektur

[CS3100.010]

Wintersemester 2014/15

Heiko Falk

Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm

Personen

Vorlesung

- Prof. Dr. Heiko Falk
 - Institut f
 ür Eingebettete Systeme / Echtzeitsysteme
 - E-Mail: Heiko.Falk@uni-ulm.de
 - Raum O27/319

Tutorien

Nicolas Roeser (E-Mail: Nicolas.Roeser@uni-ulm.de)

Praktikum

- Jörg Siedenburg
 - E-Mail: Joerg.Siedenburg@uni-ulm.de

Technische und Systemnahe Informatik

Modul "Grundlagen der Betriebssysteme und Rechnernetze"

- Vorlesung "Grundlagen der Betriebssysteme":
 Vorlesung und Übung im SS (4+1 SWS, 6 LP)
- Vorlesung "Grundlagen der Rechnernetze":
 Vorlesung und Übung im WS (2+1 SWS, 4 LP)

Modul "Grundlagen der Rechnerarchitektur"

Vorlesung "Grundlagen der Rechnerarchitektur":
 Vorlesung und Übung im WS (4+1 SWS, 6 LP)

Labor

- Vorlesungsbegleitend
- Teil 1 (Hardwarenahe Programmierung) im SS, Teil 2 (Grundlagen der Rechnerarchitektur) im WS (2 SWS, 4 LP für beide Teile zusammen)

Termine

Vorlesung Mi 12.15 – 13.45, O27/H20 und

Fr 10.15 – 11.45, O27/H20

Beginn: Mi 15. Oktober 2014

Tutorien Termine und Orte und Gruppeneinteilung: Moodle!

(erste Tutorien ab Montag, 27.10.2014)

Labor im Laufe des Semesters

Einführung: Siehe Webseite des TI-Labors!

- URL: http://www.informatik.uni-ulm.de/sgi/ti/index.phtml

Vorlesung

Skript

- Vorlesungsfolien werden im WWW zum Download zur Verfügung gestellt
- Skriptdruck durch uns über das KIZ
- Weitergehende Informationen zum Nachlesen findet man am Besten in der angegebenen Literatur

URL zur Veranstaltung

- http://www.uni-ulm.de/in/es/lehre/winter-20142015/gdra
- Hier findet man Termine, Folien zum Ausdrucken und Zusatzinformationen

Feedback

Rückmeldungen und Fragen

- Geben Sie mir Rückmeldungen über den Stoff. Nur so kann eine gute Vorlesung entstehen.
- Stellen Sie Fragen!
- Machen Sie mich auf Fehler aufmerksam!
- Nutzen Sie außerhalb der Vorlesung die Möglichkeit, E-Mails zu versenden: Heiko.Falk@uni-ulm.de!

Zum Tutoriumsbetrieb (1)

Ablauf der Tutorien

- Besprechung von Übungsblättern
- Tutorien finden wöchentlich statt
- Teilnahme an Übungen ist nicht verpflichtend
- Es gibt 13 Übungsblätter
- Bei Erreichen von mind. 50% der erreichbaren Punkte eines Übungsblattes gilt das Blatt als bestanden. Bei mind. 11 bestandenen Übungsblättern wird ein Notenbonus von 0,3 auf die Klausurnote gewährt

Zum Tutoriumsbetrieb (2)

Abgaben bei den Tutorien – was geht, was geht nicht?

- Es ist <u>ausdrücklich erwünscht</u>, dass der Stoff der Vorlesung in Gruppen erarbeitet und vertieft wird. D. h. Studierende sollen zusammen lernen!
- In den Übungen werden <u>Einzelabgaben</u> oder Abgaben in <u>Zweierteams</u> akzeptiert, keine Abgaben größerer Gruppen.
- <u>Abschreiben</u> voneinander ist <u>Plagiarismus</u>. Abschreiben von anderen Quellen (z. B. Wikipedia) <u>ohne Quellenangabe</u> ist ebenfalls Plagiarismus.
- Plagiarismus widerspricht den Grundsätzen guten wissenschaftlichen Arbeitens (vgl. Fälle der Polit-Prominenz aus jüngerer Vergangenheit).
- Einzelne Aufgaben oder ganze Übungsblätter, bei denen Plagiarismus festgestellt wird, werden mit 0 Punkten gewertet, ggfs. nachträglich.

Zum Tutoriumsbetrieb (3)

Moodle E-Learning Plattform

Verwaltung des Tutoriumsbetriebs per Moodle:

```
https://moodle.uni-ulm.de/course/view.php?id=1745
```

- Anmeldung zu den einzelnen Tutorien
- Elektronische Abgabe von Übungsblättern
- Abfrage des Punktestands
- Kommunikation (Diskussionsforen, Weiterleitung per E-Mail)
- Bestellung von Skripten
- Feedback
- **—** ...

Zum Labor

Labor

- Versuch 1 (Kombinatorische Logik)
- Versuch 2 (Sequentielle Logik)
- Versuch 3 (GALs & Zustandsmaschinen)
- Versuch 4 (Bus-Systeme)

Studien- bzw. Prüfungsleistungen

Bachelor Informatik

- Leistungsnachweis Labor (Teile 1 und 2)
- Erster Klausurtermin im Frühjahr nach dem WS über Vorlesung und Tutorien des Moduls "Grundlagen der Rechnerarchitektur" sowie über das Labor (Teil 2); Dauer: 120 Minuten
- Zweiter Klausurtermin (gleiche Inhalte wie bei 2.) ca. 8 Wochen später 3.

Allgemeine Literatur

Primärliteratur

A. Clements. The Principles of Computer Hardware. 3rd Ed., Oxford University Press, 2000.

Ergänzende Literatur

- A. S. Tanenbaum, J. Goodman. *Computerarchitektur*. Pearson, 2001.
- D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.