Compiler Correctness and Implementation Verification:
The Verifix Approach

Wolfgang Goerigk* Axel Dold® Thilo Gaul*

Gerhard Goos?

Andreas Heberlet Friedrich W. von Henke® Ulrich Hoffmann* Hans Langmaack*
Holger Pfeifer® Harald Ruess® Wolf Zimmermann*

Abstract

Compiler correctness is crucial to the software en-
gineering of safety critical software. It depends on
both the correctness of the compiling specification
and the correctness of the compiler implementation.
We will discuss compiler correctness for practically
relevant source languages and target machines in or-
der to find an adequate correctness notion for the
compiling specification, i.e. for the mapping from
source to target programs with respect to their stan-
dard semantics, which allows for proving both spec-
ification and implementation correctness. We will
sketch our approach of proving the correctness of
the compiler implementation as a binary machine
program, using a special technique of bootstrapping
and double checking the results. We will discuss
mechanical proof support for both compiling ver-
ification and compiler implementation verification
in order to make them feasible parts of the soft-
ware engineering of correct compilers. Verifiz is a
joint project on Correct Compilers funded by the
Deutsche Forschungsgemeinschaft (DFG).

Keywords: compiling verification, compiler im-
plementation verification, computer based systems

(CBS), correct compilers, safety critical software.

1 Introduction

In most cases tests are not sufficient to guarantee
program correctness. It becomes more and more ap-
parent that program verification is needed to meet
high reliability requirements for safety critical soft-
ware. Adequate software engineering methods, es-
pecially formal methods, should be used to support

*Christian-Albrechts-University of Kiel, Preulerstr. 1-9,
D-24105 Kiel, (wg@informatik.uni-kiel.d400.de)

{University of Karlsruhe, Vincenz-Priefnitz-Str. 3, D-
76128 Karlsruhe, (zimmer@ipd.info.uni-karlsruhe.de)

§University of Ulm, James-Franck-Ring, D-89069 Ulm,
(ruess@informatik.uni-ulm.de)

the correct program construction. Program verifi-
cation methods are best known to work for mathe-
matically clean high level programming languages.
However, it is the binary machine code running on a
concrete piece of hardware which we ultimately want
and have to trust. Therefore, program correctness
crucially depends on the correctness of the compiler
used for implementation. The compiler, more pre-
cisely its machine code implementation, should be
proved to carry over application program correct-
ness from source to target programs, i.e. to preserve
application program correctness.

Compiling correctness for sequential, imperative
source languages is easier to formulate than the gen-
eral problem of program correctness. We know the
mathematical theory of source and target language
semantics and the theory of partial and total pro-
gram correctness in sequential, non-real-numerical
application areas, and hence we are able to exactly
define the relationship a compiler has to establish
between source and target programs. A mathemat-
ically exact specification of the problem is available.

The definition of the compiling specification, map-
ping or relating source to target programs and the
proof of its correctness with respect to semantics
(compiling verification) are crucial tasks while con-
structing correct compilers. In section 2 we will de-
velop a framework which allows to express and to
study different compiler correctness notions. Practi-
cal verification techniques for realistic compilers and
compiler implementations are needed. Even source
languages are often defined operationally, based on
an abstract execution model. In addition to the
standard technique of structural induction on source
programs also simulation or bisimulation proofs can
be used to prove code generator specifications cor-
rect.

Like in ordinary program verification, however, it
is again the binary machine code executable which
we ultimately want to trust. In addition to com-
piling verification we have to prove the specification
to be correctly implemented on the machine (com-

piler implementation verification). In section 3 we
will sketch our approach to the proof of compiler
implementation correctness. We use a specialized
bootstrapping technique and double-check the re-
sulting code to be correctly generated as specified.
A reasonable choice of intermediate program repre-
sentations separates crucial compilation steps from
each other. The implementation correctness proof
is modularized into smaller parts. Compiling verifi-
cation uses more or less the same intermediate steps
anyway.

In section 4 we will discuss mechanical proof sup-
port for both compiling and compiler implementa-
tion verification. Since compiler verification usually
produces a lot of tedious proof obligations, we need
to incorporate mechanical support into our proof
methods to make them practical. We must not de-
pend on unverified theorem prover implementations,
but of course proofs get much more trustworthy if
they are additionally checked by machine, even if the
automatism is not fully verified. We are also allowed
to use theorem provers like PVS to find proofs, if the
proof protocols at the end are completely under hu-
man control.

