Towards an ontology for substances and related
actions

Bjorn Hofling!, Thorsten Liebig?, Dietmar Rosner!, and Lars Webel!

' Otto-von-Guericke-Universitit Magdeburg,
Institut fiir Wissens— und Sprachverarbeitung,
P.O.Box 41 20, D-39016 Magdeburg, Germany,

(hoefling,roesner,webel)@iws.cs.uni-magdeburg.de
2 Abteilung Kiinstliche Intelligenz, Fakultit fiir Informatik,
Universitdt Ulm, D-89069 Ulm, Germany
liebig@ki.informatik.uni-ulm.de *

Abstract. Modelling substances in knowledge representation has to be
different from the treatment of discrete objects. For example liquids need
a different approach to individuation. We propose an ontology which rep-
resents physical states and other properties of substances in a uniform
way. Based on this we describe how to model a hierarchy of actions that
can deal with such substances. For these actions a general distinction
is made with respect to the type of properties the actions are changing.
Further we describe an implementation in description logic allowing espe-
cially the definition of actions by specialization of more abstract actions
and the inheritance of pre- and postconditions.

1 Introduction

When knowledge in a technical application area is made explicit, i.e. represented
formally in a computer readable way, substances often play an important role,
e.g. to have a detailed model of the material a technical part is made of, or
the substances which are necessary for its use. It would be helpful to have this
knowledge available in a sharable and reusable way suitable for different pur-
poses. One way to do this is by specifying an ontology for this domain. Such an
explicit specification of a conceptualization ([Gru95]) helps to clarify the mean-
ing of relevant entities in the domain and therefore allows a shared understanding
between different applications.

We are modelling knowledge about products, e.g. for the automatic gen-
eration of multilingual technical documentation from a language independent
representation of the relevant domain knowledge. For some technical devices
the relevant domain knowledge may be completely represented through a model
comprising the resp. object, their parts and actions for manipulating those parts
(e.g. checking, replacing). In this case modelling discrete objects is sufficient.

* Part of this author’s contribution was funded by a PhD scholarschip of the program
“Graduiertenforderung des Landes Sachsen-Anhalt”.

But in many realistic applications we have to adequately model substances that
are part of a product and play a functional role there (e.g. engine oil, coolant,
...). In addition related maintenance actions operating with these substances
need to be modeled (e.g. checking an appropriate substance level, adding some
fluid, replacing a fluid, ...).

A traditional way of representing substances is as properties of concrete ob-
jects. For well delimited objects made of solid material this might be a sufficient
approach. But it will run into problems when trying to take into account the
physical state of liquids. For this state one has to decide which amount of a
substance may be called an instance or object, because every part of a liquid
also fulfills the necessary and sufficient conditions for being an object. This in-
dividuation problem has to be handled in a uniform way in order to be able to
represent all kinds of substances independent of their physical state or other
properties in a single ontology.

As objects and their substances may change some of their properties over
time, like e.g. the physical state as a consequence of a rising or lowering of
temperature, it becomes also necessary to decide upon the behaviour of the
individuated substances. Some of the questions that arise include: What happens
to two substances when they are mixed together? What happens when a liquid is
distributed over several containers? These questions belong to a general category
of the modelling of actions which are related to substances.

We should clarify the role of our application in the design decisions which
have been made in the ontology: Our goal, the automatic generation of multilin-
gual technical documentation, requires a language independent representation of
the domain knowledge (due to multilinguality) and reusability via specialization
of general concepts (in order to be able to adapt the generated documents to
different kinds of users, levels of detail or discourse situations). In addition the
qualitative simulation of the represented actions is a requirement, as it allows
the testing of feasibility and completeness of sequences of actions and can even
lead to the automatic generation of warning instructions when possible danger-
ous events are detected. Nevertheless we believe that our approach is a general
one which can be reused in cases where the modelling of non-discrete objects
and related actions is necessary.

The paper is structured as follows: Section 2 analyses in more detail the do-
main of substances and related actions. Originating from this analysis a toplevel
ontology for substances is presented in section 3 which has been implemented
in description logic. Next, a taxonomy for actions related to this ontology is
introduced in section 4. The consequences which follow for the implementation
of action hierarchies in description logics are the topic of section 5. The paper
concludes with remarks on related work, a summary and outlook.

