

Grundlagen der Rechnerarchitektur

[CS3100.010]

Wintersemester 2014/15

Heiko Falk

Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm

Kapitel 3

Sequentielle Logik

Inhalte der Vorlesung

- 1. Einführung
- 2. Kombinatorische Logik
- 3. Sequentielle Logik
- 4. Technologische Grundlagen
- 5. Rechnerarithmetik
- Grundlagen der Rechnerarchitektur
- 7. Speicher-Hardware
- 8. Ein-/Ausgabe

Inhalte des Kapitels (1)

Sequentielle Logik

- Einleitung
 - Begriff "Sequentielle Logik"
 - Schaltwerke
 - Rückgekoppelte Gatter
- Flip-Flops
 - RS-Flip-Flop
 - Analyse
 - Bedeutung
 - Zeitverhalten
 - Asynchrone und synchrone Schaltwerke
 - Getaktete Flip-Flops
 - Master-Slave Flip-Flops
 - Weitere Flip-Flops (D-Flip-Flop, Register, JK- & T-Flip-Flop)

Inhalte des Kapitels (2)

Sequentielle Logik

- Typische Schaltwerke
 - Schieberegister
 - Asynchroner Zähler
 - Synchroner Zähler
- Systematischer Schaltwerkentwurf
 - Beispiel "Hochwassererkennung"
 - Beispiel "Sequenzerkennung"
 - Vergleich von Moore- und Mealy-Automaten
 - Einfluss des Flip-Flop-Typs
 - Zustandsreduktion von Automaten

Begriff Sequentielle Logik (1)

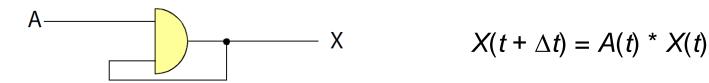
Kombinatorische Logik

- Schaltnetze mit verzögerungsfreien Gattern
 - Sofortiges Ergebnis beim Anlegen von Werten an den Eingängen
- Keine Zyklen/Rückkopplungen im Schaltnetz

Reicht das zur Beschreibung heutiger Rechensysteme?

- Ablaufsteuerung
- Speicherelemente
- Takterzeuger

Begriff Sequentielle Logik (2)

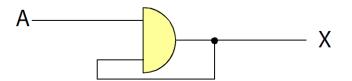

Sequentielle Logik

- Gatter haben Laufzeitverhalten
 - Annahme einer Gatterlaufzeit ∆t
- Zyklen bzw. Rückkopplungen
- Schaltwerke
 - Schaltungen mit Gattern als gerichteter zyklischer Graph

Rückgekoppeltes UND-Gatter (1)

Beispiel für einfaches Schaltwerk

Was geschieht bei Rückkopplung?


Wertefolge für X bei Anfangskonfiguration

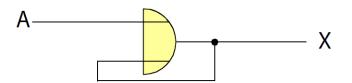
Α	X(t)	$X(t + \Delta t)$	$X(t + 2\Delta t)$	$X(t + 3\Delta t)$
0	0	0	0	0
0	1	0	0	0
1	0	0	0	0
1	1	1	1	1

Rückgekoppeltes UND-Gatter (2)

Beispiel für einfaches Schaltwerk

Was geschieht bei Rückkopplung?

$$X(t + \Delta t) = A(t) * X(t)$$


Wertefolge für X als Funktion des vorherigen Wertes

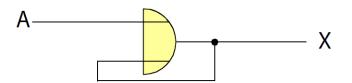
Α	$X(t + \Delta t)$	$X(t + 2\Delta t)$	$X(t + 3\Delta t)$
0	0	0	0
1	X(t)	X(t)	X(t)

Rückgekoppeltes ODER-Gatter (1)

Beispiel für einfaches Schaltwerk

Was geschieht bei Rückkopplung?

$$X(t + \Delta t) = A(t) + X(t)$$


Wertefolge für X bei Anfangskonfiguration

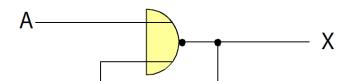
Α	X(t)	$X(t + \Delta t)$	$X(t + 2\Delta t)$	$X(t + 3\Delta t)$
0	0	0	0	0
0	1	1	1	1
1	0	1	1	1
1	1	1	1	1

Rückgekoppeltes ODER-Gatter (2)

Beispiel für einfaches Schaltwerk

Was geschieht bei Rückkopplung?

$$X(t + \Delta t) = A(t) + X(t)$$


Wertefolge für X als Funktion des vorherigen Wertes

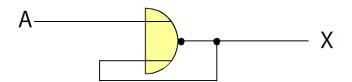
Α	$X(t + \Delta t)$	$X(t + 2\Delta t)$	$X(t + 3\Delta t)$
0	X(t)	X(t)	X(t)
1	1	1	1

Rückgekoppeltes NOR-Gatter (1)

Beispiel für einfaches Schaltwerk

Was geschieht bei Rückkopplung?

$$X(t + \Delta t) = \overline{A(t) + X(t)}$$


Zur Erinnerung: Wahrheitstabelle eines NOR-Gatters

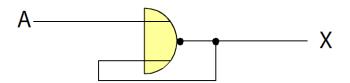
<i>X</i> ₁	X ₂	$\overline{X_1 + X_2}$
0	0	1
0	1	0
1	0	0
1	1	0

Rückgekoppeltes NOR-Gatter (2)

Beispiel für einfaches Schaltwerk

Was geschieht bei Rückkopplung?

$$X(t + \Delta t) = \overline{A(t) + X(t)}$$


Wertefolge für X bei Anfangskonfiguration

Α	X(t)	$X(t + \Delta t)$	$X(t + 2\Delta t)$	$X(t + 3\Delta t)$
0	0	1	0	1
0	1	0	1	0
1	0	0	0	0
1	1	0	0	0

Rückgekoppeltes NOR-Gatter (3)

Beispiel für einfaches Schaltwerk

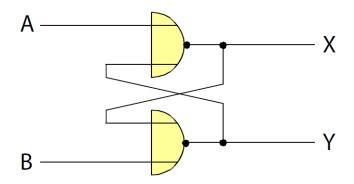
Was geschieht bei Rückkopplung?

$$X(t + \Delta t) = \overline{A(t) + X(t)}$$

Wertefolge für X als Funktion des vorherigen Wertes

Α	$X(t + \Delta t)$	$X(t + 2\Delta t)$	$X(t + 3\Delta t)$
0	$\overline{X(t)}$	X(t)	$\overline{X(t)}$
1	0	0	0

Die Schaltung schwingt!


Roter Faden

Sequentielle Logik

- Einleitung
 - Begriff "Sequentielle Logik"
 - Schaltwerke
 - Rückgekoppelte Gatter
- Flip-Flops
- Typische Schaltwerke
- Systematischer Schaltwerkentwurf

RS-Flip-Flop

Betrachtung eines einfachen asynchronen Schaltwerks

$$X(t + \Delta t) = \overline{A(t) + Y(t)}$$
$$Y(t + \Delta t) = \overline{B(t) + X(t)}$$

Wie verhält sich das Schaltwerk bei unterschiedlichen Eingängen?

Analyse des Schaltwerks (1)

Α	В	X(t)	<i>Y</i> (<i>t</i>)	$X(t + \Delta t)$	$Y(t + \Delta t)$
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0

Analyse des Schaltwerks (2)

Α	В	X(t)	Y(t)	$X(t + \Delta t)$	$Y(t + \Delta t)$
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	0

Analyse des Schaltwerks (3)

Α	В	X(t)	Y(t)	$X(t + \Delta t)$	$Y(t + \Delta t)$
				• ·	
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	0	0

Analyse des Schaltwerks (4)

Α	В	X(t)	Y(t)	$X(t + \Delta t)$	$Y(t + \Delta t)$	
				•••		
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	0	1	1	0	0	
1	1	0	0	0	0	
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	0	0	

Analyse des Schaltwerks (5)

Darstellung der Werte als Funktion der Ausgangswerte

Α	В	$X(t + \Delta t)$	$Y(t + \Delta t)$	$X(t + 2\Delta t)$	$Y(t + 2\Delta t)$	$X(t+3\Delta t)$	$Y(t + 3\Delta t)$
0	0	$\overline{Y(t)}$	$\overline{X(t)}$	X(t)	Y (<i>t</i>)	$\overline{Y(t)}$	$\overline{X(t)}$
0	1	$\overline{Y(t)}$	0	1	0	1	0
1	0	0	$\overline{X(t)}$	0	1	0	1
1	1	0	0	0	0	0	0

- Für die Werte (A, B) gleich (0, 1) und (1, 0) ist das Schaltwerk nach $2\Delta t$ stabil
- Für den Wert (A, B) gleich (1, 1) ist das Schaltwerk nach Δt stabil
- Für den Wert (A, B) gleich (0, 0) scheint das Schaltwerk zu schwingen
 - Stimmt das?

Analyse des Schaltwerks (6)

Betrachtung der Ausgänge bei A = B = 0

Α	В	$X(t + \Delta t)$	$Y(t + \Delta t)$	$X(t + 2\Delta t)$	$Y(t + 2\Delta t)$	$X(t + 3\Delta t)$	$Y(t + 3\Delta t)$
0	0	$\overline{Y(t)}$	$\overline{X(t)}$	X(t)	Y(<i>t</i>)	$\overline{Y(t)}$	$\overline{X(t)}$

Was passiert für X = Y = 0?

Α	В	$X(t + \Delta t)$	$Y(t + \Delta t)$	$X(t + 2\Delta t)$	$Y(t + 2\Delta t)$	$X(t + 3\Delta t)$	$Y(t+3\Delta t)$
0	0	1	1	0	0	1	1

- Schaltwerk schwingt (auch für X = Y = 1)

Analyse des Schaltwerks (7)

Betrachtung der Ausgänge bei A = B = 0

Α	В	$X(t + \Delta t)$	$Y(t + \Delta t)$	$X(t + 2\Delta t)$	$Y(t + 2\Delta t)$	$X(t + 3\Delta t)$	$Y(t + 3\Delta t)$
0	0	$\overline{Y(t)}$	$\overline{X(t)}$	X(t)	Y (<i>t</i>)	$\overline{Y(t)}$	$\overline{X(t)}$

Was passiert für X = 0 und Y = 1?

Α	В	$X(t + \Delta t)$	$Y(t + \Delta t)$	$X(t + 2\Delta t)$	$Y(t + 2\Delta t)$	$X(t + 3\Delta t)$	$Y(t + 3\Delta t)$
0	0	0	1	0	1	0	1

- Schaltwerk sofort stabil
- Was passiert für X = 1 und Y = 0?

