
Towards an ontology for substances and relatedactionsBj�orn H�o
ing1, Thorsten Liebig2, Dietmar R�osner1, and Lars Webel11 Otto-von-Guericke-Universit�at Magdeburg,Institut f�ur Wissens{ und Sprachverarbeitung,P.O.Box 41 20, D-39016 Magdeburg, Germany,(hoefling,roesner,webel)@iws.cs.uni-magdeburg.de2 Abteilung K�unstliche Intelligenz, Fakult�at f�ur Informatik,Universit�at Ulm, D-89069 Ulm, Germanyliebig@ki.informatik.uni-ulm.de ?Abstract. Modelling substances in knowledge representation has to bedi�erent from the treatment of discrete objects. For example liquids needa di�erent approach to individuation. We propose an ontology which rep-resents physical states and other properties of substances in a uniformway. Based on this we describe how to model a hierarchy of actions thatcan deal with such substances. For these actions a general distinctionis made with respect to the type of properties the actions are changing.Further we describe an implementation in description logic allowing espe-cially the de�nition of actions by specialization of more abstract actionsand the inheritance of pre- and postconditions.1 IntroductionWhen knowledge in a technical application area is made explicit, i.e. representedformally in a computer readable way, substances often play an important role,e.g. to have a detailed model of the material a technical part is made of, orthe substances which are necessary for its use. It would be helpful to have thisknowledge available in a sharable and reusable way suitable for di�erent pur-poses. One way to do this is by specifying an ontology for this domain. Such anexplicit speci�cation of a conceptualization ([Gru95]) helps to clarify the mean-ing of relevant entities in the domain and therefore allows a shared understandingbetween di�erent applications.We are modelling knowledge about products, e.g. for the automatic gen-eration of multilingual technical documentation from a language independentrepresentation of the relevant domain knowledge. For some technical devicesthe relevant domain knowledge may be completely represented through a modelcomprising the resp. object, their parts and actions for manipulating those parts(e.g. checking, replacing). In this case modelling discrete objects is su�cient.? Part of this author's contribution was funded by a PhD scholarschip of the program\Graduiertenf�orderung des Landes Sachsen-Anhalt".



But in many realistic applications we have to adequately model substances thatare part of a product and play a functional role there (e.g. engine oil, coolant,. . . ). In addition related maintenance actions operating with these substancesneed to be modeled (e.g. checking an appropriate substance level, adding some
uid, replacing a 
uid, . . . ).A traditional way of representing substances is as properties of concrete ob-jects. For well delimited objects made of solid material this might be a su�cientapproach. But it will run into problems when trying to take into account thephysical state of liquids. For this state one has to decide which amount of asubstance may be called an instance or object, because every part of a liquidalso ful�lls the necessary and su�cient conditions for being an object. This in-dividuation problem has to be handled in a uniform way in order to be able torepresent all kinds of substances independent of their physical state or otherproperties in a single ontology.As objects and their substances may change some of their properties overtime, like e.g. the physical state as a consequence of a rising or lowering oftemperature, it becomes also necessary to decide upon the behaviour of theindividuated substances. Some of the questions that arise include: What happensto two substances when they are mixed together? What happens when a liquid isdistributed over several containers? These questions belong to a general categoryof the modelling of actions which are related to substances.We should clarify the role of our application in the design decisions whichhave been made in the ontology: Our goal, the automatic generation of multilin-gual technical documentation, requires a language independent representation ofthe domain knowledge (due to multilinguality) and reusability via specializationof general concepts (in order to be able to adapt the generated documents todi�erent kinds of users, levels of detail or discourse situations). In addition thequalitative simulation of the represented actions is a requirement, as it allowsthe testing of feasibility and completeness of sequences of actions and can evenlead to the automatic generation of warning instructions when possible danger-ous events are detected. Nevertheless we believe that our approach is a generalone which can be reused in cases where the modelling of non-discrete objectsand related actions is necessary.The paper is structured as follows: Section 2 analyses in more detail the do-main of substances and related actions. Originating from this analysis a toplevelontology for substances is presented in section 3 which has been implementedin description logic. Next, a taxonomy for actions related to this ontology isintroduced in section 4. The consequences which follow for the implementationof action hierarchies in description logics are the topic of section 5. The paperconcludes with remarks on related work, a summary and outlook.