2 Domain analysis

A substance can be defined as a physical material from which something is made
or which has a discrete existence. To illustrate major problems in the modelling
of substances we give a simple example: A cup of water, standing in front of
someone. What are the substances which are of importance in this situation and
how should the be represented? The object referred to by the first noun ’cup’ is
made of a certain material (e.g. china), which could for example be represented
as a property of the instance ’cup’. The second noun 'water’ directly describes
some amount of a substance. Is this to be modelled as an instance as well?

In linguistics a disctinction is made between count expressions, which refer
to a discrete, well-delineated group of entities and mass ezpressions, which refer
to something without making it explicit how its referent is to be individuated or
divided into objects [PS89]. Mass and count expressions are in most cases nouns,
but some authors classify also other expressions (like verbs) as count or mass
expressions. Even if in natural language the type of referent of mass expressions
can be left unspecified, for explicit representations in ontologies or knowledge
bases one has to solve this individuation problem. For the cup we can say there
is a cup-object, but can we say that there is a water-object (i.e. the amount
of water in the cup)? Such a water-object is a fundamentally different kind of
object because any part of it is also a water-object, which is not the case for the
cup.

To create an ontology and to be able to distinguish between individuals
and their categories we have to examine properties of substances. The question
arises whether a property belongs to the material or the object made of the
material. The following definitions manifest this distinction ([RN95]): Intrinsic
properties belong to the very substance of the object rather than to the object as
a whole (examples: density, boiling point, composition of its chemical elements).
Extrinsic properties are specific for an indivualised object (examples: volume,
weight, shape). Intrinsic properties remain the same for every part of an object
because it is made of the same material. On the other hand extrinsic properties
are not retained under subdivision.

In the following we will discuss only those properties of substances which we
consider important enough to be represented at a very high level in a substance
ontology, which help to solve the individuation problem and which are essen-
tial for categorizing operations on substances. One important distinction is pure
vs. mized substances. For pure substances general properties like composition
of its chemical elements, melting point and boiling point are important. Mixed
substances should be represented as a list of the included pure substances. Un-
fortunately many properties of mixed substances cannot be deduced from the
properties of its (pure) components. Since the components may also be in dif-
ferent physical states (example: sparkling water as a mixture of a liquid and
a gaseous substance) it can even be difficult to specify the physical state of a
mixed substance.

Nevertheless the physical state is a very important distinctive attribute, be-
cause in physics most other properties of substances are related to whether they

are in a solid, liquid or gaseous state. In which physical state an object of a spe-
cific substance manifests itself depends on its temperature and on its pressure
which we neglect here for the sake of simplicity. A general difference between
most solid substances on the one hand and liquid and gaseous substances on
the other hand is that the latter are not bound to a certain shape and may
require a container to avoid dispersion. For all three physical states there are
other possible distinctions or types of appearance [Web98]:

solid: depending on cohesive and adhesive forces
— powderous substances (like flour); no identifiable shape, so mass or vol-
ume or an embracing container have to be specified
— granular substances (like sugar); either like powderous substances, or by
external influence or forces pressed into a shape (lump sugar)
— substances with tight connection (like iron); shape plays an important
role, can only be changed by external forces
— malleable substances (like plasticine); hold together but their shape can
be easily modified
liquid: [Hay85] distinguishes 15 possible states of liquid substances categorized
along the following dimensions: (lazy still, lazy moving, energetic moving);
(bulk, divided);(on surface, in space, unsupported)
gaseous: Like liquid substances they do not have a predefined shape and require
a container to be kept together. To specify a certain amount of a gas one has
to mention pressure and temperature (or to use normalized values for both)
in addition to volume.

These top-level distinctions are sufficient to solve the individuation problem
for substances in a general way and to be able to model related actions. In this
context an action can be defined as the discrete change of one or more properties
of an object or a substance. In this paper we will not describe continous processes
for substances (like flowing of water), instead we restrict ourselves to discrete
states of substances and to actions where the state changes can be modelled
in a discrete way. As with substances we will not be able to make a complete
classification of actions but will analyse some major categories.

