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Abstract. Clock synchronization algorithms play a crucial role in a vari-

ety of fault-tolerant distributed architectures. Although those algorithms

are similar in their basic structure, the particular designs di�er consid-

erably, for instance in the way clock adjustments are computed. This

paper develops a formal generic theory of clock synchronization algo-

rithms which extracts the commonalities of speci�c algorithms and their

correctness arguments; this generalizes previous work by Shankar and

Miner by covering non-averaging adjustment functions, in addition to

averaging algorithms. The generic theory is presented as a set of param-

eterized PVS theories, stating the general assumptions on parameters

and demonstrating the veri�cation of generic clock synchronization. The

generic theory is then specialized to the class of algorithms using aver-

aging functions, yielding a theory that corresponds to those of Shankar

and Miner. As examples of the veri�cation of concrete, published algo-

rithms, the formal veri�cation of an instance of an averaging algorithms

(by Welch and Lynch [3]) and of a non-averaging algorithm (by Srikanth

and Toueg [14]) is discussed.

1 Introduction

Clock synchronization is one of the central elements of distributed dependable

real-time systems. Many mechanisms for realizing dependability properties in

distributed real-time systems rely on the fact that the di�erent processes or

computing `nodes' can be synchronized tightly enough for satisfying the real-

time requirements of the system. A major concern is the ability to synchronize

the local clocks of the di�erent nodes in such a way that the readings of any two

local clocks di�er by no more than a small �xed amount. The synchronization

algorithms for achieving this are required to compensate for the drift of physical

clocks. Furthermore, they must be able to tolerate di�erent kinds of failures,

so that even if a limited number of processes fail the clocks of the remaining,

properly functioning processes maintain the required synchrony.

Clock synchronization is thus a basic service that warrants careful analysis.

The case for applying formal methods, including mechanized theorem proving,

?

This work has been supported in part by ESPRIT LTR Project 20072 \Design for

Validation (DeVa)" and ESPRIT Project 20716 \GUARDS'.



to this task has been made in the past (cf. [10]; see also [6] for a summary of

previous work). Reasoning about fault-tolerant clock synchronization algorithms

is inherently di�cult because of the possibility of subtle interactions involving

failed components. A proof with the assistance of a mechanized proof system

thus o�ers a higher degree of assurance that the veri�cation of a claimed prop-

erty of a synchronization algorithm is indeed correct. However, since such proof

e�orts require substantial skill and e�ort, it appears to be very desirable to have

available a reusable formal framework that assists in verifying the speci�c clock

synchronization algorithms used in particular practically relevant contexts, such

as [8,1,2].

Clocks are synchronized by the periodical application of an adjustment to

the local clock value. The required bound between di�erent clock values can

be reached either by variation of the re-synchronization period length or by

variation of the amount of adjustment. Clock synchronization algorithms can be

classi�ed as either averaging or non-averaging.Averaging algorithms synchronize

clocks by variation of clock adjustments at regualr intervals. In contrast, non-

averaging algorithms use a �xed clock adjustment and a varying period between

clock adjustments.

Schneider [11] was the �rst to observe that correctness of averaging algo-

rithms depends on common general assumptions about the applied convergence

function. Subsequently, Shankar [13] veri�ed Schneider's proof with the help of

the EHDM system, a predecessor of the PVS veri�cation system [7,6,5]. Miner

[4] was able to relax some of the assumptions and extended the reasoning about

recovery from transient faults. The theories developed by Shankar and Miner

allow for a generic veri�cation of algorithms that use an averaging function.

The formalization of these clock synchronization algorithms takes a convergence

function as a generic parameter; the underlying algorithm and its correctness

argument remain �xed. In contrast, non-averaging algorithms like the one pre-

sented in [14] do not �t Miner's and Shankar's theories because they use a

di�erent algorithm and do not rely on a convergence function.

In this paper, we report on the formal analysis of a broader class of clock syn-

chronization algorithms than those formally analyzed before. Our original start-

ing point was a direct formalization of the non-averaging algorithm of Srikanth

and Toueg [14] and of the averaging algorithm of Welch and Lynch [3]. Several

commonalities and similarities between both types of algorithms became appar-

ent, at the level of basic concepts (faulty/non-faulty processing nodes, interval

clocks, rounds etc.) as well as at the abstract level of correctness arguments.