The Verifiz project tackles techniques for the soft-
ware engineering of correct compilers. Three re-
search groups at Karlsruhe (G. Goos), Ulm (F.W.
v.Henke) and Kiel (H. Langmaack) work together
on compiling verification, compiler implementation
verification and compiler generation verification for
realistic sequential imperative source languages on
real machines.

2 Compiling Correctness

As there are different notions of program correct-
ness, the question arises whether we are able to de-
fine one single reasonable, comprehensive notion of
compiler correctness. Of course, a compiler should
transform source programs to semantically equiva-
lent target code. However, this correctness notion
is too strong for realistic compilers generating real
machine code; machines have finite resource limita-
tions. We will develop a framework which allows
to express and to study advantages, drawbacks and
relationships between different compiler correctness
notions. The usual commutative diagram relating
source and target program semantics to the compil-
ing function (or relation) will be specialized for the
case of state based sequential imperative languages.

This section 1s best characterized as a comprehen-
sive presentation of preliminary work, results and
ideas originated from the PrRoCoS [2] [1] work on

compiling verification [8] [9] [17], especially from [11]
and [14]. However, we will argue why for the special
purpose of correct compiler construction a compiler
correctness notion based on partial program correct-
ness is sufficient.

Our definitions also work out if both source and
target language are defined operationally on the ba-
sis of an abstract (or concrete) machine. In this case
we can enrich the repertoire of proof techniques and
use simulation or bisimulation proofs well known
from computability theory in order to prove com-
piling correctness.

2.1 Correct Compilers

Compiler verification has a very long history start-
ing in the mid-60’s with the work of McCarthy and
Painter [12]. A good overview of the research work
performed on compiler verification and the results
achieved since then is given by Jeffrey J. Joyce
in [10]. McCarthy and Painter have established a
standard mathematical paradigm which has been
adopted by most of the literature on compiler cor-
rectness: abstract syntax of both source and tar-
get language, abstract mathematical definition of
the compiling specification, abstract definition of an
idealized target machine code; even the basic proof
method, structural induction on the syntax of source
programs, is common to most of the work presented
so far.

For source languages SL and target languages T'L
a compiling specification C will be defined either
mapping or relating source programs p € SL to tar-
get programs C(p) € T'L. Usually, the correctness
of the compiling specification C'is expressed by the
commutativity of a diagram similar to the one shown
in figure 1 below.

SL semantics

p€eSL [rlse
C ?
Cp)eTlL [C(P)rr

TL semantics

Figure 1: Compiling Correctness

But how to relate source and target program seman-
tics to each other? For imperative languages we can

take a closer look (cf. figure 2) to the right hand
side of the diagram above. In this case, programs
mean state transformations. The source program
semantics [p] ¢, is a function mapping program
states (mappings from program variables to values)
¢ € Qsr to program states. Denotational seman-
tics for instance define programs to mean (contin-
uous) mappings [pll¢; € @sr — Qsr. More re-
cently, also operational (F. and H. Nielson), struc-
tural operational (G. Plotkin) and axiomatic ap-
proaches (C.A.R. Hoare, [8]) have been used in the
area of compiling verification.

Machine program state transformation [C'(p)] ;..
can be defined very naturally starting from the
operational definition of the machine configuration
transformation of single instructions as defined in
the machine manual.

f=1rl
41 € Qstr L q) € Qsr
p p
g2 € QrrL 95 € Qrr
fe=1CWM) 7
Figure 2: Compiling Correctness for Imperative

Languages

A retrieve function p (abstraction, or inverse rep-
resentation) relates both state spaces to each other.
It abstracts program states from machine states, i.e.
values from their concrete machine representations.

Different notions of weak or strong commutativity
of this diagram now give rise to different notions of
compiling correctness (cf. section 2.2). If we require

pofc = fOPa

the compiling specification C has to establish strong
semantical equivalence of source and target pro-
gram. It will preserve both partial and total correct-
ness properties of the application source program
(cf. section 2.2 below). Markus Miiller-Olm [14]
shows strong commutativity for a while-language P
and a machine language M P of conditional jumps
and assignment instructions, assuming p to be the
identity map on Qp = Qup.