2 Domain analysisA substance can be de�ned as a physical material from which something is madeor which has a discrete existence. To illustrate major problems in the modellingof substances we give a simple example: A cup of water, standing in front ofsomeone. What are the substances which are of importance in this situation andhow should the be represented? The object referred to by the �rst noun 'cup' ismade of a certain material (e.g. china), which could for example be representedas a property of the instance 'cup'. The second noun 'water' directly describessome amount of a substance. Is this to be modelled as an instance as well?In linguistics a disctinction is made between count expressions, which referto a discrete, well-delineated group of entities and mass expressions, which referto something without making it explicit how its referent is to be individuated ordivided into objects [PS89]. Mass and count expressions are in most cases nouns,but some authors classify also other expressions (like verbs) as count or massexpressions. Even if in natural language the type of referent of mass expressionscan be left unspeci�ed, for explicit representations in ontologies or knowledgebases one has to solve this individuation problem. For the cup we can say thereis a cup-object, but can we say that there is a water-object (i.e. the amountof water in the cup)? Such a water-object is a fundamentally di�erent kind ofobject because any part of it is also a water-object, which is not the case for thecup.To create an ontology and to be able to distinguish between individualsand their categories we have to examine properties of substances. The questionarises whether a property belongs to the material or the object made of thematerial. The following de�nitions manifest this distinction ([RN95]): Intrinsicproperties belong to the very substance of the object rather than to the object asa whole (examples: density, boiling point, composition of its chemical elements).Extrinsic properties are speci�c for an indivualised object (examples: volume,weight, shape). Intrinsic properties remain the same for every part of an objectbecause it is made of the same material. On the other hand extrinsic propertiesare not retained under subdivision.In the following we will discuss only those properties of substances which weconsider important enough to be represented at a very high level in a substanceontology, which help to solve the individuation problem and which are essen-tial for categorizing operations on substances. One important distinction is purevs. mixed substances. For pure substances general properties like compositionof its chemical elements, melting point and boiling point are important. Mixedsubstances should be represented as a list of the included pure substances. Un-fortunately many properties of mixed substances cannot be deduced from theproperties of its (pure) components. Since the components may also be in dif-ferent physical states (example: sparkling water as a mixture of a liquid anda gaseous substance) it can even be di�cult to specify the physical state of amixed substance.Nevertheless the physical state is a very important distinctive attribute, be-cause in physics most other properties of substances are related to whether they



are in a solid, liquid or gaseous state. In which physical state an object of a spe-ci�c substance manifests itself depends on its temperature and on its pressurewhich we neglect here for the sake of simplicity. A general di�erence betweenmost solid substances on the one hand and liquid and gaseous substances onthe other hand is that the latter are not bound to a certain shape and mayrequire a container to avoid dispersion. For all three physical states there areother possible distinctions or types of appearance [Web98]:solid: depending on cohesive and adhesive forces{ powderous substances (like 
our); no identi�able shape, so mass or vol-ume or an embracing container have to be speci�ed{ granular substances (like sugar); either like powderous substances, or byexternal in
uence or forces pressed into a shape (lump sugar){ substances with tight connection (like iron); shape plays an importantrole, can only be changed by external forces{ malleable substances (like plasticine); hold together but their shape canbe easily modi�edliquid: [Hay85] distinguishes 15 possible states of liquid substances categorizedalong the following dimensions: (lazy still, lazy moving, energetic moving);(bulk, divided);(on surface, in space, unsupported)gaseous: Like liquid substances they do not have a prede�ned shape and requirea container to be kept together. To specify a certain amount of a gas one hasto mention pressure and temperature (or to use normalized values for both)in addition to volume.These top-level distinctions are su�cient to solve the individuation problemfor substances in a general way and to be able to model related actions. In thiscontext an action can be de�ned as the discrete change of one or more propertiesof an object or a substance. In this paper we will not describe continous processesfor substances (like 
owing of water), instead we restrict ourselves to discretestates of substances and to actions where the state changes can be modelledin a discrete way. As with substances we will not be able to make a completeclassi�cation of actions but will analyse some major categories.We distinguish between the following categories of actions based on the typeof properties of substances that they are changing:Substance-preserving actions: Only extrinsic properties of the objects arechanged. The intrinsic properties of the related substances are preserved.Substance-changing actions: Intrinsic (i.e. substance-speci�c) properties arechanged, which means that the participating substances before and afterthe execution of the action di�er (examples: mixing of di�erent substances,chemical reaction between substances).Instance-preserving actions: In these actions the participating instances re-main the same before and after the execution of the action (examples: move-ment of an object, or pouring of a liquid into another container).Instance-changing actions: They modify essential properties of an objectand also result in the destruction or creation of instances (examples: divisionor putting together quantities of substances).