We distinguish between the following categories of actions based on the type
of properties of substances that they are changing:

Substance-preserving actions: Only extrinsic properties of the objects are
changed. The intrinsic properties of the related substances are preserved.

Substance-changing actions: Intrinsic (i.e. substance-specific) properties are
changed, which means that the participating substances before and after
the execution of the action differ (examples: mixing of different substances,
chemical reaction between substances).

Instance-preserving actions: In these actions the participating instances re-
main the same before and after the execution of the action (examples: move-
ment of an object, or pouring of a liquid into another container).

Instance-changing actions: They modify essential properties of an object
and also result in the destruction or creation of instances (examples: division
or putting together quantities of substances).

The last distinction between instance-changing and instance-preserving ac-
tions is also motivated by a distinction of the extrinsic properties changed. Those
extrinsic properties which are essential for an object (i.e. when they are changed,
the instance will not remain the same; we will call them existential properties)
must be distinguished from those which have no fundamental influence on the
existence of an instance (we will call them non-existential properties). It ist de-
pendent on the context whether a substance property is existential or not. In
solid or liquid substances changing the property 'volume’ is normally an instance-
changing action because some part of it has been separated from the original
object. As gases can be easily compressed changing the volume can also be an
instance-preserving action for gaseous substances. In the former case the volume
would be an existential in the latter case a non-existential property.

3 An ontology for substances

In this section we will propose a toplevel ontology for substances. Before de-
scribing our major distinctions and the reasons for these decisions we should
clarify the requirements which lead to our ontology. They can be summarized as
follows:

— Discrete objects and those for which an individualization is not obvious
should be handled in a uniform way.

— For discrete objects the traditional way of instantiation and reference to a
substance must be supported in order to be able to reuse existing represen-
tations.

— The ontology should be usable in dynamic contexts (i.e. the change of substance-
related properties during actions).

The first requirement needs additional explanation. Intuitively people often
treat all kinds of substances the same way. Therefore a separation of discrete
objects and other kinds of substances seems artificial. Especially when not only
static aspects but also dynamic changes are relevant. Why should an ice cube
only begin to exist in the moment when the water freezes? Although the physical
state has changed the individuated substance remains the same. In addition the
modelling of e.g. a liquid only as a property of its container together with the
degree of filledness (similar to other properties of the container) would complicate
the treatment of transfering this liquid to another container or its identification
in relation to a substitute (e.g. the oil in a motor before and after a change).

An ontology may be defined in an abstract way without using a concrete
knowledge representation mechanism. However, since we want to be able to
make actions related to substances executable we need an implementation basis.
For this reason we chose POWERLOOM, which is a very expressive description
logic system. POWERLOOM accepts expressions using the full predicate calculus,
extended with sets, cardinality, equality, and predicate variables [Mac94].

In the traditional approach to abstraction and inheritance there is the basic
distinction between instances, i.e. the individual objects (e.g. my car — identified
by its type and license number — or my dog, identified by its owner and name),
and concepts, i.e. the collection or class of all objects sharing certain properties
(e.g. the concept CAR as the class of all cars or the class DOG). Individual
objects or instances are elements of their concepts (seen as sets); specialisation
is a subset relation between classes.

For a uniform treatment of both discrete objects and substances we first
have to work out a generalized concept of what may constitute an ‘instance’ and
how it relates to the resp. concept (the individuation problem). A solution can
be summarized as follows: The concept of a substance e.g. the concept ‘water’
is the abstraction comprising all occurrences of this substance in the universe
which share their intrinsic properties. Substances are instantiated by specifying
their extrinsic properties like a definite amount of the substance or by relating
it to some container that contains the substance and thus implicitly restricts its
amount.

This approach to the individuation of substances is in accordance with the
linguistic treatment of the phenomena, especially the use of definite referring
expressions:

— In a recipe you may e.g. first introduce the amount of ingrediences needed
(e.g. 250 cl of milk, 25 gramm of butter, ...) and later use definite noun
phrases to refer to these substances as if they were instances (e.g. Melt the
butter ...Pour the milk ...).

— As soon as a container is introduced into a discourse, an amount of substance
contained in it behaves as an instance (e.g. Warm up the engine ! CAUTION:
The oil gets hot!)