Α	В	$X(t + \Delta t)$	$Y(t + \Delta t)$	$X(t + 2\Delta t)$	$Y(t + 2\Delta t)$	$X(t + 3\Delta t)$	$Y(t + 3\Delta t)$
0	0	1	0	1	0	1	0

Schaltwerk sofort stabil

Bedeutung (1)

Verbot der Eingabekombination A = B = 1

– Zwei stabile Ausgabewert-Kombinationen mit $X = \overline{Y}$

Bezeichnung

- Bistabiler Speicher
- Bistabile Kippstufe
- Flip-Flop

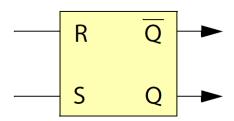
Umbenennung der Ein- und Ausgänge

- -R = A Reset, Löschen
- S = B Set, Setzen
- Q = X Ausgang
- $-\overline{Q} = Y \text{negierter Ausgang}$

RS-Flip-Flop

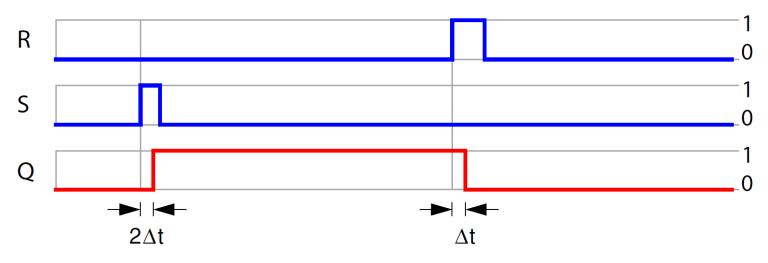
Kann einen binären Wert speichern!

Bedeutung (2)


Verkürzte Wahrheitstabelle eines RS-Flip-Flops

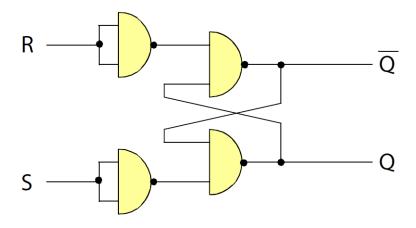
R	S	Q'
0	0	Q
0	1	1
1	0	0
1	1	_

Q bleibt unverändert


Eingabekombination nicht erlaubt

Blockschaltbild

Signalverläufe


Reaktion des RS-Flip-Flops über die Zeit

- Steigende Signalfranke triggert das Umschalten des Flip-Flops
- Verzögerung und Einschwingzeit abhängig von der Gatterlaufzeit
 - Nach max. $2\Delta t$ ist Flip-Flop eingeschwungen

Realisierung mit NAND-Gattern

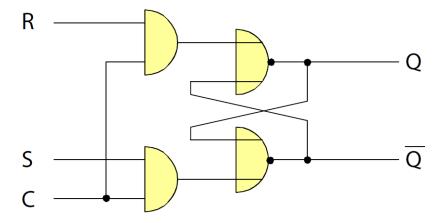
Einsatz von NAND- statt NOR-Gattern

Achtung: wegen De Morgan sind Ausgänge invertiert

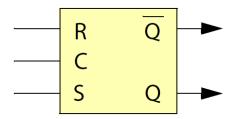
Asynchrone und synchrone Schaltwerke

Asynchrone Schaltwerke

- Veränderte Eingänge sorgen unmittelbar für veränderte Ergebnisse
- Gatterlaufzeit bestimmt Zeitdauer bis stabiles Ergebnis vorliegt
- Zuverlässiges Design schwierig, Entwurf sehr aufwändig
 - Zeit ist "Echtzeit"
- Sehr schnelle Schaltungen möglich

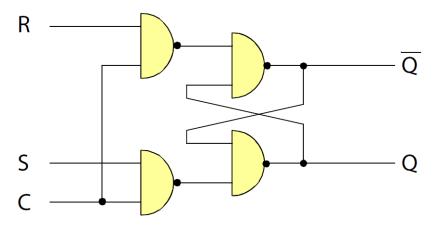

Synchrone Schaltwerke

- Zentraler Takt
- Übernahme eines Eingangs nur zu festen Zeitpunkten
 - Signal hat Zeit, stabil zu werden
- Einfacher und systematischer Entwurf
 - Zeit ist "Taktzeit"
- Langsamste Teilschaltung bestimmt maximale Taktfrequenz

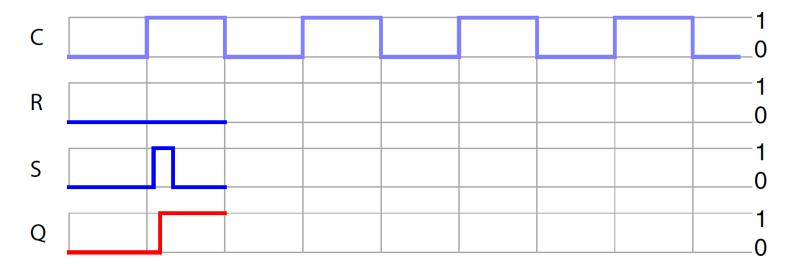

Getaktetes RS-Flip-Flop (1)

Synchrone Schaltung

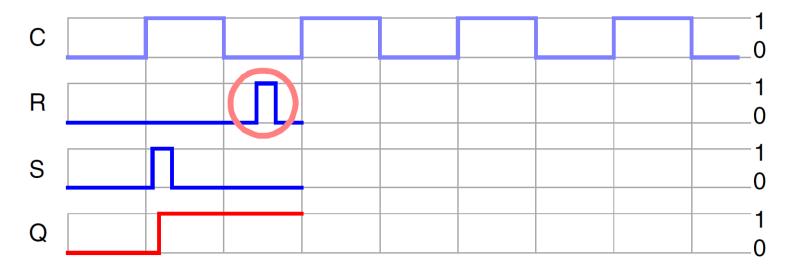
Übernahme der Eingänge nur während einer Phase des Taktsignals C (Clock)



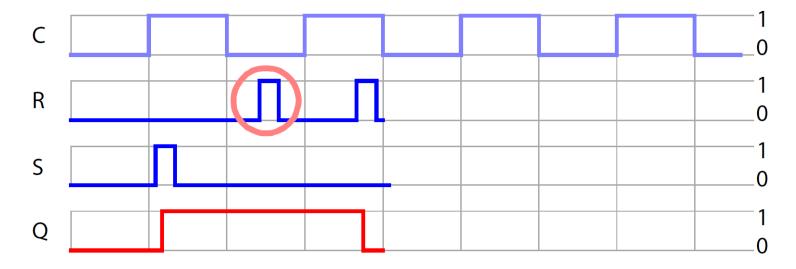
Blockschaltbild

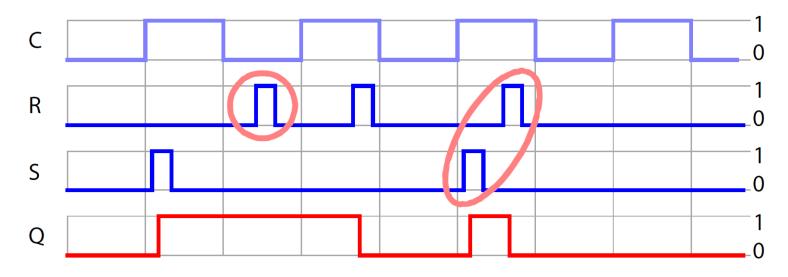

Getaktetes RS-Flip-Flop (2)

Realisierung mit NAND-Gattern



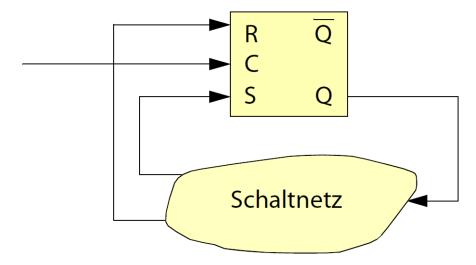
Achtung: wegen De Morgan sind Ausgänge invertiert


Getaktetes RS-Flip-Flop (3)


Getaktetes RS-Flip-Flop (4)

Getaktetes RS-Flip-Flop (5)

Getaktetes RS-Flip-Flop (6)

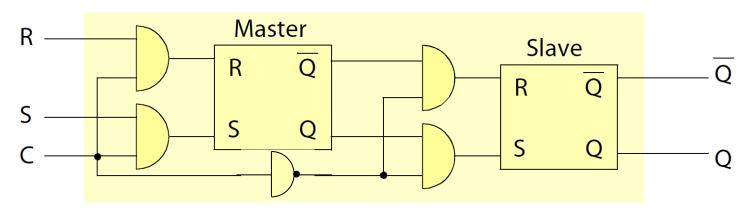


- Veränderungen finden nur während der 1-Phase des Taktsignals statt
- Mehrere Veränderungen pro Taktphase möglich

Getaktetes RS-Flip-Flop (6)

Problem

Rückgekoppelte Schaltung vom Aus- zum Eingang des Flip-Flops



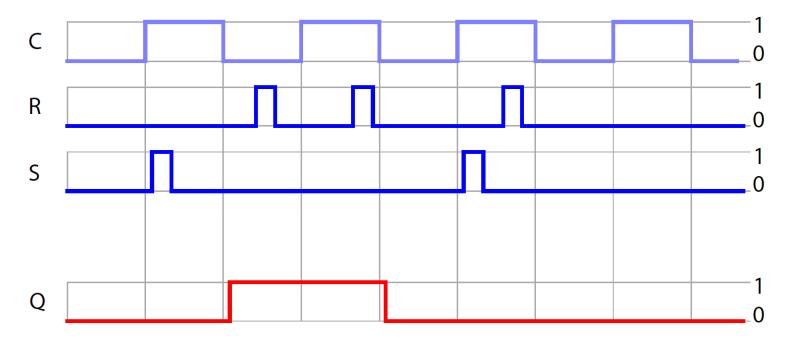
- Veränderungen am Ausgang können Veränderungen am Eingang während einer Taktphase nach sich ziehen
- Selbst bei kurzen Taktphasen sind ungewollte Rückkopplungen möglich

Master-Slave RS-Flip-Flop (1)

RS-Flip-Flop reagiert auf (absteigende) Taktflanke

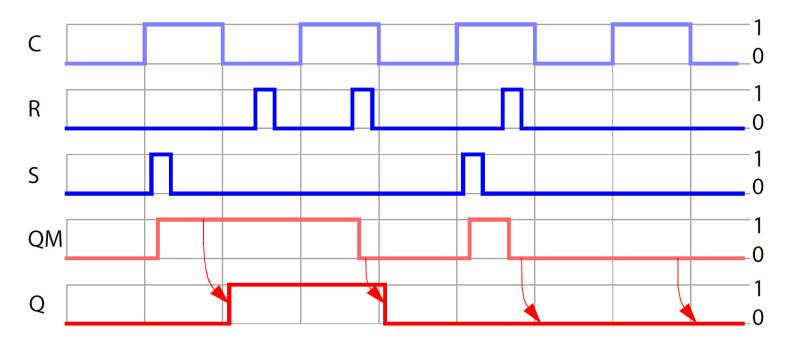
Zweistufiges Flip-Flop

Takt auf 1


Master Flip-Flop nimmt Eingänge auf, Slave bleibt unverändert

Takt auf 0

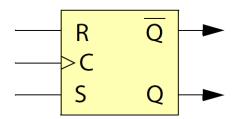
Master Flip-Flop reagiert nicht mehr auf Eingänge, Slave übernimmt Zustand des *Masters*