The last distinction between instance-changing and instance-preserving ac-tions is also motivated by a distinction of the extrinsic properties changed. Thoseextrinsic properties which are essential for an object (i.e. when they are changed,the instance will not remain the same; we will call them existential properties)must be distinguished from those which have no fundamental in
uence on theexistence of an instance (we will call them non-existential properties). It ist de-pendent on the context whether a substance property is existential or not. Insolid or liquid substances changing the property 'volume' is normally an instance-changing action because some part of it has been separated from the originalobject. As gases can be easily compressed changing the volume can also be aninstance-preserving action for gaseous substances. In the former case the volumewould be an existential in the latter case a non-existential property.3 An ontology for substancesIn this section we will propose a toplevel ontology for substances. Before de-scribing our major distinctions and the reasons for these decisions we shouldclarify the requirements which lead to our ontology. They can be summarized asfollows:{ Discrete objects and those for which an individualization is not obviousshould be handled in a uniform way.{ For discrete objects the traditional way of instantiation and reference to asubstance must be supported in order to be able to reuse existing represen-tations.{ The ontology should be usable in dynamic contexts (i.e. the change of substance-related properties during actions).The �rst requirement needs additional explanation. Intuitively people oftentreat all kinds of substances the same way. Therefore a separation of discreteobjects and other kinds of substances seems arti�cial. Especially when not onlystatic aspects but also dynamic changes are relevant. Why should an ice cubeonly begin to exist in the moment when the water freezes? Although the physicalstate has changed the individuated substance remains the same. In addition themodelling of e.g. a liquid only as a property of its container together with thedegree of �lledness (similar to other properties of the container) would complicatethe treatment of transfering this liquid to another container or its identi�cationin relation to a substitute (e.g. the oil in a motor before and after a change).An ontology may be de�ned in an abstract way without using a concreteknowledge representation mechanism. However, since we want to be able tomake actions related to substances executable we need an implementation basis.For this reason we chose PowerLoom, which is a very expressive descriptionlogic system. PowerLoom accepts expressions using the full predicate calculus,extended with sets, cardinality, equality, and predicate variables [Mac94].



In the traditional approach to abstraction and inheritance there is the basicdistinction between instances, i.e. the individual objects (e.g. my car { identi�edby its type and license number { or my dog, identi�ed by its owner and name),and concepts, i.e. the collection or class of all objects sharing certain properties(e.g. the concept CAR as the class of all cars or the class DOG). Individualobjects or instances are elements of their concepts (seen as sets); specialisationis a subset relation between classes.For a uniform treatment of both discrete objects and substances we �rsthave to work out a generalized concept of what may constitute an `instance' andhow it relates to the resp. concept (the individuation problem). A solution canbe summarized as follows: The concept of a substance e.g. the concept `water'is the abstraction comprising all occurrences of this substance in the universewhich share their intrinsic properties. Substances are instantiated by specifyingtheir extrinsic properties like a de�nite amount of the substance or by relatingit to some container that contains the substance and thus implicitly restricts itsamount.This approach to the individuation of substances is in accordance with thelinguistic treatment of the phenomena, especially the use of de�nite referringexpressions:{ In a recipe you may e.g. �rst introduce the amount of ingrediences needed(e.g. 250 cl of milk, 25 gramm of butter, . . . ) and later use de�nite nounphrases to refer to these substances as if they were instances (e.g. Melt thebutter . . . Pour the milk . . . ).{ As soon as a container is introduced into a discourse, an amount of substancecontained in it behaves as an instance (e.g. Warm up the engine ! CAUTION:The oil gets hot!)We will call the most general substance concept which speci�es only intrinsicproperties stu� and the most general concept specifying only extrinsic prop-erties thing. A category with both intrinsic and extrinsic properties has to bede�ned using (sub)concepts from both. The advantages of this factorisation ofour ontology are:{ It is possible to augment already existing discrete objects with informationabout their substance by referring to the stu� hierarchy only.{ If one is interested only in intrinsic properties of a substance, for example todecide which material is particularly well suited for a certain function of anobject, this can be described without using the thing-part of the ontology.{ A combination (through inheritance) of both hierarchies allows the uniformmodelling of individuals for all kinds of substances.