We will call the most general substance concept which specifies only intrinsic
properties stuff and the most general concept specifying only extrinsic prop-
erties thing. A category with both intrinsic and extrinsic properties has to be
defined using (sub)concepts from both. The advantages of this factorisation of
our ontology are:

— It is possible to augment already existing discrete objects with information
about their substance by referring to the stuff hierarchy only.

— If one is interested only in intrinsic properties of a substance, for example to
decide which material is particularly well suited for a certain function of an
object, this can be described without using the thing-part of the ontology.

— A combination (through inheritance) of both hierarchies allows the uniform
modelling of individuals for all kinds of substances.

‘ gaseous-substance)

(liquid-substance)

solid-substance

mixed-substance

“ (solution) (emulsion))

i

Fig. 1. stuff hierarchy

The stuff hierarchy! (cf. Figure 1) distinguishes at the toplevel between the
following subconcepts: Pure and mixed substances are important for being able
to model actions where more than one substance participate and because of the
mentioned problem of not being able to make general inferences from properties
of the components. For mixed substances only two examples are given, emulsion
and solution. The distinction between three physical states is made because
typical intrinsic properties often depend on their physical state (e.g. colour,
conductivity, chemical reactivity, etc.). The divisions in the abstract ontology
have been useful in modelling examples from specific technical domains [Web97].

container-required
gaseous-object

solid-object

liquid-object shapeless

powderous granular-
shapeless

malleable

well-defined-
shape

Fig. 2. thing hierarchy

Within the thing hierarchy (cf. Figure 2) a distinction is made between ob-
jects that require a container and those which do not. The former are specified by
their mass or volume and can inherit properties like shape from their container.
The temperature of an object (cf. Figure 3) is modelled as an extrinsic property

! We use the following notational conventions: Normal arrows describe a class/subclass
relation (in the sense of subset of the instances). Arrows connected by an arc describe
a disjunctive partition. For the concept mixed-substance we only mention two sub-
concepts as examples, the dashed arrows indicate that there exist other subconcepts
which are not shown.

(it is only relevant for concrete instances) and as the physical state depends on
this fact (in relation to the intrinsic properties melting point and boiling point)
the latter may also be seen as an extrinsic property. Therefore we decided to
model the physical state in the thing hierarchy, too but as a direct consequence
of the extrinsic property temperature. Solid objects that do not require a con-
tainer can be subdivided into shapeless and shaped which are generalizations of
the four categories powderous, granular, malleable and well defined shape (cf.
section 2). We do not consider shapeless objects as being inevitably container de-
pendent because we should also be able to model a pile of sand without needing
a container. A container is an example of an object with well defined shape.

Figure 3 shows the definition of some of the upper concepts of the stuff and
thing hierarchy (figure 1 and 2 resp.) in POWERLoOOM. The syntax of POWER-
LooM is a variant of KIF3.0 [GF92]. ?self is the default variable used to refer
to the concept itself.

(defclass stuff ()
:slots ((melting-point :type Integer)
(boiling-point :type Integer)
(ingredients :type (set of chemical-substance))))

(defclass pure-substance (stuff)
:<=> (= (cardinality (ingredients 7self)) 1))

(defclass mixed-substance (stuff)
:<=> (> (cardinality (ingredients 7self)) 1))

(defclass thing ()
:slots ((made-of :type stuff)
(temperature :type Integer)))

(defclass solid-object (thing)
:<=> (> (melting-point (made-of ?self)) (temperature ?self)))

(defclass gaseous-object (container-required)
:<=> (< (boiling-point (made-of ?self)) (temperature ?self)))

(defclass liquid-object (substance-thing)

:<=> (and (> (boiling-point (made-of 7self)) (temperature ?self))
(< (melting-point (made-of 7self)) (temperature 7self))))

Fig. 3. Excerpts from the thing and stuff ontology in POWERLOOM.

4 Towards a taxonomy for substance-related actions

Based on the ontology for substances and its factorisation into the stuff and
thing hierarchy we can now describe how actions related to substances can be
modelled. The main distinction for actions (cf. section 2) is between substance-
preserving actions (where intrinsic properties remain the same and extrinsic may
change) and substance-changing actions (where intrinsic properties can change).
Concerning the extrinsic properties a change of existential properties leads to
instance-changing actions and if only non-existential properties are changed to
instance-preserving actions.