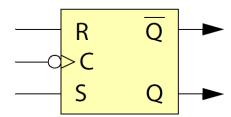

Master-Slave RS-Flip-Flop (2)

Flip-Flop reagiert auf absteigende Taktflanke

Master-Slave RS-Flip-Flop (3)

Flip-Flop reagiert auf absteigende Taktflanke




- Q_M: Q-Ausgang des *Master* Flip-Flops
- Rückkopplung über Schaltnetz nun unkritisch

Master-Slave RS-Flip-Flop (4)

Flankengetriggerte Flip-Flops

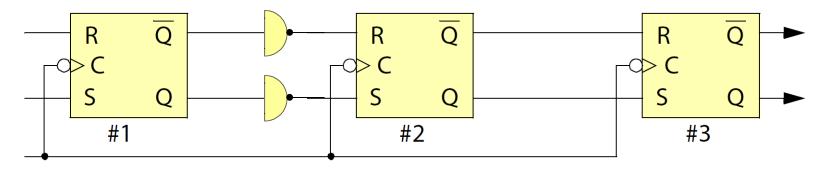
- Nach außen sichtbares Verhalten eines *Master-Slave* RS-Flip-Flops
 - Übernahme der Eingänge nur bei Taktflanke
- Blockschaltbild flankengetriggerter RS-Flip-Flops

positive Flankentriggerung

negative Flankentriggerung

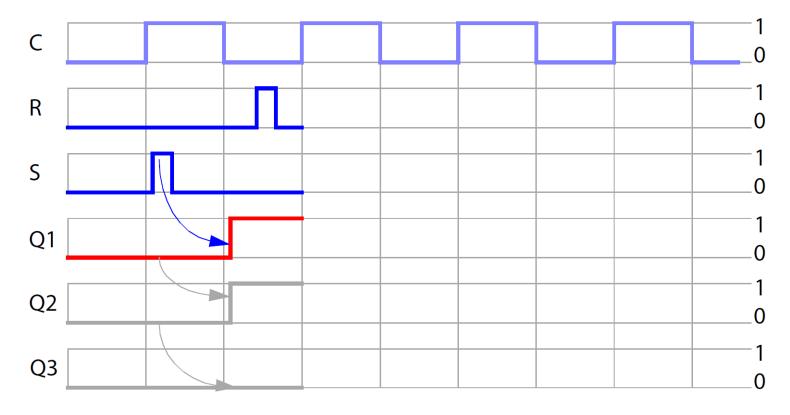
- Negative Flanke = absteigende Flanke
 - Beispiel von vorherigen Folien
- Positive Flanke = aufsteigende Flanke
 - Takteingang wird negiert

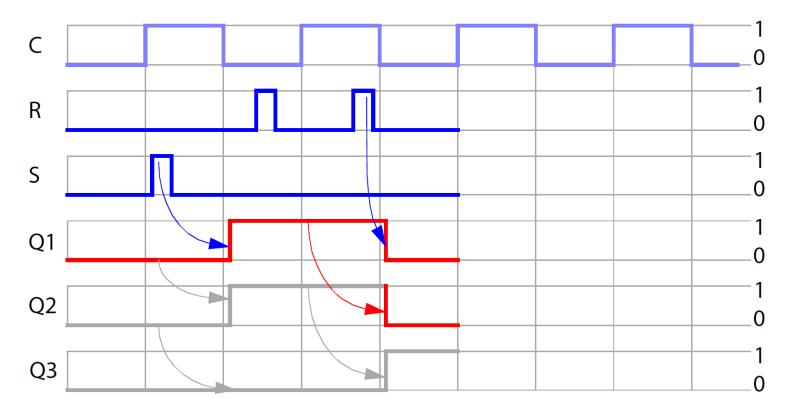
Pipelining (1)


Mit Master-Slave Flip-Flops sind folgende Schaltwerke denkbar

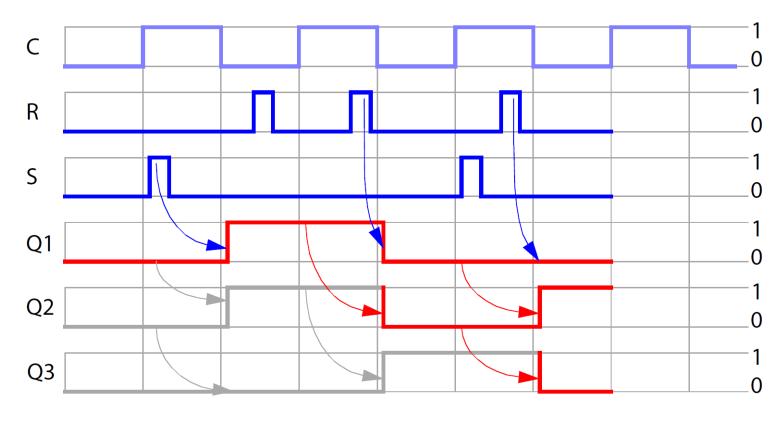
- Pro Taktzyklus
 - Logische Verarbeitung in den zwischengeschalteten Schaltnetzen
 - Weitergabe der Information an nächste Stufe der Pipeline
 - Ausgabe am Ende der Pipeline
- Nach drei Takten kommt die verarbeitete Information am Ende heraus

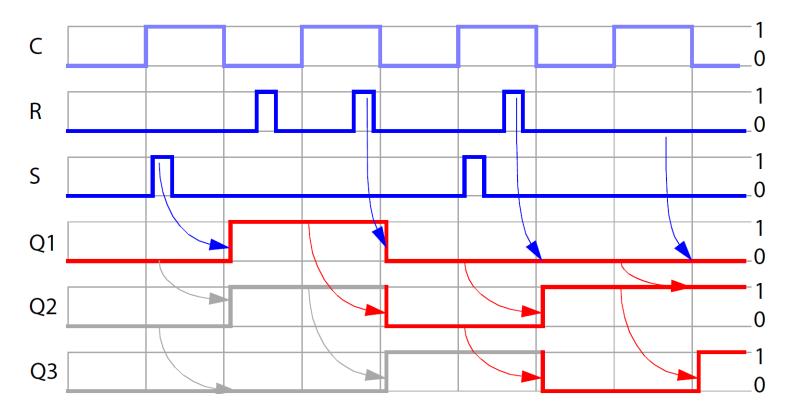
Pipelining (2)

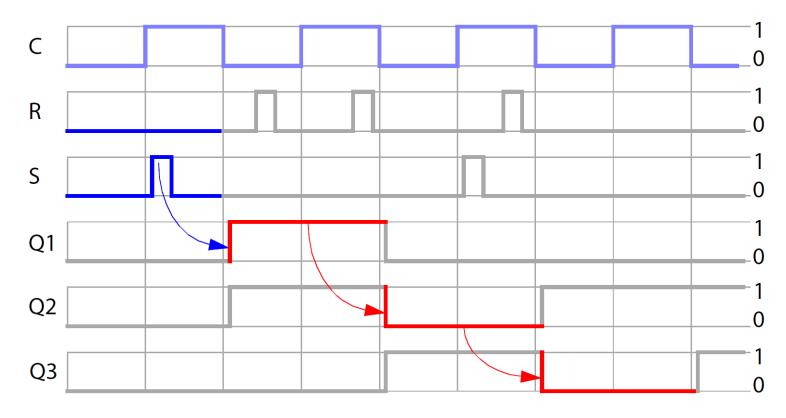

Einfaches Beispiel


Annahme

Alle Flip-Flops geben zu Beginn Q = 0 aus


Pipelining (3)


Pipelining (4)

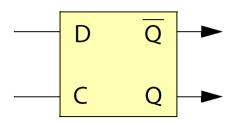

Pipelining (5)

Pipelining (6)

Pipelining (7)

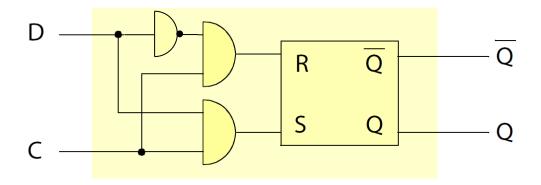
D-Flip-Flop (1)

Synchroner Baustein


Verkürzte Wahrheitstabelle eines D-Flip-Flops

D	С	Q'
0	0	Q
0	1	0
1	0	Q
1	1	1

Q bleibt unverändert 0 wird übernommen Q bleibt unverändert

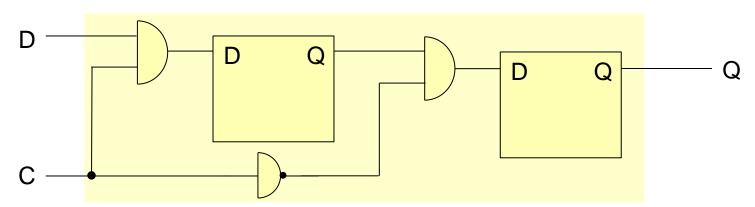

1 wird übernommen

Blockschaltbild

D-Flip-Flop (2)

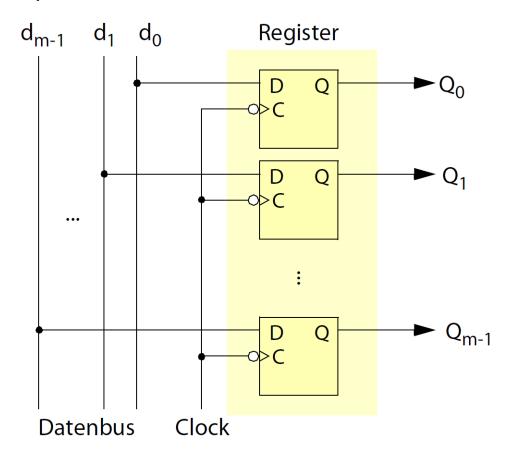
Interner Aufbau des pegelgetriggerten D-Flip-Flops

D-Flip-Flop (3)


Blockschaltbilder flankengetriggerter D-Flip-Flops

positive Flankentriggerung

negative Flankentriggerung


Interner Aufbau flankengetriggerter D-Flip-Flops

Register

Flip-Flops bilden ein Register

Speicher für eine bestimmte Anzahl von Binärwerten

JK-Flip-Flop (1)

