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Abstract

This paper is concerned with developing a reflec-
tive architecture for formalizing and reasoning
about entities that occur in the process of soft-
ware development, such as specifications, theo-
rems, programs, and proofs. The starting point
is a syntactic extension of the type theory FCC'.
An encoding of this object calculus within itself
comprises the meta-level, and reflection princip-
les are provided for switching between different
These reflection principles are used to
mix object- and meta-level reasoning, to generate
“standard” units by executing meta-operators,
and to apply formal tactics that allow for ab-
straction from the basic inference rules.

levels.

1 Introduction

Formalizing artifacts of software development and
software engineering activities that produce these
artifacts is, according to [2], a central issue of
knowledge-based software engineering. Here we
propose a reflective architecture based on a type-
theoretic calculus that is capable of expressing

most units of the software development process
like theorems, specifications, proofs, programs,
and relative implementations between specifica-
tions in order to formalize schematic develop-
ments as operators on the meta-level. These
meta-operators are applied to specific problems
by means of reflection principles that connect
object- and meta-level. Formalizing software de-
velopment steps as executable (meta-) operators
supports several aspects of the by now almost
universally accepted goal of reusability, which in-
volves not only reuse of program fragments but
also of designs and developments, and, in the
context of fully formal approaches, proofs.

The work reported here is mainly related to
reflexive systems for safely extending mechani-
cal theorem provers [20, 3, 5, 9, 1, 8. Work
reported in [1] and [8] also uses a type theory
as the base calculus, but their meta-level enco-
ding consists of encoding of proof trees, while
in our object calculus proofs are already first-
class entities. Moreover, our main interest lies
in applying reflective architectures in formalizing
software development steps [19]; these may also
include operators modification.



Section 2 includes a brief description of the
programming and specification calculus TYPE-
LAB, while an outline of the encoding of Tvy-
PELAB within TYPELAB together with reflection
principles is considered in Sections 3 and 4. This
completes the description of the reflective archi-
tecture. An in-depth discussion on reflective ar-
chitectures for type theories can be found in a
forth-coming thesis [17] and in [15]. Here we
concentrate on describing some experiments that
have been carried out with this reflective system.
Sections 5, 6, and 7 provide examples for mixing
object and meta-level deduction, for generating
standard developments for inductive datatypes,
and for applying tactics in such reflective archi-
tecture, respectively.

2 The Object Calculus

The object calculus TYPELAB basically is a syn-
tactic extension of the type theory ECC [10] with
inductive datatypes, and the design of these con-
structs is influenced mainly by the PVS specifi-
cation language [13]. The resulting language is
quite expressive in the sense that many entities
of the software development process — programs,
proofs, implementations, logical formulae, and
(parameterized) specifications — can be formally
expressed very directly and naturally.

Type constructors are introduced to form Car-
tesian products, (dependent) record types, se-
mantic subtypes, and specifications. All these
constructs are special forms of strong sum types
in ECC; they are, however, handled differently
by the typing system and therefore require spe-
cial syntax. A semantic subtype {z : A | P} com-
prises those members of type A which satisfy pre-
dicate P, while specifications consist, as usual, of

Nat_Spec :=
SPEC
nat : Type(0),
zero : nat,

succ : nat — nat,

elim : 11C : nat — Type(0).
C(zero) —
(lz : nat. C'(z) = C(succ(z)))
— Iln : nat. C'(n)

WITH

V C : nat — Type(0), f : C(zero),
L (Ilz : nat. C(z) — C(suce(z))),
n : nat.
elim C' fi fo zero = fi,
elim C' fi fo succ(n)

= fan (elim C fi fo n)
END

Figure 1: Specification of Natural Numbers

a signature part and an axiom part. A specifi-
cation Nat_Spec of natural numbers by means of
formation, introduction, elimination, and equa-
lity rules is given, for example, in Figure 1.

A distinctive feature of the typing system is
a mechanism for converting members of one type
to members of a different type automatically;
this feature is mainly used to generate so-called
type correctness conditions [13] or proof obliga-
tions. A proof obligation is a placeholder for
a term which will be filled in later by the pro-
ver. Discharging these proof obligations can be
postponed because the type checker only requires
type information.

The mechanisms to form inductive dataty-
pes follow Ore’s extension of FCC [12]. Since



all objects in TYPELAB are first-class entities,
names of constructors for inductive datatypes
have to be introduced explicitly. Inductive da-
tatypes representing Booleans, natural numbers,
and polymorphic lists together with appropriate
operators are predefined. Expressions of TYPE-
LAB constitute an embedded functional language
with basic expressions corresponding to predefi-
ned types, let-statements, conditionals, higher-
order structural recursion (induction), and well-
founded recursion (induction). An informal but
comprehensive introduction to the TYPELAB lan-
guage can be found in [16].