Figure 4 shows the general taxonomy for substance related actions and an
example for each type of action. There may exist several intermediate action
categories between the top-level action categories and the examples (indicated
by pointed arrows).

(substance-action)

(substance-preserving) (substancé-changing>

(instance-preserving) Qnstance-changing}

transfer division mixing

Fig. 4. taxonomy for substance related actions

In addition to this top-level taxonomy for actions we want to illustrate how
actions on substances can be represented by giving a more specific example. It
describes the different kinds of transfer of liquids from one container into another
(cf. figure 5). How this can be implemented in PowerLoom is described in the
following section.

The resp. concepts in the hierarchy for transfer actions are the following:

transfer: represents the transportation of a substance from one container into
another. The second container may be filled partially with the same type
of substance before the action has been carried out. This is a substance-
preserving action (the same holds for all other subtypes) because only ex-
trinsic properties like the referred container and potentially the volume are
changed but the substances remain the same.

complete-transfer: specializes transfer in the aspect that the whole quantity
of the first container is transferred to the second.

transfer

(complete-transfer) partial-transfer

\
complete-fill <complete-fill-up> C partial-fill > partial-fill-up

Fig. 5. taxonomy for transfer actions

complete-fill: has the additional constraint that the second container must
be empty before the transfer. Since only non-existential properties of the
substance (container) are changed, this is an instance-preserving action.

complete-fill-up: requires that the second container is filled by an amount
of the same type of substance. Therefore it is an instance-changing action,
because the substances in both containers are merged to one new substance
in the second container.

partial-transfer: In contrast to complete-transfer it transfers only part of the
substance from the first container. An existential extrinsic property (amount
or volume) is changed and we have an instance-changing action (which is
inherited by the actions partial-fill and partial-fill-up).

partial-fill: requires that the second container is empty before the transfer. The
old substance is divided into two parts, one in the first and one in the second
container.

partial-fill-up: requires that the second container must contain an amount of
the same substance.

To illustrate the structure and the naming conventions of this taxonomy:
The distinctive property for the first level is whether the first container is empty
after the action has been carried out (named complete-...) or not (named
partial-...). The distinction at the second level depends on the filledness of the
second container before the action. If it has been empty it is named ...-fill,
in the other case ...-fill-up. More complex actions like the distribution a
substance into several empty new containers can be composed starting from
these actions.

5 Action hierarchies in description logics

There are many different approaches for representing actions in object cen-
tered systems. For example, there are hierarchically organized action descrip-
tions in systems for natural language processing (e.g. PENMAN Upper Model
[BKMWO90]). These descriptions classify actions by focusing mainly on the verb
as the relevant object for classification. Action descriptions of this kind are well

suited for natural language processing, but not sufficient for simulated execu-
tion. Other action descriptions in AT are related to the field of planning or plan
recognition (e. g. RAT [HKNP92], T-REX [WL92]) and follow the STRIPS [FNT71]
approach. There, actions are interpreted as operators, mapping one world de-
scription into another. As a result of their operational description, actions can be
executed for planning or simulation purposes. But there is no satisfying approach
for defining actions by specializing more abstract actions.

In order to support the qualitative simulation of actions and to fulfill the
requirements of object—centered languages, which are reusability, extensibility
and understandability [Mey88], we propose an action representation which

— is declarative and ezecutable (operational),

allows action definitions by specialization,

supports the inheritance of pre- and postconditions and

— results in a hierarchical organization of action descriptions.

Such an action representation allows the underlying inference mechanism to
reason about actions in multiple dimensions. Performable actions, for example,
are those which have a precondition which is true with respect to the current
state of the world. Or one could ask for all those actions which fulfill a particular
goal. All those answers are implicitly encoded in the action hierarchy and can
be inferred by the classifier without much additional effort.