Because of the finiteness of real machines, how-
ever, realistic correct compiler construction has to
weaken the envisaged correctness notion. In general

strong commutativity will be very hard to achieve.
Regular program termination — successful termina-
tion without any runtime error occuring — of the
target program cannot be guaranteed for arbitrary
well-defined source programs. One solution could
be to strengthen the source language semantics to
reflect machine restrictions. This method, however,
causes many additional problems in program veri-
fication and only pays off for instance in the field
of safety critical embedded control, where irregular
program termination could be disastrous, where to-
tal program correctness is required and has to be
preserved. On the other hand, weakening the target
code semantics to completely abstract from machine
resource limitations at the end is undesirable either.
Although very important for modularizing correct-
ness proofs, and successfully adopted in the wide
majority of the literature on compiler verification
so far, complete abstraction from machine resource
limitations rules out concrete hardware to be the
target of correct program implementations.

If we have a closer look to different error situations
in source and target programs, we can identify those
runtime errors which are due to resource violations
of the concrete finite target machine, e.g. memory or
arithmetic overflow. The best we can achieve with-
out considering additional knowledge about machine
and implementation details is that C

e establishes semantical equivalence, but

e (C(p) may abort due to machine resource viola-
tion even for well-defined programs p.

For most concrete target machines M we are able
to define an idealized version M with unrestricted
In this case we could additionally re-
quire C(p) to be semantically equivalent to p on
M. This excludes unfair compilers like those
constantly generating non terminating memory ex-
hausting code or a division by zero. In most practi-
cal cases this also implies that for every well defined
program p and every input there exists a (finite)
target machine which is “large enough” for C'(p) to
terminate regularly on that input.

resources.

2.2 Weaker Correctness Notions

Different fields of applications require different no-
tions of program correctness. In many cases, par-
tial correctness suffices. One typical example is the
compiler itself: If it terminates regularly then the
resulting code has to be the correct one. We need
a rigorous mathematical proof for this fact. How-
ever, compiler verification would become much more

cumbersome or even impossible if we would insist
upon regular termination of the implemented com-
piler for every source program. Although of course
this property is a desirable and very important soft-
ware quality aspect for compilers, it is not central
for compiler correctness. We subsume this kind of
total correctness of a compiler under quality aspects
where a different level how to gain confidence could
be satisfactory, e.g. compiler validation as already
used in industry nowadays.

Figure 2 allows for the definition of different no-
tions of compiler correctness. f. is defined to be a
correct implementation of f based on weak or strong
commutativity of the diagram:

(a) Preserving Partial Correctness: po f, C
f op . Regular termination of the target pro-
gram implies correct results w.r.t. source pro-
gram semantics. This is the inverse of

Preserving Total Correctness: fop C po
fo . For well-defined source programs correct
target program results are guaranteed.

Preserving both Partial and Total Cor-
rectness: pof. = fop , ie. both (a) and
(b) hold. This notion of strong commutativity
corresponds to (strong) semantical equivalence,
sometimes called biszmulation.

Weak Commutativity: Even weaker than
(a) or (b), we require for every ¢ € Qs

(pof)lg) = (fop)g) only if both sides are
well defined.

Although total program correctness is stronger than
partial program correctness, it turns out that pre-
serving total correctness does not imply preserving
partial correctness nor vice versa.

The weak commutativity as defined in (d) actu-
ally is too weak. We cannot conclude the correct-
ness of the result of a regularly terminating ma-
chine program execution without additionally prov-
ing the well-definedness of the corresponding source
program with respect to the same input data. And,
moreover, we also cannot conclude the regular ter-
mination of the target program from proving the
well-definedness of the source program. The latter
makes up the essential difference of (d) to the notion
defined in (b). Since (b) in addition to (d) preserves
regular termination behavior of the source program,
(b) is very useful in the area of e.g. safety critical
embedded control or reactive systems where irreg-
ular program termination or non-termination could
be disastrous because of the absence of a safe error
state. Hoare [8] and Sampaio [17] for instance use

(b), i.e. the preservation of total program correct-
ness. The programmer has to prove regular termi-
nation, which then is guaranteed to be preserved.
In many cases, the compiler may produce more ef-
ficient target code, e.g. it may omit range or type
checks. However, since the target program is allowed
to terminate regularly producing incorrect results in
cases where the source program is undefined, a user’s
proof of total program correctness is required if a
correct compiler in the sense of (b) shall be used.