3 The Meta-Level

A first step towards a reflective architecture con-
sists in a representation of the object layer; here,
the object calculus TYPELAB is also used as the
meta-language, and the encoding itself amounts
to a definitional extension to TyYPELAB. This
encoding constitutes the meta-level.

Syntactic categories of TYPELAB are repre-
sented as objects of an inductive datatype trm.
Since many applications require to explicitly ex-
amine and manipulate both free and bound va-
riables, we choose to distinguish between object
and meta-level variables. This is in contrast to
the higher-order abstract syntax approach mainly
used for defining logics in Logical Frameworks [6].
Moreover, the representation type trm of TYPE-
LAB terms closely models the object-oriented im-
plementation of TYPELAB in that hierarchically
ordered classes are encoded by means of layered
constructors. Contexts are represented as lists
of both declarations and definitions resulting in
some representation type cat.

Quoting associates entities of the object-layer

with their representations in the meta-layer, and
thereby allows the meta-layer to refer to, and
express properties of the elements of the object-
layer. Quoting ".7 is external to both object-
and meta-level and associates objects of TYPE-
LAB with corresponding representations, i.e. ele-
ments in normal form of representation types
var, trm, and czt. Definition of the quoting me-
chanism is straightforward and proceeds on the
structure of syntactic categories. Efficient execu-
tion of quoting is a necessity for practical appli-
cation of reflective architectures. Thus, quoting
of both terms and contexts is implemented ef-
ficiently in that (parts of) objects of respective
representation types are computed only when ac-
cessed; the methods used are reminiscent of tech-
niques for implementing lazy lists. Sometimes
it is convenient to mix object-level syntax with
meta-level representations. This can be accom-
plished using Backquoting ‘. that is reminiscent
of the Lisp comma operator within backquotes.
For example,

Verext, A, B:trm. inh(c,""A*— *B*— ‘B*7)
is a more readable notation for

Ye:cat, A, B: trm.
inh(c, mk_impl( A, mk_impl(B, A)))

The backquote feature is especially useful when

dealing with “large” representations. The inverse

of quoting is called unguoting and is denoted by

L.o . Unquoting associates a (normal form) re-

presentation with its object entity. Note, that

the result of unquoting is not necessarily well-

typed.

Next, functions on representation types for

substitution (subst), one-step reduction (reducel),
weak-head-normalform (whnf), and cumulativity



subst trm X var X trm — trm
reducel cxt X trm — trm
whnf cxt X trm — trm
cum trm X trm — bool
deriv cxt X trm X trm — bool

Figure 2: Meta-functions

(cum), that generalizes convertibility, are provi-
ded. Derivability of type judgments is expressed
as a predicate deriv of type cat X trm X trm —
Prop. Instead of coding all these functions on re-
presentation type trm, one simply declares cor-
responding constants, see Figure 2 and attaches
them to the underlying Lisp implementation of
the TYPELAB system. More precisely, whenever
evaluating a function application f("M ™) one does
so by using the Lisp representation of M and eva-
luating the corresponding Lisp function on this
representation; finally the result of this compu-
tation is expressed as an object of the TYPELAB
language. Following Weyhrauch [20] we refer to
this mechanism of evaluating meta-functions as
semantic attachments. Using semantic attach-
ments has several advantages over explicit en-
coding of TYPELAB within TYPELAB: one avo-
ids duplicating the Lisp implementation in TY-
PELAB and inherits from Lisp efficient execution
of meta-operators; a small overhead results only
from transforming (quote/unquote) between Lisp
representations of objects and entities of repre-
sentation types. Besides practical considerati-
ons, there are also theoretical limitations in re-
presenting evaluation function whnf and deci-
ding derivability by means of type-theoretic func-
tions. These functions, however, can be appro-
ximated by respective families of functions that

are indexed with an upper bound for the number
of evaluation steps [17].

In order to be able to express and prove pro-
perties on semantically attached meta-functions
one provides axioms on declared constants. These
axioms describe the operational nature of the
term functions and closely follow the underly-
ing Lisp implementation. Thus, in effect, these
axioms are not only part of the meta-level des-
cription but can be regarded as an operational
specification of the TYPELAB system. Moreover,
using these axioms it is possible to reason about
the underlying Lisp code within the TYPELAB
system. The correctness of such reasoning de-
pends, of course, on the Lisp implementation,
that is assumed to “fulfill” the specified axioms.
In order to substantiate this claim, structures of
specifying axioms reflect the structure of the un-
derlying Lisp functions.
cribe operational behavior of the whnf function
closely follows the structure of the implementa-
tion: In this way many axioms directly reflect
methods of the underlying Lisp code. On the
other hand, axioms for deriv are not operatio-
nal but rather describe the typing rules (together
with some meta-theoretic results) of the under-
lying calculus. Moreover, the TYPELAB system
provides for advanced features such as anony-
mous universes [7] and hidden applications that
drastically complicate the implementation, and
the formalizations provided in [15] abstract from
these features.