RS-Flip-Flop mit zusätzlicher Umschaltfunktion (toggle)

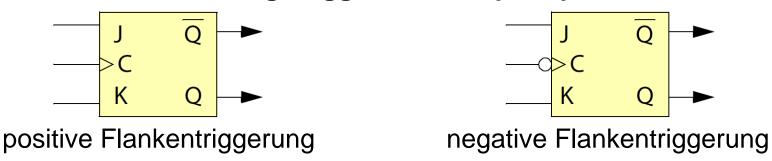
- In der Regel synchron und mit *Master-Slave*-Aufbau
- Verkürzte Wahrheitstabelle eines JK-Flip-Flops

С	J	K	Q'
0	*	*	Q
1	0	0	Q
1	0	1	0
1	1	0	1
1	1	1	Q

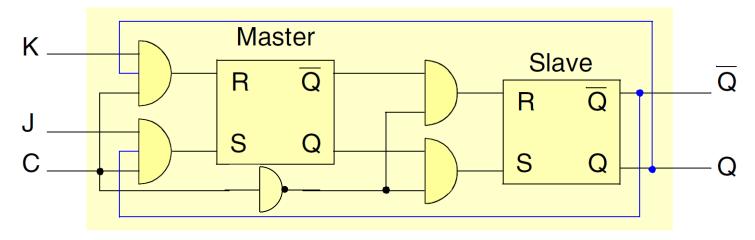
Keine Änderung ohne Takt

Rücksetzen (K = R)

Setzen (J = S)


Q wird invertiert (toggle)

Spezialfall

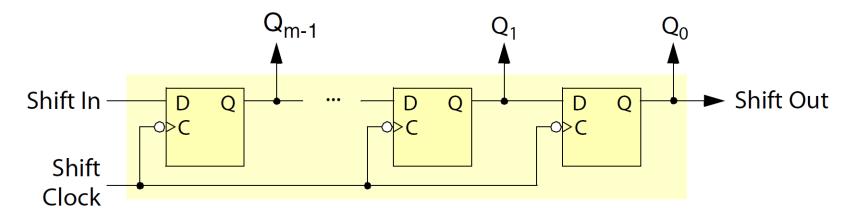

T-Flip-Flop (toggle) mit einem Eingang T = K = J plus Takteingang

JK-Flip-Flop (2)

Blockschaltbild flankengetriggerter JK-Flip-Flops

Realisierung eines JK-Flip-Flops mit Master-Slave-Aufbau

Roter Faden

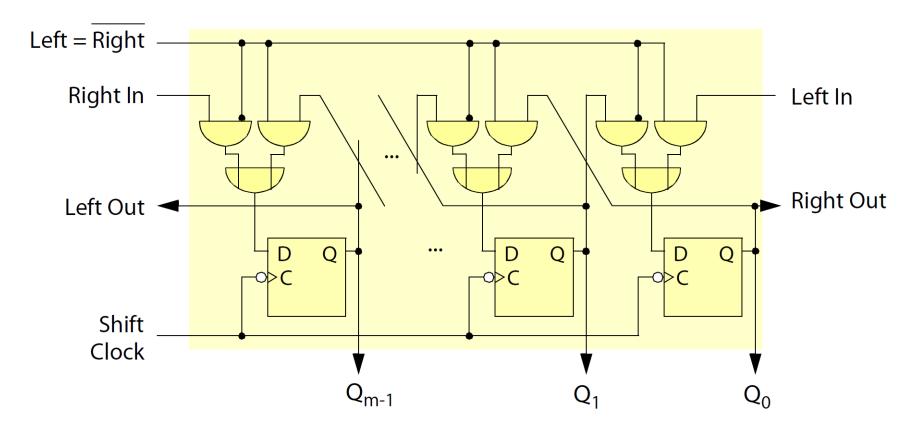

Sequentielle Logik

- Einleitung
- Flip-Flops
 - RS-Flip-Flop
 - Analyse
 - Bedeutung
 - Zeitverhalten
 - Asynchrone und synchrone Schaltwerke
 - Getaktete Flip-Flops
 - Master-Slave Flip-Flops
 - Weitere Flip-Flops (D-Flip-Flop, Register, JK- & T-Flip-Flop)
- Typische Schaltwerke
- Systematischer Schaltwerkentwurf

Typische Schaltwerke: Schieberegister (1)

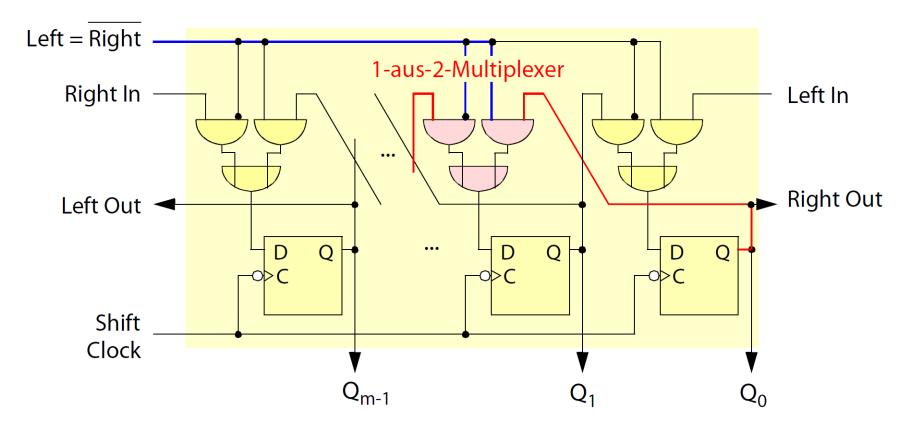
Register mit Schiebeoperation

- Binärwerte werden z.B. im Register nach rechts geschoben
- Realisierung mit D-Flip-Flops



Vielfältige Anwendung

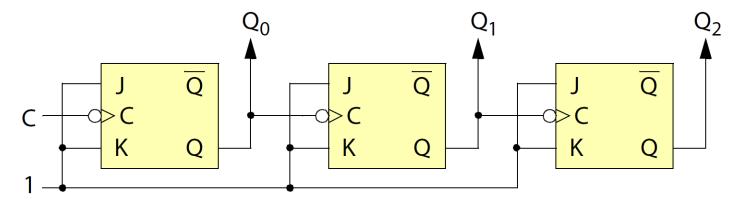
- Teil arithmetischer Operationen
- Serialisierung und Deserialisierung von Daten


Typische Schaltwerke: Schieberegister (2)

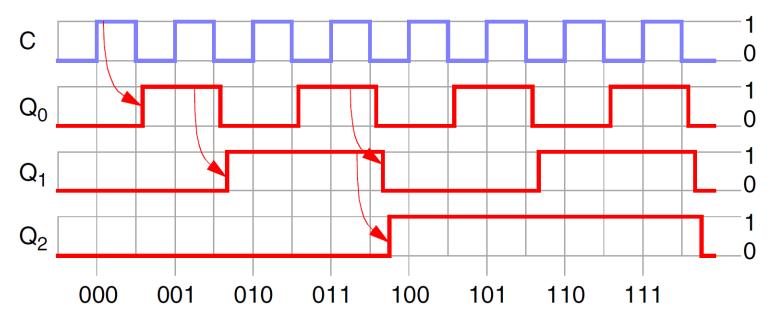
Schieberegister für Links- und Rechtsschiebe-Operationen

Typische Schaltwerke: Schieberegister (3)

Schieberegister für Links- und Rechtsschiebe-Operationen



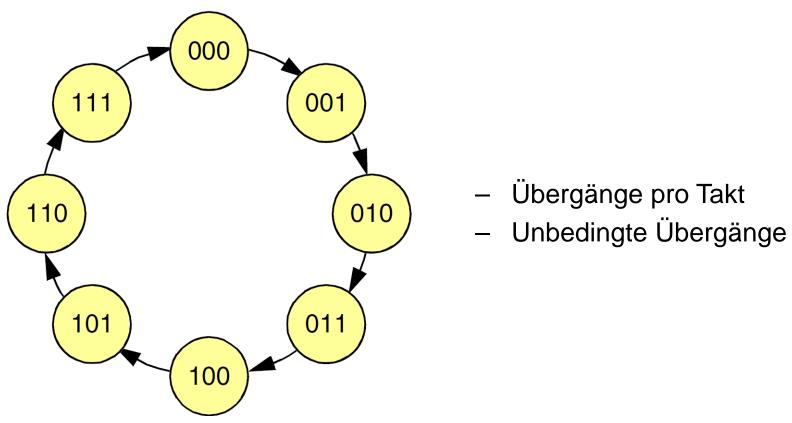
1-aus-2-Multiplexer: Auswahl des linken oder rechten Eingabewertes


Typische Schaltwerke: Asynchroner Zähler (1)

Beispiel: Dreistelliger Binärzähler zählt absteigende Taktflanken

Aufbau mit JK-Flip-Flops

Typische Schaltwerke: Asynchroner Zähler (2)



- Dominoeffekt verzögert stabilen Zustand des Zählers
- Lange Zähler sind nicht "beliebig schnell" taktbar

Typische Schaltwerke: Synchroner Zähler (1)

Unmittelbarer Übergang aller beteiligten Flip-Flops pro Taktzyklus

Mögliche Zustände eines dreistelligen Binärzählers

Typische Schaltwerke: Synchroner Zähler (2)

Einsatz von JK-Flip-Flops

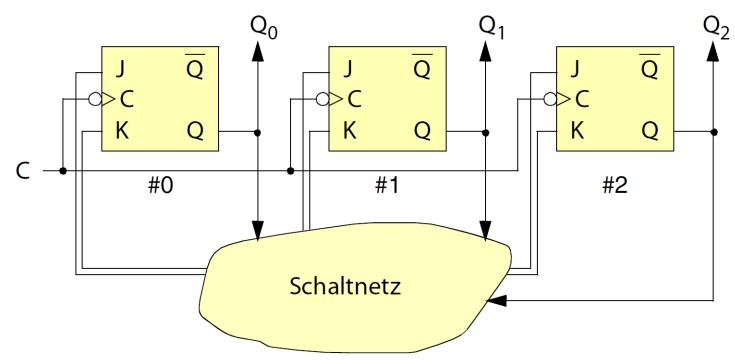
Aufstellen einer Zustandsübergangstabelle für das JK-Flip-Flop

Übergang Q → Q'	J	K
0 → 0	0	*
0 → 1	1	*
1 → 0	*	1
1 → 1	*	0

Eingang Kirrelevant

Eingang Kirrelevant

Eingang *J* irrelevant


Eingang *J* irrelevant

- Drei JK-Flip-Flops notwendig für dreistelligen Zähler
 - Takt f
 ür alle Flip-Flops identisch
 - Wie müssen Steuereingänge J und K angesprochen werden?