Since regular termination of the source program
implies regular termination of the target program,
(b) actually preserves total program correctness:
Let f be totally correct with respect to P,) and
let us start f. in state s € p~1(P). Then p(s) € P,
f(p(s)) is defined and so is p(f.(s)) with the same
result. Since @ holds for f(p(s)) also p~1(@Q) holds
for f.(s).

The correctness notion in the sense of (a) allows
target programs to be less defined than source pro-
grams, for instance because of limitations of machine
resources. A target program may irregularly abort,
even if the source program is well-defined. We con-
sider that not harmful; above all| the target program
is not allowed to deceive the user about the quality
of results. If a regular result is given, it is guaran-
teed to be the correct one (or one of the correct ones
in the case of nondeterminism or non-injectivity of
p). This correctness notion is adequate if partial
correctness of programs suffices. It does not stress
the user to give cumbersome proofs of regular ter-
mination of application programs, if not required.

Since regular termination of the target program
implies regular termination of the source program
with the same result, partial program correctness is
preserved (if p is total): Let f be partially correct
with respect to P and @ and let f.(s.) be defined
such that p=!(P) holds for s.. Then p(f.(s.)) is
defined and equal to f(p(s.)). Hence @ holds for

f(p(s.)) and p=1(Q) holds for f.(s.).

2.3 Partial Correctness of Compilers

Let us now consider the compiler itself: The prop-
erty that it preserves (partial and/or total) program
correctness, is a partial correctness property of the
compiler: If the source program is well formed, and
if the compiler manages to generate a target pro-
gram, then the target program shall be as correct as
the source program. The same partial correctness
property should hold for the compiler implementa-
tion, of course. Thus, preserving partial correctness
(a) is sufficient for the compiler used to implement
the compiler itself, even if the implemented compiler

shall be correct in one of the other senses. A correct
compiler in the sense of (b) or (d) would not help un-
less we additionally prove regular termination prop-
erties for the compiler program. A lot of unnecessary
proof work eventually would lead away from the cen-
tral work necessary for establishing both compiling
and compiler implementation correctness for a first
compiler.

Moreover, in our initial approach to compiler im-
plementation verification (cf. section 3), the com-
piler implementation will be bootstrapped with the
compiler itself. Therefore it is convenient and suf-
ficient to use (a) as the correctness notion for the
compiling specification.

Preserving partial program correctness is not the
ultimate compiler correctness notion. QOur major
goal is to make our techniques and methods practi-
cally usable for compiling and compiler implementa-
tion verification projects based on stronger or differ-
ent compiler correctness notions. Compilers should
be correct in a stronger sense, e.g. as defined at the
end of section 2.1. Note, however, that for the con-
struction of a first full correct compiler implementa-
tion we only need a rigorous mathematical proof of
partial correctness preservation.

3 Implementation Verification

In order to prove full compiler correctness as rig-
orously as required to assure the correctness of
the complete development process for safety critical
software, we have to carefully verify both the compil-
ing specification (cf. section 2) and the compiler im-
plementation. After refining the compiling specifica-
tion into a program formulated in high level compiler
implementation language, the compiler program it-
self has to be transformed into a binary machine
program. An implementation correctness proof is
necessary.

This fact has first been severely stressed by
J Moore [13]. Unfortunately, the literature on com-
piler verification gives no sufficient solution so far.
No fully reliable realistic compiler implementation is
available, since this agenda has not been completely
worked out for any existing compiler or program-
ming language implementation. Compilers and,
hence, executed high level programs are not enough
trustworthy nowadays. Instead, the correctness or
reliability of safety critical software 1s approached by
more or less complete semantical binary code inspec-
tion, partly using unverified de-compilation tools.