The axioms that des-

Finally, the set of well-typed terms of type A
in context ¢ is represented by means of semantic
subtypes and derivability:

wtt == A(c, A) : cxt x trm.
{M : trm | deriv(c, M, A) = true}

A related notion is that of inhabitedness (prova-



bility) of some type (formula) A in context c:

inh = A(c, A): cat X trm.
AM :trm. (deriv(c, M, A) = true)

4 Reflection Principles

The encodings given so far constitute the meta-
level encodings of TYPELAB, but no connections
between object-level and meta-level deductions
have yet been provided. The following reflection
rules provide such connections:

FrEM:A
Fup(l', M, A) :

inh("T7, 7 A7)

Fp @ imh("I7,"AT)
I'F down(p) : A

Note that both up and down can not be enco-
ded as functions of TYPELAB. In the context of
the pure calculus of construction these rules have
been shown to be admissible, and the object-level
system together with the encodings and reflec-
tion rules is a conservative extension of the ori-
ginal system [17].

Corresponding to the reflection rules reflect
up and reflect down the basic TYPELAB system
has been extended with prover commands that
allow one to switch between different levels. For
example, goal I' 75 : A may be rewritten as
F?1 o anh("I'7,7 A7), This process of reification
can be iterated. Next reification, for example,
yields F75 1 inh ("7, Tinh ("I, TAT) ).

Another reflection rule involves computing of
object-level terms from representations thereof:

FTMT o
'EM: A

wit(TT7,7 A7)

We refer to this transition as safe unquoting, since
the unquoted term is known to be type-correct
in the unquoted context. On the other hand, one
may not always want to construct proofs of well-
typedness for results of meta-operations. For this
reason, we also allow for unsafe unquoting. In
this case, transitions from meta-level to object-
level involve type checking of the reflected term
in the current context.

5 Mixing Reasoning on Diffe-
rent Levels

Reflection rules can be utilized to solve object-
level goals by reifying the problem, applying a
meta-theorem, and reflecting the constructed re-
presentation of a proof object. This procedure is
similar to that of Weyhrauch’s FOL system, with
the addition that proof objects are constructed
explicitly. Consider, for example, the (toy) pro-
blem of solving

A:Prop F75 : A= A

One possibility to solve such a goal could involve
a meta-theorem such as

obvious : llc: cat, A : trm.
deriv(c, A," Prop™) = true —
inh(c," A — ‘A7)

In a first step one reifies the goal at hand:
F?y @ inh("A: Prop?,"A— A")

Now, one applies the refine command of the Ty-
PELAB prover that matches the current goal with
the conclusion of meta-theorem obvious. Justifi-
cation of 7y relative to 7y is computed from meta-
proof obvious and downward reflection:

7o = down(obvious(" A : Prop™," A7, 73))



Here, 75 is a proof obligation
F 7?9 ¢ deriv(TA: Prop™," A7, " Prop™) = true

that can be easily shown to hold using semantic
attachment for derivability. This process of reify-
ing a goal followed by application of refinement
and discharging of “trivial” goals is condensed in
a proof command called reflect. Above toy pro-
blem, for example, could be solved in one step
by issuing the prover command reflect obvious.
Note that this command, in addition, tries to in-
stantiate meta-theorems with the representation
of the current context.

6 Meta-Operators as Genera-
tors

Large parts of proof libraries of Coq [4] and
LEGO [11] consist of rather trivial developments
— comprising both theorems and programs and
proofs — that have to be carried out separately for
each datatype. A better idea seems to capture
the general scheme of such developments once-
and-for-all and apply these schemes for each in-
stance. Thus, developments on inductive dataty-
pes are a particularly rich source for formalizing
meta-operators.