This led to the development of a set of PVS theories, including a generic theory

that generalizes the previous formalization of averaging clock synchronization

algorithms by covering non-averaging algorithms, in addition to the more spe-

cialized theory of Shankar and Miner that deals with averaging algorithms. We

regard as original contributions of this paper this more general theory and, as

an instance of this theory, the formal, mechanically checked veri�cation of the

algorithm of Srikanth and Toueg [14], which, to our knowledge, is the �rst and

so far only one for a non-averaging clock synchronization algorithm.



The remainder of this paper is organized as follows. The next section summa-

rizes the basic concepts and the overall structure. Section 3 presents the generic

theory and its specialization for the averaging case; Section 4 briey describes the

instantiation to concrete algorithms. The concluding section gives a summary

and discusses ongoing work.

2 Overview

Clock synchronization algorithms operate on a cluster of nodes. Each node main-

tains a physical clock, typically a discrete counter that is incremented periodi-

cally; the logical clock of a node indicates its logical time, which is computed by

adding an adjustment to its physical clock. The aim of clock synchronization is

to keep the individual logical clocks of the nodes su�ciently well synchronized

among each other (agreement). This is achieved by each node locally running an

implementation of the clock synchronization algorithm and thereby periodically

adjusting the clock. (We do not discuss accuracy, the second important property,

in this paper.)

There are several ways to determine the clock adjustment. Averaging al-

gorithms read the clock values of all or some of the nodes in the cluster to be

synchronized. Then they calculate the adjustment from an average of all or some

of the clock values read [11]. Non-averaging algorithms synchronize the clocks

upon a special event, such as upon receipt of an explicit synchronization message

on the network [14].
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Fig. 1. Theory dependencies

The nodes communicate through an interconnection network. Each pair of

nodes is able to exchange messages either directly or indirectly through remote

nodes. Depending on the algorithm, di�erent interconnection network architec-

tures may be used. Furthermore, the network may or may not loose or fake

messages. The general theories make no assumptions about the underlying net-

work. This is left to the instances which formalize concrete algorithms.



The PVS formalization is structured into several theories. Each theory for-

malizes a certain concept and states the relevant theorems. Figure 1 shows the

most important theories and their relationships. The auxiliary theories are not

considered further in this paper; details can be found in the technical report that

contains the full PVS speci�cations [12].

The PVS theories fall into three groups. The �rst group (imain, iclock , pclock ,

etc.) formalizes the basic concepts and theorems common to all synchronization

algorithms. In theory imain, the central agreement property is stated and proved

from fairly general assumptions. The proof is rather abstract and relies essentially

on geometrical reasoning.

The second group of theories, consisting of PVS theory amain and auxil-

iary theories, formalizes averaging algorithms as a specialization of imain. Here,

the central generic parameter is the convergence function, and a simpler set

of assumptions is essentially su�cient to derive the agreement property. The

assumptions about the convergence function are equivalent to those given by

Miner [4]. The agreement theorem is obtained by instantiating the generic the-

ory imain; this requires demonstrating that the generic assumptions of imain

are satis�ed by the actual parameters { which in turn is achieved by derivation

from the assumptions on the convergence function.

The �nal theory formalizes the algorithm of Srikanth and Toueg [14] as an

example of a non-averaging algorithm. Compared to the journal-level proof in

ref. [14] which reasons about sets of nodes, our formulation of the lemmas is more

appropriate for mechanized reasoning (e.g. by decision procedures) and enables

PVS to �nd the required proofs largely automatically.

The validation of a concrete synchronization algorithm proceeds in two steps.

First, the algorithm must be formalized; then an instance of the assumptions of

one of the generic theories is derived from that formalization. For an averag-

ing algorithm it is su�cient to provide an averaging function that satis�es the

assumptions of theory amain; for a non-averaging algorithm one has to supply

proofs for the assumptions of theory imain.

3 Generic Theories

Some PVS types and de�nitions are common to all theories. The type nodeid is

the set of nodes that form the cluster. The predicate faulty formalizes the notion

of faulty nodes. A node is faulty if it deviates from the algorithm or if its physical

clock drifts too far from real time. Re-synchronization rounds are represented

by the type round , which is equivalent to the type of natural numbers.