3.1 Bootstrapping

We have chosen source and implementation lan-
guage to be an appropriate subset ComLisp of
CoMMONLISP in order to achieve a first proved cor-
rect compiler implementation. Moreover, we will
implement the compiler on its own target machine.
A specialized bootstrapping technique can be used in
order to generate the machine code implementation
of the compiler using an unverified CoOMMONLISP
system. We rigorously double check the result to
be correctly generated. The result has been gener-
ated according to our own proved correct compiling
specification and hence we fully know what it should
look like.

Figure 3 sketches our bootstrapping and double
checking technique in the simplified case of only
one intermediate language, e.g. C. Compiling ver-
ification and specification refinement yield verified
compiler programs from CoMLisP to C and from C
to the machine language ML, written in CoMmLisP.
The compiler from CoMLisP to ML in ML will be
generated in five steps:

1. We use an unverified COMMONLISP system to
run the compiler from CoMLIsP to C, compiling the
compiler from C to ML to C. The result is obvi-
ously not fully verified (indicated by hatching the
diagrams in figure 3). It depends on the unverified
CoMMONLiIsp system. We double-check the result
by hand in a mathematical style to be generated
as specified. The mathematical correctness of this
special test result then no longer depends on the
CoMMONLIsP-system.

2. The correct implementation of the compiler
from C to ML in ML proceeds exactly the same.
It is the initial verified compiler machine program
on hardware (fat lined diagrams represent proved
correct compiler programs).

3. At the front end, we get the verified compiler
program from CoMLisp to C written in C analo-
gously.

4. We assume hardware to work correctly. There-
fore we now can correctly bootstrap the compiler
from CoMLisP to C in ML on the machine. No
further manual proof work is necessary.

5. The sequential composition of the two machine
programs yields the desired proved correct compiler
implementation (if compiling specification and its
refinement to CoMLIsP have been proved correct

beforehand).

If we generalize the setting to incorporate even
more, say n, intermediate languages or program
representations, figure 3 above will generalize to a

compiling specification, its :
verification and correct refinement |
in high level ComLisp

verification of compiler implementation
in lower level C and ML by double
checking the results

C — ML C — ML C — ML C — ML C — ML
Com | Com
. p — C C Double C C — ML| ML Double ML
= T
Com Com
Lisp Lisp
(Commol |Common|
Lisp Lisp
i1 Step 2. Step
Com Com Com Com
Lisp - C Lisp C Lisp C Lisp g C c — M
Com | Com
Lip|Lip =~ C|C clc — mML|mL ML
Com
Lisp M %ﬁ/
(C
OSIS‘SO M
' Com
{3 step 4 Step Lisp — ML
| ML
compiler implementation
by trusted machine
execution 5. Step

Figure 3: Implementation Verification Using Bootstrapping and Double-Checking the Results

(n+ 1) x (n 4+ 2) matrix of different compiler parts
written down in different representations. It will im-
mediately become clear, that manual double check-
ing the results is necessary only in the upper left tri-
angle of that diagram, whereas proved correct ma-
chine generation will generate the remaining part.
Note that the compilers used for machine code gen-
eration are now both correctly specified and proved
to be correctly implemented.

A reasonable choice of intermediate representa-
tions will modularize the manual double checks into
smaller parts, and, even more important, it will
separate crucial compilation steps from each other
which also makes every single double checking proof
step easier. Since it i1s especially annoying to dou-
ble check lower level code and especially binary ma-
chine code, reasonable strategy should be to do small
translation steps towards the end of compiling.

In a first attempt we have successfully run the
bootstrap using three intermediate languages: The
first one is an abstract high level stack intermediate
language; functions (and procedures) with parame-
ters are compiled to parameterless procedures. The
second one is an abstract small subset of a strongly
typed imperative language like C used as an abstract
machine language. This language essentially is the
target of data representation for dynamic Lisp data.
Then, in order to flatten control structure into lin-
ear code with jumps, we use an assembler target

language. For the last step, of course, an assem-
bler program is constructed to finally generate bi-
nary machine code.

Our proceeding is an interesting application of a
method of J. B. Goodenough and S. Gerhart [6],
who proposed to prove a program property P as the
consequence of finite testing results together with a
substitute property P’.

