Elektromagnetische Felder und Wellen: Klausur 2010-3

Name:			
Vorname:			
Matrikelnummer :			
Aufgabe 1:	Aufgabe 2:	Aufgabe 3:	\sum
Aufgabe 4:	Aufgabe 5:	Aufgabe 6:	Σ
Aufgabe 7:	Aufgabe 8:	Aufgabe 9:	\sum
Aufgabe 10:	Aufgabe 11:	Aufgabe 12:	\sum
Aufgabe 13:	Aufgabe 14:	Aufgabe 15:	\sum
Aufgabe 16:	Aufgabe 17:	Aufgabe 18:	\sum
			Gesamtpunktzahl:
		Ergebnis:	
Bemerkungen:			

$Aufgabe \ 1 \ (\ 10 \ Punkte)$

Zwei Punktladungen sind mit Q und -Q geladen und haben den Abstand d zueinander. Im Abstand x < d/2 zur positiven Ladung ist das Potential V_1 auf einer gedachten Verbindungslinie zwischen den Ladungen bekannt. Geben Sie einen weiteren Punkt auf der Verbindungslinie und ihrer Verlängerung an, an denen das Potential den selben Wert wie V_1 annimmt.

Aufgabe 2 (5 Punkte)

Gegeben ist ein unendlich ausgedehntes Prisma mit $\mu \neq \epsilon = 1$ im freien Raum. Der Querschnitt des Prismas ist ein gleichschenkliges Dreieck, wie in der Abbildung skizziert. Ein Lichtstrahl fällt senkrecht zur z-Achse auf das Prisma, so dass der Strahl innerhalb des Prismas parallel zur Basis verläuft (siehe k-Vektor in der Abbildung). Wie ist der Winkel ϕ zu wählen, damit das Licht beim Verlassen des Prismas die gleiche Leistung hat wie beim Eintritt. Geben Sie die Richtung von \vec{E} oder \vec{H} an.

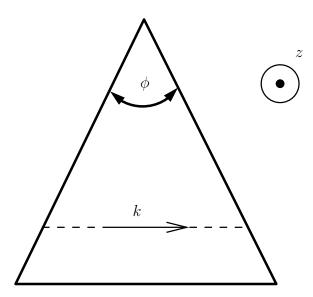


Abbildung 1: Schematische Darstellung des Prismenquerschnitts.

$Aufgabe \ 3 \ (\ 3\ Punkte)$

Ein Kreisring mit Durchmesser D ist mit $\varrho_{\rm L}$ geladen und hat den Abstand d zu einer mit $\varrho_{\rm S}$ geladenen unendlich ausgedehnten Fläche. Die Achse des Ringes zeigt in Normalenrichtung der Ebene. Welche Kraft wirkt auf den Ring?

$Aufgabe \ 4 \ (\ 6 \ Punkte)$

Ein hohler Zylinder ist so ausgerichtet, dass seine Achse mit der z-Achse zusammenfällt. Der Außendurchmesser des Zylinders ist D, der Innendurchmesser des Zylinders ist d. Der Zylinder ist endlich leitfähig (σ) und wird homogen von der Stromdichte $\vec{j}=j_0\vec{\rm e_z}$ durchflossen. Das Potential ist im Zylindermantel $(d \le 2\rho \le D)$ an der Stelle z=0 mit V=0 eingeprägt. Welche Kraft wirkt auf eine Punktladung Q an der Stelle x=y=z=0?

Aufgabe 5 (4 Punkte)

Zwei rechteckige Elektroden sind so angeordnet, dass eine bei z=0 und die andere bei z=c liegt. Beide liegen mit der Mitte auf der z-Achse und haben in x-Richtung die Länge a bzw. in y-Richtung die Länge b. Zwischen den Elektroden befindet sich ein Dielektrikum mit homogener relativer Dielektrizitätszahl ε und Leitfähigkeit $\sigma=\sigma_0(x-a)^2(y-b)^4$, das bei Anlegen einer Spannung die Stromdichte $\vec{j}=j_0(x-a)^2(y-b)^4\vec{e}_z$ trägt. Die Anordnung kann als Parallelschaltung aus idealer Kapazität und Widerstand modelliert werden. Welche Größe hat der Widerstand?

$Aufgabe \ 6 \ (\ {\tt 3\ Punkte})$

Eine kreisförmige Leiterschleife vom Radius R mit infinitesimal kleinem Spalt und unbegrenzter Leitfähigkeit wird axial homogen vom Magnetfeld B durchsetzt. Am Spalt wird die Spannung $U = U_0 \cos{\{\omega t\}}$ gemessen. Welche Größe hat das Magnetfeld?

Aufgabe 7 (5 Punkte)

Das Lorentz-geeichte magnetische Vektorpotenzial lautet $\vec{A} = A_0 \cdot \vec{e}_x \exp\{ax + by - \omega t\}$. Welche Größe hat das zugehörige elektrische Feld \vec{E} ?

$Aufgabe \ 8 \ (\ 6 \ Punkte)$

Im Bereich $y \geq b$ herrscht das elektrische Feld

$$\vec{E} = E_0 \sin\left\{\pi \frac{x}{a}\right\} \cdot \cos\left\{\pi \frac{y}{b}\right\} \cdot \exp\{i(\omega t - \beta z)\}\vec{e}_z$$

Die relative Dielektrizitätszahl ist ε . Der angrenzende Bereich y < b ist feldfrei. Welche Ladungsdichte liegt in der Grenzfläche?