3.1 Clock De�nitions

Each node maintains a physical clock which marks the passage of time. Real

time is assumed to correspond to a Newtonian time frame. A physical clock

typically is a discrete counter which is incremented periodically. PC

i

(t) is the

physical clock value of node i at real time t . Clocks are modeled as functions



from realtime to localtime, where the type localtime is isomorphic to the natural

numbers. The assumption bounded drift reects the expected physical properties

of the system. The rate at which a non-faulty clock can drift from real time is

bounded by a small positive constant �:

b(t

2

� t

1

)=(1 + �)c � PC

i

(t

2

)� PC

i

(t

1

) � d(t

2

� t

1

)(1 + �)e

To simplify the presentation and analysis, the standard convention of interval

clocks is adopted. Each of these interval clocks on a node is indexed by the

number of rounds since the beginning of the run. At the r -th synchronization a

node i starts a new interval clock, denoted by IC

r

i

(t). These interval clocks are

derived from the physical clock by adding a round-speci�c adjustment.
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Fig. 2. imain constants

The symbol t

r

i

denotes the real-time instant at which the interval clock IC

r

i

starts. For every round there exists a �rst and a last node which start their new

interval clocks. rbeg

r

and rend

r

are the minimum respectively the maximum of

all t

r

i

. At real time rbeg

r

the �rst node starts a new interval clock, while at real

time rend

r

the last node does so. The discontinuously re-synchronizing interval

clocks can be easily transformed into a single continuous logical clock. This can

be achieved by spreading out each adjustment over the next re-synchronization



period. Several possible schemes for this are being discussed in ref. [14]; however,

none of those has been formalized so far.

3.2 General Agreement

In theory imain, the main agreement theorem is stated and proved from the

assumptions on the generic parameters. The parameters are various upper and

lower bounds for time intervals. Figure 2 graphically illustrates the relationships

among bounds and clock values.
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The �rst assumption (rend rbeg upper bound) constrains the length of the

re-synchronization periods. Each correct node starts its r -th clock not later than

S

max

after the �rst one does so. The algorithm determines the point in time at

which the next re-synchronization round begins. For imain an upper bound L

max

for the period between re-synchronizations is su�cient (rend rbeg upper bound).

The inherent ordering of re-synchronization periods with respect to real time

is reected by assumption rend rend lowerbound . We assume that all logical

clocks initially start at most a positive number D

min

apart (init assumption).



Assumption start clocks bounded is a precision enhancement condition: if all

non-faulty clocks are at most D

max

apart at the end of the previous round, the

new clocks are started within the bound D

min

.

The assumptions given in theory imain are su�cient to prove agreement

of interval clocks. The proof is inductive on the round r . From the induction

hypothesis that all non-faulty nodes were su�ciently synchronized during the

previous round and the assumptions, one has to show synchronization for the

current round. By the induction principle it follows that all non-faulty nodes are

synchronized during all rounds. The induction step builds on a lemma (cf. Fig. 2)

which states that if non-faulty clocks were at most D

max

apart at the end of the

previous round then they will also be at most D

max

apart at the end of the

current round. This lemma could be proved by the PVS system automatically

without user interaction.

3.3 Averaging Algorithms

The generic theory of averaging algorithms is an instance of theory imain. The

agreement theorem is inherited from imain by importing an aproporiate in-

stance. An averaging algorithm uses a convergence function cfn to calculate the

adjustment for the next round. cfn is a parameter of amain. The averaging al-

gorithm assumes a mechanism to read clock values of remote nodes. �

r

i

is the

vector of all estimates at node i during round r . � and � are functions which

calculate upper bounds for the convergence function.

Assumptions start clock assumption and bound on read error reect prop-

erties of the averaging algorithm. Whenever the local clock value is a multiple

of the length R of a round, the adjustment is recalculated and applied. Even

if the value of a remote clock can not be observed directly, the communication

protocol allows a fairly accurate estimate (bound on read error).

Two de�nitions simplify the notation of further assumptions. read1(r ; i ;Y )

constrains the di�erence between clock readings at a particular node. Clock

readings on di�erent nodes are constrained by read2(r ; i ; j ;X ).