Once having completely worked off this pro-
gramme, including the compiling verification for the
different compilation steps, the proved correct com-
piler for the basic implementation language Com-
Lisp easily can be used in order to correctly boot-
strap new or improved (e.g. optimizing) compiler im-
plementations even for different hardware platforms.
CoMLISP can also be used to implement compiler
construction tools like code generator or parser gen-
erators. No further implementation verification 1is
needed.

4 Theorem Prover Support

In order to manage the large complexity of compiler
correctness proof work, mechanical proof support is
absolutely necessary. We use the specification and
verification system PVS [16]. The higher-order spec-
ification language with a rich typing system, the set
of tools for creating, analyzing, modifying and docu-
menting theories and proofs, and the powerful inter-

active Gentzen-style theorem prover adequately sup-
port formalization and verification. PVS provides a
set of elementary proof steps which can be combined
into efficient proof strategies enabling more readable
proofs, closer to those performed by hand. We will
give some examples how PVS can adequately sup-
port compiling and compiler implementation verifi-
cation:

If both source and target language are defined
operationally (e.g. by means of evolving algebras)
and formalized as abstract machines in the PVS
language, proof strategies can carry out simulation
proofs nearly automatically. They incorporate ef-
ficient rewritings, decision procedures and proposi-
tional simplifications by means of binary decision di-
agrams (BDDs). The verification process is divided
into several refinement steps. Each step proves the
correspondence between two abstract machine state
traces w.r.t. a retrieve function p (cf. section 2.1).
Usually only some visible machine states correspond
to abstract (source) states, i.e. the machines run at
different rates.

In the PrRoCo0S approach the source language
is embedded in a refinement algebra. The seman-
tics of the target language is expressed by an inter-
preter written in the source language. Refinement
laws are applied to show that the interpreted target
code is a correct refinement (implementation) of the
source code. We have developed PVS proof strate-
gies which almost enable to carry out these proofs
as done by hand, hiding several tedious PVS proof
steps.

PVS can also provide support for reasoning about
machine programs. Based on a formal operational
machine model, we can prove properties like correct-
ness assertions for the Transputer boot protocol, us-
ing symbolic execution techniques provided in proof
strategies in a similar way as described above.

The goal of language and machine formalizations
in PVS is to abstract from concrete languages and
machines, to factor out common aspects and to iden-
tify language or architecture specific parts. This is
directly supported by parameterized PVS theories.
Parameters can be constrained by means of assump-
tions, theories can be instantiated by concrete ma-
chines; a proof is required that the assumptions are
satisfied. This method also facilitates the augmenta-
tion of extra features of source and target languages.
The generic parts of specifications and proofs can be
reused.

To illustrate the method of generic specifications,
we have developed an abstract scheme for verifying
local optimizations on object code, and have proved
correct a set of optimizations for different architec-

tures using defined proof strategies [5].

The long term goal is to construct a library of
reusable generic PVS theories for the development
of correct compilers.

Related Work

In the so far largest project on the formal verification
of compiling processes at Computational Logic Inc.
(CLInc, Austin, Texas) the Boyer-Moore-prover is
used to construct and verify a stack of components
(CLInc stack) covering the compilation of the high
level imperative language Micro Gypsy down to the
hardware processor FM8502. This imperative lan-
guage is first compiled to assembler code [18] and
further to machine code [13]. Compiler and assem-
bler are specified and verified with respect to source
and target language semantics. In [13] J S. Moore
formulated the necessity of also proving the imple-
mentation correct. However, even in the CLInc
project this gap has not been closed so far. The
Boyer-Moore-prover, both used to verify and to ex-
ecute the compiler, has not completely been verified
so far, neither as Lisp program nor in its binary form
executed on the machine.

More recently, papers like [3] [4] or the VLisp
project reports [15] [7] also express the necessity
of proving the compiler implementation correct. In
the VLisp project, however, this work has explicitly
been left out, and Paul Curzon [4] argues that the
direct theorem prover based execution of the compil-
ing specification should be satisfactory to convince
the user of implementation correctness. The imple-
mentation gets even more trustworthy, if, as an addi-
tional test, it has been generated independently us-
ing a different execution method like bootstrapping,
and the two result are equal. Although of eminent
practical use, however, in our opinion this argument
leaves mathematical correctness of the implementa-
tion open. The correctness depends on the correct-
ness of the theorem prover and its implementation.