Typische Schaltwerke: Synchroner Zähler (3)

Gesucht: Schaltnetze zur Ansteuerung der Flip-Flops

- Alle Flip-Flops ständig getaktet
- Ausgänge der Flip-Flops bestimmen Ansteuerung der Flip-Flops
 - Durch Master-Slave Flip-Flops und Takt: schrittweises Fortschalten des Schaltwerks

Typische Schaltwerke: Synchroner Zähler (4)

Zustandsübergänge des Zählers

Zustände (gleichzeitig Ausgabe)		Folgezustand			Eingänge der Flip-Flops						
Q_2	Q_1	Q_0	Q' ₂	Q' ₁	Q' ₀	J_2	K_2	J_1	K ₁	J_0	K_0
0	0	0									
0	0	1									
0	1	0									
0	1	1									
1	0	0									
1	0	1									
1	1	0									
1	1	1									

Typische Schaltwerke: Synchroner Zähler (5)

Zustandsübergänge des Zählers: Folgezustände ermitteln

(gl	uständ eichzei usgabe	itig	Fol	gezusta	and		Eingä	inge de	er Flip-	Flops	
Q_2	Q_1	Q_0	Q' ₂	Q' ₁	Q' ₀	J_2	K_2	J_1	<i>K</i> ₁	J_0	K_0
0	0	0	0	0	1						
0	0	1	0	1	0						
0	1	0	0	1	1						
0	1	1	1	0	0						
1	0	0	1	0	1						
1	0	1	1	1	0						
1	1	0	1	1	1						
1	1	1	0	0	0						

Typische Schaltwerke: Synchroner Zähler (6)

Zustandsübergänge des Zählers: Übergänge pro Flip-Flop ermitteln

(gl	Zustände (gleichzeitig Ausgabe)		Folgezustand			Eingänge der Flip-Flops					
Q_2	Q_1	Q_0	Q' ₂	Q' ₁	Q' ₀	J_2	K_2	J_1	K ₁	J_0	K_0
0	0	0	0	0	1	0	*	0	*	1	*
0	0	1	0	1	0						
0	1	0	0	1	1						
0	1	1	1	0	0						
1	0	0	1	0	1						
1	0	1	1	1	0						
1	1	0	1	1	1						
1	1	1	0	0	0						

Typische Schaltwerke: Synchroner Zähler (7)

Zustandsübergänge des Zählers: Übergänge pro Flip-Flop ermitteln

(gl	uständ eichzei usgabe	tig	Fol	Folgezustand			Eingänge der Flip-Flops				
Q_2	Q_1	Q_0	Q' ₂	Q' ₁	Q' ₀	J_2	K_2	J_1	<i>K</i> ₁	J_0	K_0
0	0	0	0	0	1	0	*	0	*	1	*
0	0	1	0	1	0	0	*	1	*	*	1
0	1	0	0	1	1	0	*	*	0	1	*
0	1	1	1	0	0	1	*	*	1	*	1
1	0	0	1	0	1	*	0	0	*	1	*
1	0	1	1	1	0	*	0	1	*	*	1
1	1	0	1	1	1	*	0	*	0	1	*
1	1	1	0	0	0	*	1	*	1	*	1

Typische Schaltwerke: Synchroner Zähler (8)

Schaltnetzentwurf

- Eingänge sind Ausgänge Q_i der Flip-Flops
- Ausgänge sind Ansteuerungen J_i und K_i der Flip-Flops

Einsatz von KV-Diagrammen zur Schaltungsminimierung

Beispiel: Schaltfunktion K_2

	$\overline{Q_{1}}$	Q	$\overline{Q_1}$		
	——— Q	7 0 ———		— Q	0
$\overline{Q_2}$	d	d	d		d
Q_2	0	0	1		0

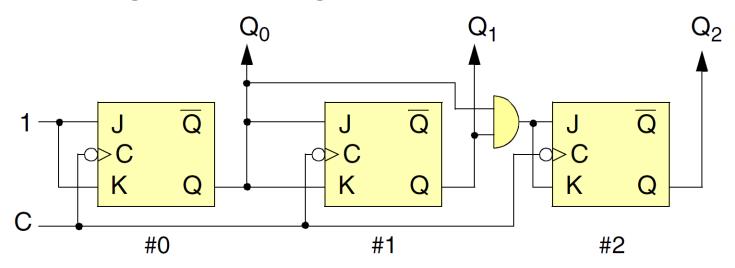
DNF der Schaltfunktion: $K_2 = Q_0 * Q_1$

Typische Schaltwerke: Synchroner Zähler (9)

Schaltfunktionen insgesamt

$$- J_2 = Q_0 * Q_1$$
 $K_2 = Q_0 * Q_1$

$$K_2 = Q_0 * Q_1$$


$$- J_1 = Q_0$$

$$K_1 = Q_0$$

$$-J_0 = 1$$

$$K_0 = 1$$

Realisierung der Schaltung

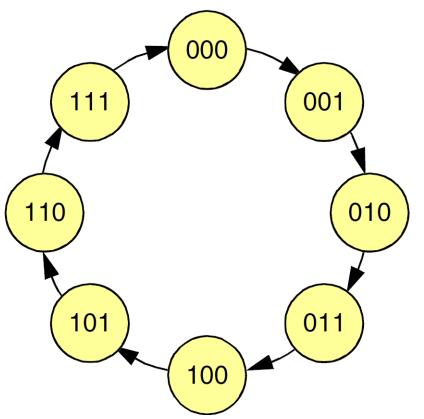
Systematischer Schaltwerkentwurf (1)

Entwurf beliebiger synchroner Schaltwerke mit internem Zustand

Wie kommt man allgemein von den Systemanforderungen zum Schaltwerk?

Endliche Automaten als Systemmodell

- Endliche Menge von Zuständen
- Übergänge zwischen den Zuständen
- Abhängigkeit der Übergänge von
 - Eingabewerten und
 - vorherigen Zuständen

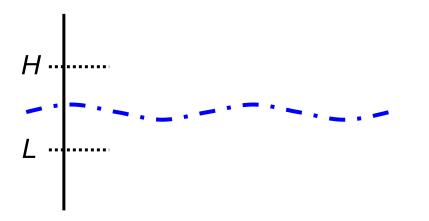

Roter Faden

Sequentielle Logik

- Einleitung
- Flip-Flops
- Typische Schaltwerke
 - Schieberegister
 - Asynchroner Zähler
 - Synchroner Zähler
- Systematischer Schaltwerkentwurf

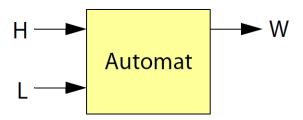
Systematischer Schaltwerkentwurf (2)

Beispiel: dreistelliger Binärzähler



- Acht Zustände
- Unbedingte Übergänge pro Taktzyklus
 - Keine Abhängigkeit von Eingabewerten
- Ausgabe
 - Direkte Ausgabe der Zustandsrepräsentation durch Flip-Flop-Ausgänge
- **Gesucht: Allgemeines Verfahren zur Synthese synchroner** Schaltwerke aus der Beschreibung endlicher Automaten

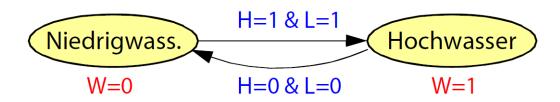
Beispiel "Hochwassererkennung" (1)


Szenario

- Wasserstandsanzeige
 - "Hochwasser": W = 1
 - "Niedrigwasser": W = 0
- Stabilisierung durch Hysterese
 - Doppelte Wasserstandsmessung an Punkten H und L
 - H = 1 bzw. L = 1, wenn Wasser oberhalb des jeweiligen Wasserstandsensors

Beispiel "Hochwassererkennung" (2)

Gesucht: geeignetes Schaltwerk

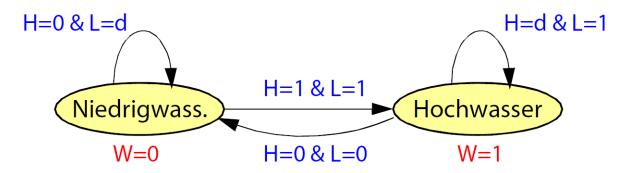


- Synchrones Schaltwerk
- Mehrere Varianten des systematischen Entwurfs denkbar

Beispiel: 1. Variante (1)

Endlicher Automat

Ausgaben gekoppelt an Zustände

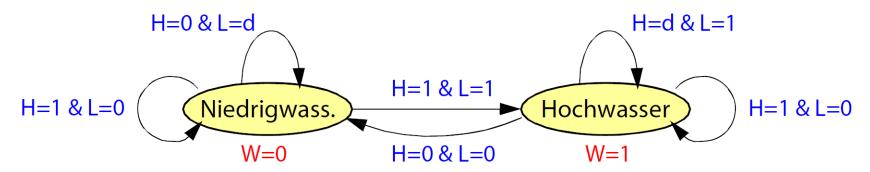


- Mindestens so viele Zustände wie mögliche Ausgaben
 - Evtl. mehr, da Schaltwerk sich irgendetwas merken muss
- Zustandsübergänge abhängig von Eingabewerten
 - Markierung der Kanten
 - Nicht angegebene Kombinationen implizieren Ubergang in vorigen Zustand
 - Besser: alle Kombinationen angeben

Beispiel: 1. Variante (2)

Endlicher Automat

Ausgaben gekoppelt an Zustände

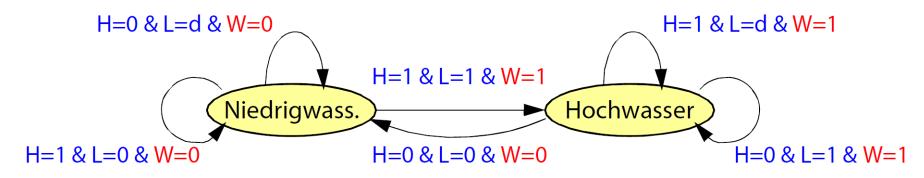


- Mindestens so viele Zustände wie mögliche Ausgaben
 - Evtl. mehr, da Schaltwerk sich irgendetwas merken muss
- Zustandsübergänge abhängig von Eingabewerten
 - Markierung der Kanten
 - Nicht angegebene Kombinationen implizieren Übergang in vorigen Zustand
 - Besser: alle Kombinationen angeben

Beispiel: 1. Variante (3)