The next assumptions, describing properties of the convergence function cfn,

are Miner's [4] conditions 3, 4 and 5, except for minor notational di�erences.

precision enhancement is a formalization of the concept that, after application of

the convergence function, clocks should be close together. accuracy preservation

formalizes the notion that their should be a bound on the amount of correction

applied in any synchronization interval. translation invariance describes the in-

sensitivity of the convergence function on absolute values of its arguments. More

precisely, adding X to the result of the convergence function should be the same

as adding X to each of the clock readings used in calculating the convergence

function. The agreement theorem is obtained by importing theory imain.

4 Algorithm Instances

Two concrete algorithms serve as examples. The �rst one is the non-averaging

algorithm described in [14]. The second is an averaging algorithm described



in [3]. For the instantiation of imain and amain, respectively, concrete values

for the required functions and constants must be supplied. The assumptions of

imain and amain must be derived from the formal description of the algorithms.

amain[: : : ; cfn; �(X ); �(X ;Y ); �; �; : : :] : theory

begin

assuming

% Less signi�cant assumptions and parameters

% and imports of auxiliary theories are omitted.

: : :
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initialization : assumption
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endassuming

: : :

importing imain[: : : ; �(� + 2�)=(2�R + �); �(� + 2�);

2�R + �; (1 + �)R + �; : : :]

end amain

4.1 Srikanth-Toueg Algorithm

The clock synchronization algorithm of Srikanth and Toueg [14] relies on au-

thenticated synchronization messages and broadcasting. During every round, a

synchronization message (round r) is processed. Whenever the local clock is a

multiple of R, a node prepares a (round r) message, signs it, and broadcasts it

on the net. Concurrently, each node accepts and processes messages originat-

ing from remote nodes. Whenever a node has received at least f + 1 (round r)

messages, it starts a new clock and relays all f + 1 messages to all other nodes.



Because both activities run concurrently, a node may start a new clock before

it becomes ready. Roughly speaking, this algorithm leads to a synchronization

with the fastest logical clock.

This algorithm tolerates at most f faulty nodes if the number n of all nodes

is larger than 2f + 1. A non-faulty node which has received more than f + 1

messages has received at least one synchronization message originated from a

non-faulty node; even if there where f faulty messages on the net. Relaying

all received messages ensures that all non-faulty nodes start there new interval

clocks. For details of the algorithm see [14] and the formalization in [12].

The agreement property is obtained by instantiating theory imain with

the following concrete values: bt

del

(1 + �)c for D

min

, bS

max
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min

+

bS

max

+ L
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, t

del

for S

max

and (P ��)(1+ �)

for L

max

. Because of space limitation, only the proof of rend rbeg upperbound

is sketched. The �rst non-faulty node starts its clock at rbeg

r

. At this point in

time the node has received f + 1 messages. Since it relays all these messages,

every correct node receives at least f + 1 messages and starts its clock by time

rbeg

r

+ t

del

, where t

del

is the maximal network delay. Thus rend

r

� rbeg

r

� t

del

.

The other assumptions are proved in a similar manner.

4.2 Averaging Instance: Fault-Tolerant Midpoint

Agreement for the Lynch/Welch algorithm is attained by instanting theory

amain with concrete parameters: (

�

�

(f+1)

+ �

n�f

�

)=2 for cfn, the identity func-

tion for �(X ) and Y =2+X for �(X ;Y ). The proofs of the instantiated assump-

tions precision enhancement , accuracy preservation and translation invariance

where essentially follow Miner's [4]. Details can be found in [12].

5 Conclusion

This paper has describes PVS theories that give a uni�ed framework for proving

agreement for averaging and non-averaging clock synchronization algorithms.

Agreement is proved in the general theory from a set of generic assumptions.

The general theory has been specialized to a theory for averaging algorithms

which inherits the agreement theorem from the general theory. Two concrete

algorithms [3,14] were given a of the main theories. A full report [12], including

the complete PVS speci�cations, will be made available online.

There are several directions in which the current work can be expanded.

The present formalization does not consider initialization and re-integration of

clocks. Also, further speci�c clock synchronization algorithms and convergence

functions should be examined as to how well they �t into the general framework

presented here. We are currently working on �tting the clock synchronization of

the Time-Triggered Architecture (TTA) [1,2] into the framework; this requires

a slight modi�cation of the theories because of the di�erent way in which the

clock values of other nodes are gathered. A further direction of current work is

an examination of how the clock synchronization theories can be combined with



Rushby's general approach to verifying fault-tolerant time-triggered systems [9],

which is based on, and assumes, synchronized clocks.
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