Consider the following fraction of a simplified action hierarchy as shown
graphically in figure 5. Let us assume that all transfer actions change the loca-
tion attribute of their action object?, referenced here by the function has-action-
object. The action complete-transfer inherits all properties (slots, pre- and
postcondition, etc.) of transfer. The most relevant difference between these
actions is, that the latter is defined to perform a complete transfer of the action
object while specializing the former one. complete-fill is again more specific
because this action assumes that the target container is empty.

Our work showed that one should be able to express conditions about at-
tributes which are not known explicitly at time of description. This is useful
in order to express abstract knowledge (consider an action change for exam-
ple), shared by many different actions, but reified by different attributes (e.g.
transfer, change-temperature). At the hierarchical level of change we have
to abstract from the attribute we want to change because this could be either
has-location, has-temperature or others. Nevertheless we want to specify pre-
and postconditions for this abstract action. However, this requires second order
features because we need to work with referenced relations, which are predicates
in fact.® Second order features are not present in ordinary description logic sys-

2 An action object, i.e. the object whose property is changed by an action, should not
be confused with an instance of the category ’action’.
% What we actually need is unqualified existential quantification on predicates.

tems. In POWERLOOM (as well as in KIF [GF92]) this can be done via the holds
predicate*. The abstract action change could then look as in figure 6.7

(defaction change (action)

:slots ((affected-attribute :type RELATION)
(has-new-value :type UNKNOWN)
(has-old-value :type UNKNOWN))

:precondition (holds (affected-attribute ?self)

(has-action-object 7?self)
(has-old-value ?self))
:postcondition (holds (affected-attribute ?self)
(has-action-object ?self)
(has-new-value 7?self)))

Fig. 6. Definition of change

The action transfer could then be defined as a specialization of change
inheriting all slots, pre- and postconditions of change. According to the action
hierarchy of figure 5 we define complete-fill (which is itself an indirect de-
scendant of transfer) in figure 7.

(defaction transfer (change)
:constraints (= (affected-attribute ?7self) has-location))

(defaction complete-fill (complete-transfer)
:slots ((has-new-value :type container)
(has-old-value :type container))
:precondition (and (empty (has-new-value 7self))
(>= (capacity (has-new-value ?7self))
(amount (has-action-object ?self))))
:postcondition (empty (has-old-value 7self))

Fig. 7. Definition of transfer and complete-fill

Due to the inheritance of the action parameter, pre— and postcondition and
concretion of the affected attribute in transfer, the action complete-fill has
actually the internal definition, given in figure 8 for the sake of completeness.

* The semantics of holds is defined in KIF and POWERLOOM in the following way: If
7 denotes a relation, then the sentence (holds 7 7 ... 71) is true if and only if
the list of objects denoted by 71,...,7% is a member of that relation.

® For sake of simplicity we omit all potential actions which may exist in the hierarchy
between action and change.

(defaction complete-fill (complete-transfer)
:slots ((has-action-object :type (and stuff thing))
(has-new-value :type container)
(has-old-value :type container))
:precondition (and (empty (has-new-value ?self))
(has-location (has-action-object 7self)
(has-old-value ?self))
(>= (capacity (has-new-value 7self))
(amount (has-action-object 7self))))
:postcondition (and (empty (has-old-value ?self))
(has-location (has-action-object 7?self)
(has-new-value ?self))))

Fig. 8. Actual definition of complete-fill

Intuitively, the semantics of actions in general, and pre- and postconditions
in particular, are straightforward with respect to PowerLoom semantics. Pre-
and postconditions are semantically different from ordinary slots or relations for
at least two reasons. First, there is an inherent relationship between them in
the sense of a temporal ordering. Second, they characterize the action concept
by expressing conditions about an instance (the action object) different from
the action concept itself. Consequently the relationship between two actions
has more dimensions than the relation between ordinary concepts. As a result,
there are different subsumption relations between actions conceivable [LRn97].
The keywords :precondition and :postcondition were introduced in order to
express these differences syntactically.

6 Related work

With respect to the analysis of substances, the distinction between count and
mass expressions has for a long time been a subject in linguistic and philosophical
literature (for an overview cf. [PS89]). The ontological distinction between thing
and stuff motivated by intrinsic and extrinsic properties is adopted by many
authors, for instance in the AT textbook of [RN95]. There exist many approaches
for modelling special kinds of substances for domains which are motivated by
the role substances play in certain application areas (e.g. the Plinius ontology
for ceramic materials [vdVSM94]).