For example, specifications of inductive da-
tatypes that are given by means of introduction,
formation, elimination, and equality rules fol-
low a certain pattern, and the form of elimina-
tion and equality can already be computed from
formation and introduction rules by means of
the inversion principle (see [18]). This know-
ledge can be poured into a meta-operator named
gen_dt_spec. Consider, for example, the induc-

zero_not_succ =
V' n : nat. zero # succ(n)

zero_not_succ_prf : zero_not_succ =
Az :nat, H : (zero = succ(z)). eq_sym
(H (Ay : nat.
(elim (A_: nat. Prop) true
(A= : nat,_: Prop. false)

y)
= true)
(eq_refl true))
(Az: Prop. z)

(A : Prop,a : A. a)

Figure 3: Disjointness of Constructor Terms

tive datatype

nat := DATATYPE X : Type(0).
zero: X | succ: X — X

END

Applying gen_dt_spec together with unsafe un-
quoting yields the specification Nat_Spec of Fi-
gure 1:

Nat_Spec := cgen_dt_spec("nat™);

Note also that such meta-functions need explicit
access to variables in order to distinguish bet-
ween recursive and non-recursive arguments.
The generated specifications can easily be ex-
tended to support further notions related to in-
ductive datatypes. Meta function gen_disj_thm,
for example, generates for a given inductive data-
type theorems that state disjointness of construc-
tors together with proof objects.  For lack of
space we do not elaborate on how to implement



the meta-functions (gen_disj_thm i j "D7) and
(gen_disj_prf i j " D7) that respectively generate
the disjointness theorem for the i-th and j-th
constructors of datatype D and a proof thereof;
see [15] for a detailed description of these func-
tions. These functions can be applied — again
using unsafe unquoting — to specific datatypes
like natural numbers:

zero_not_succ =
Lgen_disj_thm zero succ "nat™ .

zero_not_succ_prf : zero_not_succ =
Lgen_disj_prf zero succ "nat™

This yields the same terms as shown in Figure 3.

7 Formal Tactics

Another application of the reflective architecture
presented here involves tactics that are capable
of abstracting from the basic inference rules. A
tactic is a (meta-) function that maps, in case
of success, a goal (c¢,g) : cat X trm to a list
of subgoals, or it fails. Unlike LCF tactics [14]
these tactics do not have to compute justificati-
ons in terms of primitive inference rules. Instead,
a certain correctness result that states existence
of such a proof object is established once and
for all. Since correctness of tactics only requi-
res existence of a proof, one may easily integrate
decision procedures in a sound way. Also, higher-
order tactics can be defined freely but have to be
proven correct.

An example may help to clarify some points.
Assume given the problem

A, B:Prop F7 : (ANB)— (BAA)

The prover command tac, that is responsible for
applying tactics, expects as argument a meta-
function together with a correctness proof of this
tactic. Issuing, for instance, the command

tac flatten flatten_corr

causes application of tactic flatten. This tac-
tic repeatedly applies conjunction and implica-
tion elimination, and flatten_corr is a correctness
proof of this tactic. More precisely, in a first step
the current goal is represented on the meta-level
as

("A,B: Prop?," (AN B) = (BN A))

and meta-operator flatten is applied to this goal.
This yields the result

yes([("A, B: Prop, H; : A, Hy: B7," B7),
("A,B: Prop, Hy : A, Hy : B","A7)])

In a last step, tactic command tac reflects the
result down to the object-level and one is left to
show the two subgoals

A/ B:Prop,H : A H,: B 7, : B, 75 : A
Moreover, the relationship between meta-varia-
bles 79 and 7y, 75 is computed using correctness
result flatten_corr of tactic flatten.

8 Conclusions

We have described a reflective architecture that
is capable of applying meta-operators and meta-
theorems to object-level problems, and perfor-
med a number of experiments related to formal
program construction using this architecture.

This reflective architecture is open in the sense



that new knowledge can be added. On the other
hand, such knowledge can not be arbitrarily ad-
ded to the system; this process possibly involves
formal proof. Altogether, starting with a rela-
tively small kernel our software development tool
can be adjusted and extended in a safe way to
meet new requirements.

A prototypical implementation of this reflec-
tive architecture has been developed on top of
the TYPELAB system, and the experiments re-
ported herein have been carried out in this sy-
stem. In order to make the approach practical,
however, several improvements have to be made.
While speed of executing quoting/unquoting and
application of reflection principles is already sa-
tisfactory, reduction of meta-operator applica-
tion is currently rather slow. Consequently, some
mechanism has to be introduced to the system
in order to speed up reduction of the underly-
ing type theory. It is mainly this lack of execu-
tion speed that prevented us from encoding more
meta-operators and applying these operators to
the trm representation itself in order to boot-
strap the given encoding and enhance “know-
ledge” about this encoding.

Our short term goal in this respect is to deve-
lop a formal “theory of datatypes” that includes
most standard proofs and theorems and standard
functions on datatypes like (decidable) equality
and map-functions together with characteristic
theorems on these functions. In the long run,
we believe that a large collection of formalized
meta-operators that encode common knowledge
on programming (and proving) tasks greatly fa-
cilitates formal software development, and allows
one to develop and maintain large program sy-
stems in a fully formal way.
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