Endlicher Automat

Ausgaben gekoppelt an Zustände

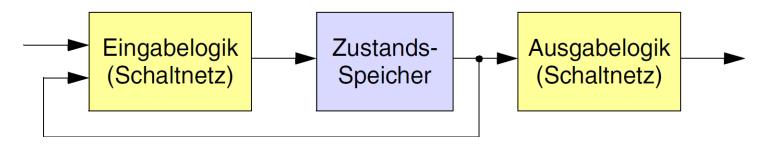


- Mindestens so viele Zustände wie mögliche Ausgaben
 - Evtl. mehr, da Schaltwerk sich irgendetwas merken muss
- Zustandsübergänge abhängig von Eingabewerten
 - Markierung der Kanten
 - Nicht angegebene Kombinationen implizieren Übergang in vorigen Zustand
 - Besser: alle Kombinationen angeben

Beispiel: 2. Variante

Endlicher Automat

Ausgaben gekoppelt an Zustände und aktuelle Eingänge

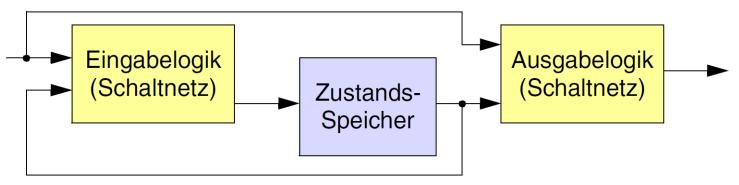


- Zustandsübergänge abhängig von Eingabewerten
 - Markierung der Kanten mit notwendigen Eingabewerten und mit zugehörigen Ausgaben
 - Alle Kombinationen müssen angegeben werden (sonst fehlen Ausgabeinformationen)

Moore-Automat

Aufbau eines Moore-Automaten (Edward F. Moore, Bell Labs)

Getaktetes System



- Eingabewerte und bisheriger Zustand führen zu Zustandsveränderungen (Zustandsübergänge)
- Ausgabewerte hängen von augenblicklichem Zustand ab
- Ausgabe mit Zustand assoziiert

Mealy-Automat

Aufbau eines Mealy-Automaten (George H. Mealy, IBM)

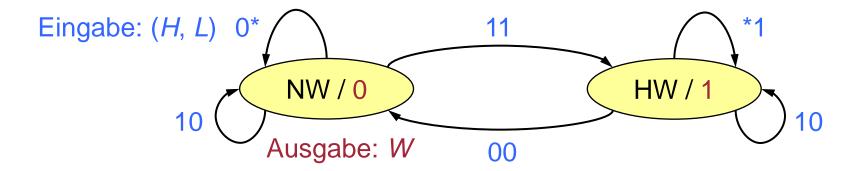
Getaktetes System

- Eingabewerte und bisheriger Zustand führen zu Zustandsveränderungen (Zustandsübergänge)
- Ausgabewerte hängen von Eingabewerten und augenblicklichem Zustand ab
- Ausgabe mit Zustandsübergängen assoziiert

Vorgehensweise

Einzelschritte für Moore-Automaten

- Zustandsdiagramm bzw. Zustandstabelle
- Binäre Zustandscodierung, binäre Zustandstabelle
- Auswahl eines Flip-Flop-Typs, Flip-Flop-Ansteuerung in Zustandstabelle 3.
- Wahrheitstabelle für Ausgabefunktionen
- Minimierung von Ansteuerungs- und Ausgabefunktionen 5.
- 6. Aufbau der Schaltung


Einzelschritte für Mealy-Automaten

- Zustandsdiagramm bzw. Zustandstabelle einschl. Ausgaben
- Binäre Zustandscodierung, binäre Zustandstabelle einschl. Ausgaben
- Auswahl eines Flip-Flop-Typs, Flip-Flop-Ansteuerung in Zustandstabelle 3.
- Minimierung von Ansteuerungs- und Ausgabefunktionen
- Aufbau der Schaltung

Moore-Automat für Hochwassererkennung (1)

Schritt 1a: Zustandsdiagramm

Verkürzte Darstellung

- Ausgabewerte $Y = Y_1, Y_2, ..., Y_m$ werden hinter die Zustandsbezeichnung geschrieben (hier: m = 1 und $Y_1 = W$)
- Eingabewerte werden als Tupel direkt an den Kanten notiert

Moore-Automat für Hochwassererkennung (2)

Schritt 1b: Zustandstabelle

Zuetände	Eing	Folge- zustände	
Zustände	Н	L	zustände
NW	0	*	NW
NW	1	0	NW
NW	1	1	HW
HW	0	0	NW
HW	*	1	HW
HW	1	0	HW

- Alle Kanten bzw. Zustandsübergänge erfasst
 - Gleichwertig mit Zustandsdiagramm (außer Ausgaben)

Moore-Automat für Hochwassererkennung (3)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Zustä	Zustände		Eingänge		Folgezustände	
	Q_0	Н	L		Q_0 '	
NW	1	0	*	NW	1	
NW	1	1	0	NW	1	
NW	1	1	1	HW	0	
HW	0	0	0	NW	1	
HW	0	*	1	HW	0	
HW	0	1	0	HW	0	

- Zustände müssen codiert werden
 - Hier: NW = 1, HW = 0
 - Ein Flip-Flop erforderlich zur Zustandsrepräsentation

Moore-Automat für Hochwassererkennung (4)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Zustände		Eingänge		Folgezustände	
	Q_0	Н	L		Q_0'
NW	1	0	*	NW	1
NW	1	1	0	NW	1
NW	1	1	1	HW	0
HW	0	0	0	NW	1
HW	0	*	1	HW	0
HW	0	1	0	HW	0

Auf Vollständigkeit achten!

- Spätestens hier müssen alle möglichen Übergänge erfasst werden
- Auch Zustände außerhalb des Automaten müssen erfasst werden
 - Z.B. vierter Zustand bei Automat mit 3 Zuständen und 2 Flip-Flops

Moore-Automat für Hochwassererkennung (5)

Schritt 3: Auswahl JK-Flip-Flops, Ermitteln der Flip-Flop-Ansteuerung

Zustände	Eingänge		Folge- zust.	Ansteuerung	
Q_0	Н	L	Q_0	J_0	K_{0}
1	0	*	1		
1	1	0	1		
1	1	1	0		
0	0	0	1		
0	*	1	0		
0	1	0	0		

Moore-Automat für Hochwassererkennung (6)

Schritt 3: Auswahl JK-Flip-Flops, Ermitteln der Flip-Flop-Ansteuerung

Zustandsübergangstabelle JK-Flip-Flop (siehe Folie 57)

Übergang Q → Q'	J	K
0 → 0	0	*
0 → 1	1	*
1 → 0	*	1
1 → 1	*	0

Eingang Kirrelevant

Eingang Kirrelevant

Eingang *J* irrelevant

Eingang *J* irrelevant

Moore-Automat für Hochwassererkennung (7)

Schritt 3: Auswahl JK-Flip-Flops, Ermitteln der Flip-Flop-Ansteuerung

Zustände	Eingänge		Folge- zust.	Ansteuerung	
Q_0	Н	L	Q_0'	J_0	K_{0}
1	0	*	1	*	0
1	1	0	1		
1	1	1	0		
0	0	0	1		
0	*	1	0		
0	1	0	0		

Moore-Automat für Hochwassererkennung (8)

Schritt 3: Auswahl JK-Flip-Flops, Ermitteln der Flip-Flop-Ansteuerung

Zustände	Eingänge		Folge- zust.	Ansteuerung	
Q_0	Н	L	Q_0'	J_0	K_{0}
1	0	*	1	*	0
1	1	0	1	*	0
1	1	1	0	*	1
0	0	0	1	1	*
0	*	1	0	0	*
0	1	0	0	0	*

Moore-Automat für Hochwassererkennung (9)

Schritt 4: Aufstellen der Ausgabefunktionen in Abhängigkeit vom Zustand

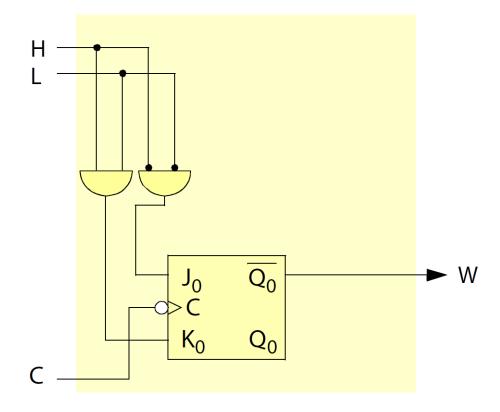
Zustä	nde	Ausgabe
	Q_0	W
NW	1	0
HW	0	1

Moore-Automat für Hochwassererkennung (10)

Schritt 5: Minimierung der Ansteuer- und Ausgabefunktionen

$$-J_0 = \overline{L} * \overline{H}$$

$$K_0 = L * H$$

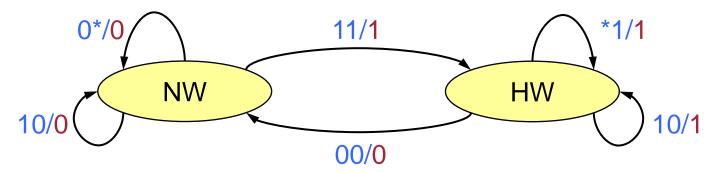

$$-W=\overline{Q_0}$$

Hinweis

Andere Zustandscodierung hätte noch einfachere Ausgabefunktion zur Folge

Moore-Automat für Hochwassererkennung (11)

Schritt 6: Aufbau der Schaltung



Mealy-Automat für Hochwassererkennung (1)

Schritt 1a: Zustandsdiagramm

Verkürzte Darstellung

Eingabe/Ausgabe: (H, L)/W

Eingabe- und Ausgabewerte werden als Tupel direkt an den Kanten notiert

Mealy-Automat für Hochwassererkennung (2)

Schritt 1b: Zustandstabelle

Zustände	Einga	änge	Folge-	Ausgänge
Zustande	Н	L	zustände	W
NW	0	*	NW	0
NW	1	0	NW	0
NW	1	1	HW	1
HW	0	0	NW	0
HW	*	1	HW	1
HW	1	0	HW	1

- Alle Kanten bzw. Zustandsübergänge einschließlich Ausgaben erfasst
 - Gleichwertig mit Zustandsdiagramm

Mealy-Automat für Hochwassererkennung (3)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Zustäi	nde	Eingä	änge	Folgezustände		Ausgänge
	Q_0	Н	L		Q_0 '	W
NW	1	0	*	NW	1	0
NW	1	1	0	NW	1	0
NW	1	1	1	HW	0	1
HW	0	0	0	NW	1	0
HW	0	*	1	HW	0	1
HW	0	1	0	HW	0	1

- Zustände müssen codiert werden
 - Hier: NW = 1, HW = 0
 - Ein Flip-Flop erforderlich zur Zustandsrepräsentation

Mealy-Automat für Hochwassererkennung (4)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Zustäi	nde	Eingä	Eingänge		stände	Ausgänge
	Q_0	Н	L		Q_0'	W
NW	1	0	*	NW	1	0
NW	1	1	0	NW	1	0
NW	1	1	1	HW	0	1
HW	0	0	0	NW	1	0
HW	0	*	1	HW	0	1
HW	0	1	0	HW	0	1

Auf Vollständigkeit achten!