Acknowledgements

We thank our colleagues in the PROCO0S project, in
particular Martin Franzle, Burghard v. Karger and
Markus Muller-Olm. Without the background of
the PROCOS project work we would not be able to
express both differences and relationships between
different compiler correctness notions in the current
form. We also thank J S. Moore of Computational
Logic Inc. He gave the original motivation to more
deeply think about the proof work necessary for a
rigorous compiler implementation correctness proof.

References

(1]

[10]

[11]

[12]

[13]

[14]

Dines Bjgrner, Hans Langmaack, and C.A.R.
Hoare, editors. Provably Correct Systems — Pro-
CoS, ESPRIT BRA 3104. Dep. of Computer Sci-
ence, Techn. Univ. of Denmark, 1993. Monograph,
Final Deliverable.

Dines Bjgrner. Final Report ProCoS - Provably
Correct Systems, ESPRIT BRA 3104. Dep. of Com-
puter Science, Techn. Univ. of Denmark, 1991.

Paul Curzon. Deriving Correctness Properties of
Compiled Code. Formal Methods in System Design,
3:83-115, August 1993.

The Verified Compilation of Vista
Programs. Internal Report, Computer Laboratory,
University of Cambridge, January 1994.

Axel Dold, F.W. von Henke, H. Pfeifer,
H. Rue. A Generic Specification for Verify-
ing Peephole Optimizations. Ulmer Informatik-
Berichte 95-14, Universitat Ulm, 1995.

J.B. Goodenough and S.L. Gerhart. Toward a The-
ory of Test Data Selection. SIGPLAN Notices,
10(6):493-510, June 1975.

J. D. Guttman, L. G. Monk, J. D. Ramsdell, W. M.
Farmer, and V. Swarup. A Guide to VLisp, A Veri-
fied Programming L.anguage Implementation. Tech-
nical Report M92B091, The MITRE Corporation,
Bedford, MA, September 1992.

C. A. R. Hoare. Refinement algebra proves cor-
rectness of compiling specifications. In C.C. Mor-
gan and J.C.P. Woodcock, editors, 3rd Refinement
Workshop, pages 33—48. Springer-Verlag, 1991.

C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal
Form Approach to Compiler Design. Acta Infor-
matica, 30:701-739, 1993.

Jeffrey J. Joyce. Totally Verified Systems: Link-
ing Verified Software to Verified Hardware. In
M. Leeser and G. Brown, editors, Hardware Spec-
tfication, Verification and Synthesis: Mathematical
Aspects, volume 408 of Lecture Notes in Computer
Science, 1990.

Burghard v. Karger. Algebraic Compiler Verifica-
tion. Internal report, Oxford University Computing
Laboratory, October 1993.

J. McCarthy and J.A. Painter. Correctness of
a compiler for arithmetical expressions. In J.T.
Schwartz, editor, Proceedings of a Symposium in
Applied Mathematics, 19, Mathematical Aspects of
Computer Science. American Mathematical Soci-
ety, 1967.

J S. Moore. Piton: A verified assembly level lan-
guage. Technical Report 22, Comp. Logic Inc,
Austin, Texas, 1988.

Markus Miller-Olm. An Exercise in Compiler Ver-
ification. Internal report, CS Department, Univer-
sity of Kiel, 1995.

Paul Curzon.

and

[15]

[16]

[17]

[18]

Dino P. Oliva and Mitchell Wand. A Verified Com-
piler for Pure PreScheme. Technical Report NU-
CCS-92-5, Northeastern University College of Com-
puter Science, Northeastern University, February
1992.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A
Prototype Verification System. In Deepak Kapur,
editor, Proceedings 11th International Conference
on Automated Deduction CADE, volume 607 of Lec-
ture Notes in Artificial Intelligence, pages T48-752,
Saratoga, NY, October 1992. Springer-Verlag.

Augusto Sampaio. An Algebraic Approach to Com-
ptler Design. PhD thesis, Oxford University Com-
puting Laboratory, Programming Research Group,
October 1993. Technical Monograph PRG-110, Ox-
ford University Computing Laboratory.

W.D. Young. A verified code generator for a subset
of gypsy. Technical Report 33, Comp. Logic. Inc.,
Austin, Texas, 1988.