Concerning the modelling of actions, a system for the representation of ac-
tions and plans in a description logic (RAT — representation of actions using
terminological logics, [HKNP92]) was developed in the WIP project [WABT92].
Pre- and postconditions of atomic actions are described by using a subset of the
underlying description logic. They define conjunctions of feature restrictions,
agreements, and disagreements. However, RAT does not support the specializa-
tion of actions, as it is not possible to define similar actions as special cases of a
general action. In contrast to the RAT sytem, actions in CLASP [DL91] as well

as in T-REX [WL92] are primitive non-decomposable units. Yet, their language
for composing plans is much richer. Another approach using Allen’s temporal
constraints is proposed in [AF97]. Action specialization is not possible in any of
these systems.

The modelling of actions related to substances has been investigated by
[Ter95] in the broader context of ontologies concerning processes or causes and
effects. Especially the production or consumption of stuff has been treated but
without considering the individuation problem for all physical states. Patrick
Hayes was the first to define a detailed ontology for liquids [Hay85]. He solved
the individuation problem for liquids by referring to a container and discussed
actions by defining functions for modelling change and movements. He did, how-
ever, only consider what we call substance-preserving actions. [Dal92] analyses
actions related to substances in the context of recipes. He argues that any mass
object can be converted into a countable object by packaging operations. Further
he proposes a representation for actions which admit decomposition and plan-
ning. [NH98] have created an ontology for the domain of experimental molecular
biology where both substances and processes play a major role. In this domain,
it is necessary to track substances through a series of experimental processes
including transformations, which are modelled with the help of object histories.

None of the proposals just mentioned is able to define actions as a specializa-
tion of abstract actions. For the individuation of substances we have shown that
all kinds of substances (especially in different physical states) can be treated
uniformly in an ontology by a factorisation into an ’intrinsic’ part (the stuff hi-
erarchy) and an ’extrinsic’ part (the thing hierarchy). One might not need this
general approach for specific application domains but ignoring it could make
extensions to include other kinds of substances very difficult.

7 Summary and outlook

In this paper we have described a proposal for the individuation of substances
and for the modelling of actions in dynamic contexts. Due to technical reasons
(the implementation status of PowerLoom is still very unstable and incomplete)
up to now we have not been able to fully implement our ideas in a more or less
complete ontology especially with respect to actions. Nevertheless we consider
our approach an important step towards an ontology for substances and related
actions.

Aspects similar to the individuation problem for substances can be found in
other domains. The action of assembling a (technical) object from its parts will
result in the creation of a corresponding instance. On the other hand, disassem-
bling an object — e.g. for recycling — has the effect that the lifecycle of the object
ends and the instance of the composite object ceases to exist.

There are some subtle issues related to the questions of what constitutes
the identity of an instance and when the identity of an instance should change.
Some even lead to paradoxa. For example we probably do not want to give up
the identity of a non-trivial object (e.g. a car) when we replace a minor part

of it (e.g. a spark-plug). But what about the case — already discussed by Greek
philosophers — where we would step by step replace all parts that make up a
compound object?

A related question with respect to instances of a substance: Assume that
a fluid in a container continuously looses small amounts of substance. Will we
create a new instance when we refill the more or less insignificant amount lost?
Is there a difference to doing a significant fill-up (e.g. when more than half of
the required amount has to be refilled)?

As often in issues of modelling there is no single and simple answer to these
questions. The adequacy of the chosen granularity of a model has to be judged
from the perspective of the application and the inferences needed. For the more
abstract levels of an ontology this gives support for a ‘strategy of least commit-
ment’, i.e. only those decisions should already be fixed on the ontological level
that will not vary between different applications.

References

[AF97] Alessandro Artale and Enrico Franconi. A temporal description logic for
reasoning about action and plans. In Journal of Artificial Intelligence
Research, 1997.

[BKMW90] J. Bateman, R. Kasper, J. Moore, and R. Whitney. A general organization
of knowledge for natural language processing: the penman upper model.
Technical report, USC/ISI, 1990.