- Spätestens hier müssen alle möglichen Übergänge erfasst werden
- Wie bei Moore-Automat

Mealy-Automat für Hochwassererkennung (5)

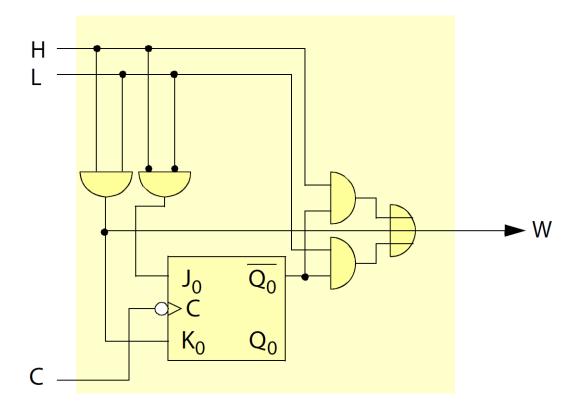
Schritt 3: Auswahl JK-Flip-Flops, Ermitteln der Flip-Flop-Ansteuerung

Zustände	Eingänge		Folge- zust.	Ansteuerung		Ausgänge
Q_0	Н	L	Q_0	J_0	K_{0}	W
1	0	*	1	*	0	0
1	1	0	1	*	0	0
1	1	1	0	*	1	1
0	0	0	1	1	*	0
0	*	1	0	0	*	1
0	1	0	0	0	*	1

Tabelle identisch zum Moore-Automaten (zusätzlich Ausgänge)

Mealy-Automat für Hochwassererkennung (6)

Schritt 4: Minimierung der Ansteuer- und Ausgabefunktionen

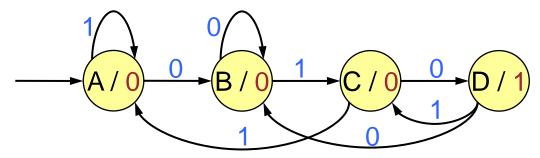

$$-J_0 = \overline{L} * \overline{H}$$

$$K_0 = L * H$$

$$- W = \overline{Q_0} * H + \overline{Q_0} * L + H * L$$

Mealy-Automat für Hochwassererkennung (7)

Schritt 6: Aufbau der Schaltung



Moore-Automat zur Sequenzerkennung (1)

Sequenzerkenner

- Ein binärer Eingang E
- Ein binärer Ausgang Yder 1 ist, falls über die letzten Taktzyklen hinweg an *E* eine zu erkennende Sequenz von Binärwerten anlag (im folgenden: "010")

Schritt 1a: Zustandsdiagramm

- Bedeutung der Zustände
 - A: Bisher nichts erkannt
 - C: "01" erkannt

- B: "0" erkannt
- D: "010" erkannt

Moore-Automat zur Sequenzerkennung (2)

Schritt 1b: Zustandstabelle

Zustände	Eingang	Folge- zustände
А	0	В
А	1	Α
В	0	В
В	1	С
С	0	D
С	1	Α
D	0	В
D	1	С

Moore-Automat zur Sequenzerkennung (3)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Codierung

Zustände	Eingang			
А	00			
В	01			
С	10			
D	11			

- Zustandstabelle

Zustände	Eingang	Folgezust.		
00	0	01		
00	1	00		
01	0	01		
01	1	10		
10	0	11		
10	1	00		
11	0	01		
11	1	10		

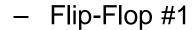
Moore-Automat zur Sequenzerkennung (4)

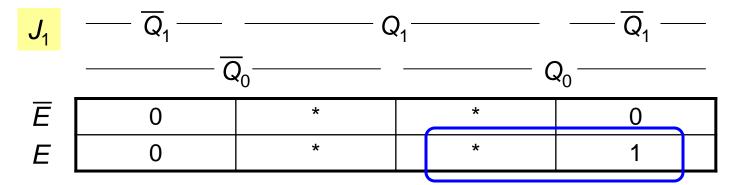
Schritt 3: JK-Flip-Flops und deren Ansteuerung

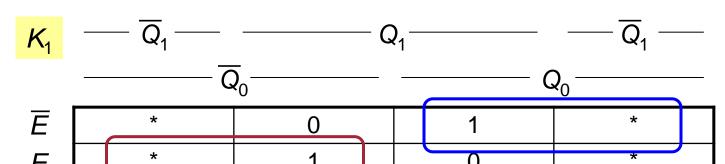
Zustände Q_1, Q_0	Eingang	Folge- zustände	<i>J</i> ₁	<i>K</i> ₁	J_0	<i>K</i> ₀
00	0	01	0	*	1	*
00	1	00	0	*	0	*
01	0	01	0	*	*	0
01	1	10	1	*	*	1
10	0	11	*	0	1	*
10	1	00	*	1	0	*
11	0	01	*	1	*	0
11	1	10	*	0	*	1

Moore-Automat zur Sequenzerkennung (5)

Schritt 4: Ausgabefunktion in Abhängigkeit vom Zustand

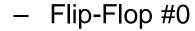

Zustände Q_1, Q_0	Ausgabe Y
00	0
01	0
10	0
11	1

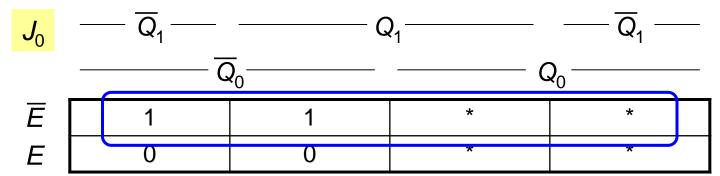

Schritt 5: Minimierung

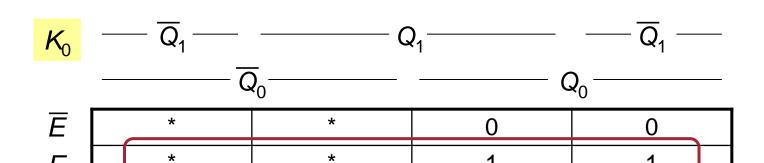

$$- Y = Q_1 * Q_0$$

trivial

Moore-Automat zur Sequenzerkennung (6)

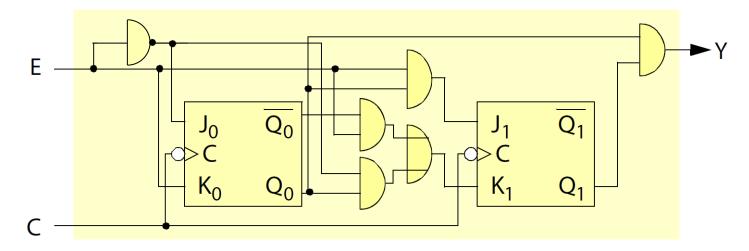





$$- J_1 = Q_0 * E$$

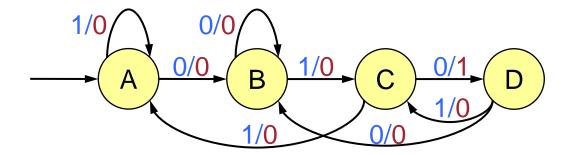
$$K_1 = Q_0 * \overline{E} + \overline{Q_0} * E$$

Moore-Automat zur Sequenzerkennung (7)



$$J_0 = \overline{E}$$

$$K_0 = E$$


Moore-Automat zur Sequenzerkennung (8)

Schritt 6: Aufbau der Schaltung

Mealy-Automat zur Sequenzerkennung (1)

Schritt 1a: Zustandsdiagramm

- Kanten werden mit E/Y beschriftet
 - $-E=E_1, E_2, ..., E_n$ sind Eingabewerte (hier: n=1)
 - $-Y=Y_1, Y_2, ..., Y_m$ sind Ausgabewerte (hier: m=1)
- Bedeutung der Zustände entsprechend zum Moore-Automaten

0110 101/120

Mealy-Automat zur Sequenzerkennung (2)

Schritt 1b: Zustandstabelle

Zustände	Eingang	Folge- zustände	Ausgang
А	0	В	0
А	1	А	0
В	0	В	0
В	1	С	0
С	0	D	1
С	1	А	0
D	0	В	0
D	1	С	0

Erste drei Spalten identisch zu Moore-Automat (!)

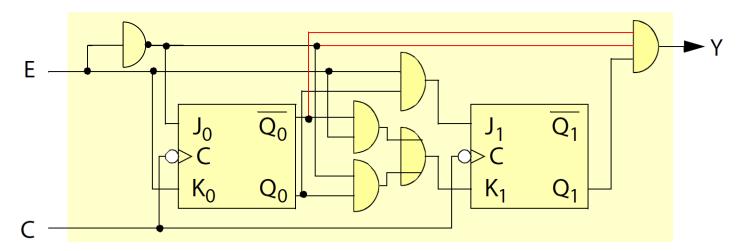
Mealy-Automat zur Sequenzerkennung (3)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Identisch zu Moore-Automat (bis auf zusätzliche Ausgangsspalte)

Schritt 3: JK-Flip-Flops und deren Ansteuerung

Zustände Q_1, Q_0	Eingang	Folge- zustände	J_1	<i>K</i> ₁	J_0	K ₀	Aus- gang
00	0	01	0	*	1	*	0
00	1	00	0	*	0	*	0
01	0	01	0	*	*	0	0
01	1	10	1	*	*	1	0
10	0	11	*	0	1	*	1
10	1	00	*	1	0	*	0
11	0	01	*	1	*	0	0
11	1	10	*	0	*	1	0


Identisch zu Moore-Automat (bis auf zusätzliche Ausgangsspalte)

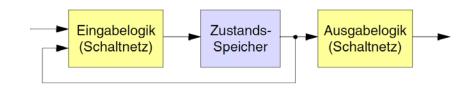
Mealy-Automat zur Sequenzerkennung (4)

Schritt 4: Minimierung

- $Y = Q_1 * \overline{Q_0} * \overline{E}$
- Flip-Flop-Ansteuerfunktionen identisch zu Moore-Automat

Schritt 5: Aufbau der Schaltung

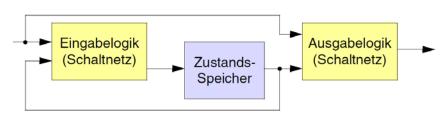
Vergleich Moore- und Mealy-Automaten (1)