$Aufgabe \ 9 \ (\ 4 \ \mathrm{Punkte})$

Das magnetische Vektorpotenzial ist $\vec{A} = A_0 \cdot \exp\{i(\omega t - ax - \beta z)\}\vec{e}_z$ und das zugehörige skalare elektrische Potenzial $\Phi_{\rm el} = \Phi_0 \cdot \exp\{i(\omega t - ax - \beta z)\}$. Wie muss Φ_0 gewählt werden, damit die Wellengleichungen entkoppeln?

$Aufgabe \ 10 \ (\ {\it 3\ Punkte})$

Welche Polarisation weist das Feld

$$\vec{H} = \begin{pmatrix} H_x \sin\{\omega t + \beta y\} \\ 0 \\ H_z \cos\{\omega t + \beta y\} \end{pmatrix} ; \{H_x, H_z\} \in \mathbb{R}$$

auf?

$Aufgabe \ 11 \ (\ 6 \ \mathrm{Punkte})$

Bestimmen Sie den TE und TM Anteil von $\vec{E}=E_0\cdot\vec{e}_z\cdot\exp\{i(\omega t-\beta y\}$ bezüglich der Grenzfläche mit $\vec{n}=0.6\vec{e}_x+0.8\vec{e}_z$

Aufgabe 12 (9 Punkte)

An der Grenzfläche y=0lautet das Feld der reflektierten Welle (y<0)

$$\vec{E}_{\text{ref}} = E_0 \cdot \exp\{i(\omega t - 2k_0 x + k_0 y)\}\vec{e}_z.$$

Die transmittierte Welle wird durch

$$\vec{E}_{\rm tr} = A \ E_0 \ \exp\{-k_0 y + i(\omega t - 2k_0 x)\}\vec{e}_z \ ; \ A \in \mathbb{C}$$

beschrieben. Wie groß ist A, wenn beide Medien unmagnetisch sind?

Aufgabe 13 (8 Punkte)

Bei y=a stoßen zwei Medien aneinander. Sie werden durch die Materialgrößen ε_1 und $\varepsilon_2=0.5\varepsilon_1$ für y< a bzw. $y\geq a$ beschrieben. In beiden Fällen ist $\mu=1$. Im Bereich y< a fällt eine Welle unter dem Winkel von 30° auf die Grenzfläche (gemessen gegen die Flächennormale). Wie lautet der Wellenzahlvektor der transmittierten Welle?

$Aufgabe \ 14 \ (\ 4 \ Punkte)$

Die planare Oberfläche einer ideal leitfähigen Platte trägt die Stromdichte $\vec{j}_S = j_0(\sin\{\pi x/a\}\vec{e}_y + \cos\{\pi y/b\}\vec{e}_x)$ geladen. Die Platte befindet sich im Bereich bei $z \geq 0$. Welche Größe hat das magnetische Feld an der Grenzfläche im ansonsten freien Raum?

Aufgabe 15 (3 Punkte)

Eine zirkular polarisierte Welle trifft auf die Grenzfläche zwischen Vakuum und Quarzglas $(n_2 = 1.52, \mu_2 = 1)$. Die reflektierte und transmittierte Welle haben einen Winkel von 90° zueinander. Unter welchen Winkeln breiten sich einfallende und transmittierte Welle aus. Wie ist der reflektierte Anteil polarisiert?

Aufgabe 16 (4 Punkte)

Eine monochromatische Welle breitet sich für z<0 im Vakuum aus und trifft bei z=0 auf ein Medium mit $\varepsilon=?$ und $\mu=4$. Das elektrische Feld von einfallender und transmittierter Welle ist gegeben durch

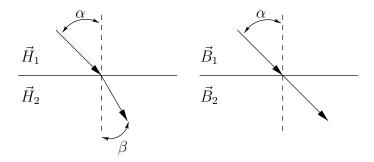
$$\vec{E}_{\rm in} = (E_{\rm x}, iE_{\rm x}, 0) \cdot \exp\{i(kz - \omega t)\}$$

und

$$\vec{E}_{\mathrm{tr}} = (\frac{1}{2}E_{\mathrm{x}}, \frac{1}{2}\mathrm{i}E_{\mathrm{x}}, 0) \cdot \exp\{\mathrm{i}(kz - \omega t)\}.$$

Bestimmen Sie die relative Dielektrizitätszahl ε (Zahlenwert) des Mediums.

$Aufgabe~17~{\rm (~3~Punkte)}$


Im freien Raum sei der Realteil des elektrischen Feldes gegeben durch

$$\vec{E}(z,t) = E_0(1 + 2 \cdot \cos\{kz - \omega t\})\vec{e}_x.$$

Bestimmen Sie den Realteil des dazugehörigen Magnetfeldes (Re $\{\vec{H}\}).$

$Aufgabe \ 18 \ (\ 6 \ \mathrm{Punkte})$

Gegeben ist das \vec{H} - und \vec{B} -Feld am Übergang zweier homogener Materialien 1 und 2. Die Grenzfläche ist stromfrei. \vec{B} und \vec{H} sind räumlich und zeitlich konstant.

Geben Sie die Magnetisierung \vec{M} im Medium 2 in Abhängigkeit von \vec{B}_1 und \vec{H}_1 an.