[Dal92] Robert Dale. Generating Referring Ezpressions, Constructing Descrip-
tions in a Domain of Objects and Processes. MIT Press Cambridge, Mas-
sachusetts, 1992.

[DL91] Premkumar T. Devanbu and Diane J. Litman. Plan-based terminological
reasoning. In J. F. Doyle, R. Files, and Erik Sandewall, editors, Principles
of Knowledge Representation and Reasoning, Proceedings of the Second
International Conference (KR ’91), pages 128 — 138, Cambridge, MA, April
1991. Morgan Kaufmann Publishers, Inc., San Francisco, CA.

[FNT71] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Inteligence,
2(3-4):189 — 208, 1971.

[GF92] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange For-
mat, V. 3.0, Reference Manual. Stanford University, June 1992.

[Gru95] Thomas R. Gruber. Towards principles for the design of ontologies used
for knowledge sharing. International Journal of Human Computer Studies,
43:907 — 928, 5/6 1995. Also available as Technical Report KSL 93-04,
Knowledge Systems Laboratory, Stanford University.

[Hay85] Patrick J. Hayes. Formal theories of the commensense world, chapter Naive
physics I: Ontology for Liquids, pages 71-107. Ablex Publishing Corpora-
tion, 1985.

[HKNP92] J. Heinsohn, D. Kudenko, B. Nebel, and H. Profitlich. RAT: represen-
tation of actions using terminological logics. Technical report, DFKI,
Saarbriicken, 1992.

[LRn97]

[Mac94]

[Mey88]

[NHOS]

[PS89]

[RNO5]

[Ter95]

[vdVSM94]

[WABT92]

[Web97]

[Web9s]

[WL92]

Thorsten Liebig and Dietmar Rosner. Action hierarchies for the auto-
matic generation of multilingual technical documents. In Rémi Zajac, edi-
tor, IJCAI-97 Workshop Ontologies and Multilingual NLP, Nagoya, Japan,
August 1997. International Joint Conference on Artificial Intelligence.
Robert M. MacGregor. A description classifier for the predicate calculus. In
Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 213 — 230, 1994.

Bertrand Meyer. Object—oriented Software Construction. Prentice Hall,
New York, 1988.

Natalya Fridman Noy and Carole D. Hafner. Representing Scientific ex-
periments: Implications for Ontology Design and Knowledge Sharing. In
15th National Conference on Artificial Intelligence (AAAI98), Madison
Wisconsin, July 1998. AAAT Press.

Francis Jeffry Pelletier and Lenhart K. Schubert. Handbook of philosoph-
ical logic, chapter Mass Expressions, pages 327-407. D. Reidel Publishing
Company, 1989.

Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach, pages 241 — 243. Prentice Hall, 1995.

Paolo Terenziani. Towards a causal ontology coping with the temporal
constraints between causes and effects. International Journal for Human-
Computer Studies, 43(5/6):847-863, 1995.

Paul E. van der Vet, Piet-Hein Speel, and Nicolaas J. I. Mars. The plinius
ontology of ceramic materials. Workshop Notes ECAI’94 in Amsterdam,
Workshop Comparison of Implemented Ontologies, pages 187 — 205, 1994.
W. Wahlster, E. André, S. Bandyopadhyay, W. Graf, and T. Rist. WIP:
The Coordinated Generation of Multimodal Presentations from a Common
Representation. In A. Ortony, J. Slack, and O. Stock, editors, Communi-
cation from an Artificial Intelligence Perspective: Theoretical and Applied
Issues, pages 121 — 144. Springer-Verlag, New York, Berlin, Heidelberg,
1992.

Lars Webel. Modellierung eines Teilgebiets der Doméne Werkstoffe fiir
technische Produkte und Implementation in LOOM. Technical report,
Otto-von-Guericke Universitat Magdeburg, Institut fiir Informations- und
Kommunikationssysteme, 1997.

L. Webel. Untersuchungen zur Modellierung von Substanzen. Diplomar-
beit, Otto-von-Guericke Universitit Magdeburg, 1998.

R. Weida and D. Litman. Terminological reasoning with constraint net-
works and an application to plan recognition. In Nebel, Swartout, and
Rich, editors, Proceedings of Principles of Knowledge Representation and
Reasoning (KR’92), 1992.