Beide geeignet zum Aufbau beliebiger synchroner Schaltwerke

Vorteile Moore-Automat

- Geringerer Schaltungsaufwand, wenn Ausgabewerte nur vom aktuellen Zustand abhängen
- Taktsynchrone Ausgabe

Nachteile Moore-Automat


Reaktion erst im nächsten Taktzyklus

Vergleich Moore- und Mealy-Automaten (2)

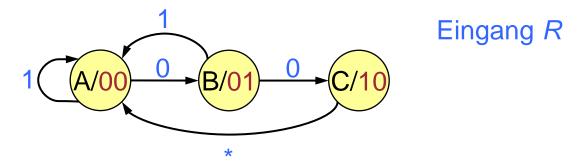
Vorteile Mealy-Automat

 Ausgang kann sofort auf Eingänge reagieren

- Geringerer Schaltungsaufwand, wenn Übergänge zu einem Zustand verschiedene Ausgabewerte erzeugen sollen
 - Beispiel: modifiziertes JK-Flip-Flop

Ausgabe zeigt an, dass sich Flip-Flop-Zustand geändert hat

Nachteile Mealy-Automat


Asynchrone Eingabesignale bewirken asynchrone Ausgabesignale

Einfluss des Flip-Flop-Typs (1)

Beispiel: Synchroner Zähler von 0 bis 2

- Reset-Leitung R: R = 1 → Zurück zur 0
- Realisierung als Moore-Automat

Schritt 1a: Zustandsdiagramm

Schritt 1b: Zustandstabelle

Dem Leser überlassen

Einfluss des Flip-Flop-Typs (2)

Schritt 2: Binäre Zustandscodierung, binäre Zustandstabelle

Codierung

Zustände	Eingang		
А	00		
В	01		
С	10		
_	11		

- Zustandstabelle

		_
Zustände	Eingang	Folgezust.
00	0	01
00	1	00
01	0	10
01	1	00
10	*	00
11	*	**

Einfluss des Flip-Flop-Typs (3)

Schritt 3: JK-Flip-Flops und deren Ansteuerung

Zustände Q_1, Q_0	Eingang <i>R</i>	Folge- zustände	J_1	<i>K</i> ₁	J_0	K ₀
00	0	01	0	*	1	*
00	1	00	0	*	0	*
01	0	10	1	*	*	1
01	1	00	0	*	*	1
10	*	00	*	1	0	*
11	*	**	*	*	*	*

Schritt 4: Ausgabefunktionen

Trivial wegen geeigneter Zustände


Schritt 5: Minimierung

$$- J_1 = Q_0 * \overline{R}, K_1 = 1$$

$$-J_0=\overline{Q}_1*\overline{R}, K_0=1$$

Einfluss des Flip-Flop-Typs (4)

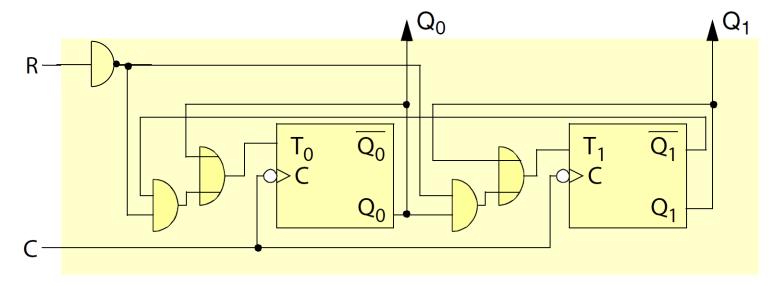
Schritt 6: Aufbau der Schaltung mit JK-Flip-Flops

Einfluss des Flip-Flop-Typs (5)

T-Flip-Flops

Schritt 3: T-Flip-Flops und deren Ansteuerung

Zustände Q_1, Q_0	Eingang <i>R</i>	Folge- zustände	<i>T</i> ₁	T_0
00	0	01	0	1
00	1	00	0	0
01	0	10	1	1
01	1	00	0	1
10	*	00	1	0
11	*	**	*	*


Schritt 5: Minimierung

$$- T_1 = Q_1 + Q_0 * \overline{R}$$

$$- T_0 = Q_0 + \overline{Q_1} * \overline{R}$$

Einfluss des Flip-Flop-Typs (6)

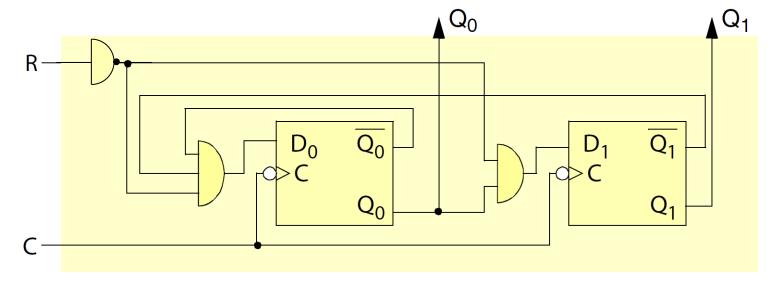
Schritt 6: Aufbau der Schaltung mit T-Flip-Flops

Einfluss des Flip-Flop-Typs (7)

D-Flip-Flops

Schritt 3: D-Flip-Flops und deren Ansteuerung

Zustände Q_1, Q_0	Eingang <i>R</i>	Folge- zustände	D_1	D_0
00	0	01	0	1
00	1	00	0	0
01	0	10	1	0
01	1	00	0	0
10	*	00	0	0
11	*	**	*	*


Schritt 5: Minimierung

$$- D_1 = Q_0 * \overline{R}$$

$$- D_0 = \overline{Q_0} * \overline{Q_1} * \overline{R}$$

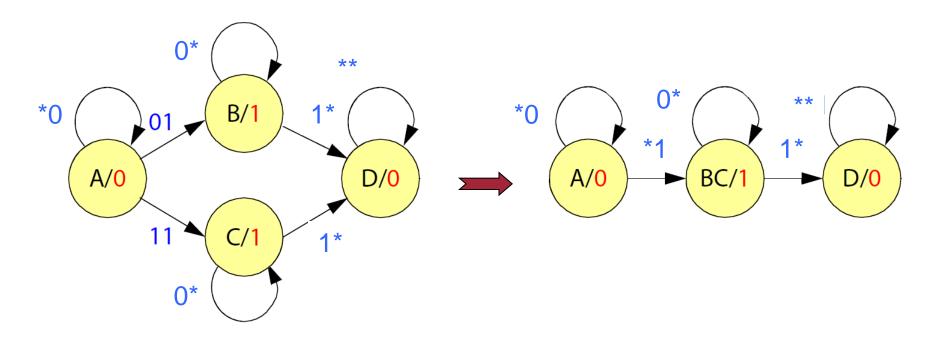
Einfluss des Flip-Flop-Typs (8)

Schritt 6: Aufbau der Schaltung mit D-Flip-Flops

Einfluss des Flip-Flop-Typs (9)

Jedes getaktete Flip-Flop kann verwendet werden

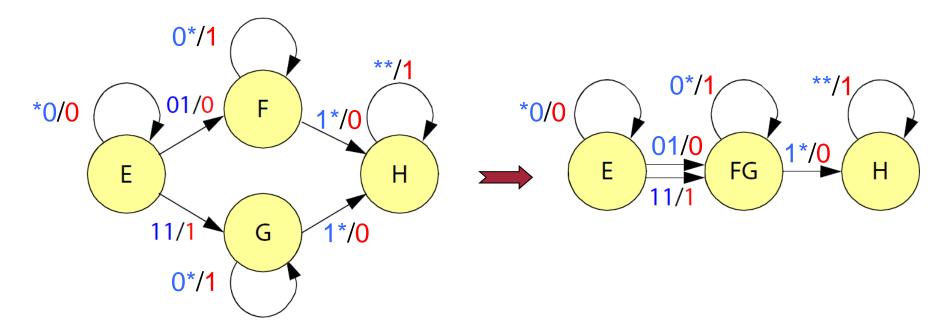
Unterschiede in der Schaltung


- JK-Flip-Flop tendiert zu besser zu minimierenden Ansteuerungsgleichungen
 - Viele Don't cares enthalten
- Einfach anzusteuernde Flip-Flops tendieren zu komplexen Ansteuerungsgleichungen
 - Z.B. D-Flip-Flops
- Aber Beispiel zeigt: es gibt Ausnahmen
- Wahl der Flip-Flops meist durch Verfügbarkeit von Bausteinen geprägt

Zustandsreduktion von Automaten (1)

Weniger Flip-Flops durch Reduktion der Zustände

Zustandsdiagramm Moore-Automat


Zusammenfassung von Zuständen mit gleicher Ausgabe und gleichen Folgezuständen

Zustandsreduktion von Automaten (2)

Zustandsdiagramm Mealy-Automat

Zusammenfassung von Zuständen mit gleichen Folgezuständen und gleichen Ausgaben bei den Übergängen

Zusammenfassung (1)

Einleitung

- Annahme einer Gatterlaufzeit ∧t
- Zyklen bzw. Rückkopplungen erlaubt, im Gegensatz zu Schaltnetzen
- Schaltwerke
- Rückkopplungen mit UND-, ODER bzw. NOR-Gattern

Zusammenfassung (2)

Flip-Flops

- RS-Flip-Flop: 2 rückgekoppelte NOR-Gatter
 - Eingänge: Set, Reset, Ausgang: gespeicherter Zustand Q
- Asynchrone Schaltwerke: verarbeiten geänderte Eingänge sofort
- Synchrone Schaltwerke: übernehmen Eingänge nur zu festen Zeiten
- Master-Slave Flip-Flop: zweistufiges Flip-Flop zum Vermeiden ungewollter asynchroner Rückkopplungen
- D-Flip-Flop (Delay): gibt Eingangswert D taktverzögert weiter
- Register: Speicher für bestimmte Anzahl von Binärwerten
- T-Flip-Flop (Toggle): invertiert Zustand bei Eingang T = 1

Zusammenfassung (3)

Systematischer Schaltwerkentwurf

- Weitgehend gleicher Ablauf für Moore- und Mealy-Automaten
 - Zustandsdiagramm bzw. Zustandstabelle
 - Binäre Zustandscodierung, binäre Zustandstabelle
 - Auswahl eines Flip-Flop-Typs, Flip-Flop-Ansteuerung in Zustandstabelle
 - Wahrheitstabelle für Ausgabefunktionen
 - Minimierung von Ansteuerungs- und Ausgabefunktionen
 - Aufbau der Schaltung
- Einfluss des Flip-Flop-Typs
 - JK-Flip-Flops tendiert zu kleineren Ansteuerungsfunktionen, andere Flip-Flops zu eher größeren
- Zustandsreduktion: Zusammenfassen von Automaten-Zuständen mit gleichem Ausgabeverhalten und gleichen Folgezuständen