stuff
gaseous-substance

liquid-substance

solid-substance

pure-substance

mixed-substance

solution emulsionFig. 1. stu� hierarchyThe stu� hierarchy1 (cf. Figure 1) distinguishes at the toplevel between thefollowing subconcepts: Pure and mixed substances are important for being ableto model actions where more than one substance participate and because of thementioned problem of not being able to make general inferences from propertiesof the components. For mixed substances only two examples are given, emulsionand solution. The distinction between three physical states is made becausetypical intrinsic properties often depend on their physical state (e.g. colour,conductivity, chemical reactivity, etc.). The divisions in the abstract ontologyhave been useful in modelling examples from speci�c technical domains [Web97].
thing

container-required solid-object

shapedshapeless

powderous granular-
shapeless

well-defined-
shape

malleable

liquid-objectgaseous-object

Fig. 2. thing hierarchyWithin the thing hierarchy (cf. Figure 2) a distinction is made between ob-jects that require a container and those which do not. The former are speci�ed bytheir mass or volume and can inherit properties like shape from their container.The temperature of an object (cf. Figure 3) is modelled as an extrinsic property1 We use the following notational conventions: Normal arrows describe a class/subclassrelation (in the sense of subset of the instances). Arrows connected by an arc describea disjunctive partition. For the concept mixed-substance we only mention two sub-concepts as examples, the dashed arrows indicate that there exist other subconceptswhich are not shown.



(it is only relevant for concrete instances) and as the physical state depends onthis fact (in relation to the intrinsic properties melting point and boiling point)the latter may also be seen as an extrinsic property. Therefore we decided tomodel the physical state in the thing hierarchy, too but as a direct consequenceof the extrinsic property temperature. Solid objects that do not require a con-tainer can be subdivided into shapeless and shaped which are generalizations ofthe four categories powderous, granular, malleable and well de�ned shape (cf.section 2). We do not consider shapeless objects as being inevitably container de-pendent because we should also be able to model a pile of sand without needinga container. A container is an example of an object with well de�ned shape.Figure 3 shows the de�nition of some of the upper concepts of the stu� andthing hierarchy (�gure 1 and 2 resp.) in PowerLoom. The syntax of Power-Loom is a variant of KIF3.0 [GF92]. ?self is the default variable used to referto the concept itself.(defclass stuff ():slots ((melting-point :type Integer)(boiling-point :type Integer)(ingredients :type (set of chemical-substance))))(defclass pure-substance (stuff):<=> (= (cardinality (ingredients ?self)) 1))(defclass mixed-substance (stuff):<=> (> (cardinality (ingredients ?self)) 1))(defclass thing ():slots ((made-of :type stuff)(temperature :type Integer)))(defclass solid-object (thing):<=> (> (melting-point (made-of ?self)) (temperature ?self)))(defclass gaseous-object (container-required):<=> (< (boiling-point (made-of ?self)) (temperature ?self)))(defclass liquid-object (substance-thing):<=> (and (> (boiling-point (made-of ?self)) (temperature ?self))(< (melting-point (made-of ?self)) (temperature ?self))))Fig. 3. Excerpts from the thing and stu� ontology in PowerLoom.



4 Towards a taxonomy for substance-related actionsBased on the ontology for substances and its factorisation into the stu� andthing hierarchy we can now describe how actions related to substances can bemodelled. The main distinction for actions (cf. section 2) is between substance-preserving actions (where intrinsic properties remain the same and extrinsic maychange) and substance-changing actions (where intrinsic properties can change).Concerning the extrinsic properties a change of existential properties leads toinstance-changing actions and if only non-existential properties are changed toinstance-preserving actions.Figure 4 shows the general taxonomy for substance related actions and anexample for each type of action. There may exist several intermediate actioncategories between the top-level action categories and the examples (indicatedby pointed arrows).
substance-action

substance-preserving substance-changing

instance-changinginstance-preserving

transfer division mixingFig. 4. taxonomy for substance related actionsIn addition to this top-level taxonomy for actions we want to illustrate howactions on substances can be represented by giving a more speci�c example. Itdescribes the di�erent kinds of transfer of liquids from one container into another(cf. �gure 5). How this can be implemented in PowerLoom is described in thefollowing section.The resp. concepts in the hierarchy for transfer actions are the following:transfer: represents the transportation of a substance from one container intoanother. The second container may be �lled partially with the same typeof substance before the action has been carried out. This is a substance-preserving action (the same holds for all other subtypes) because only ex-trinsic properties like the referred container and potentially the volume arechanged but the substances remain the same.complete-transfer: specializes transfer in the aspect that the whole quantityof the �rst container is transferred to the second.



transfer

complete-transfer partial-transfer

complete-fill-up partial-fill partial-fill-upcomplete-fill Fig. 5. taxonomy for transfer actionscomplete-�ll: has the additional constraint that the second container mustbe empty before the transfer. Since only non-existential properties of thesubstance (container) are changed, this is an instance-preserving action.complete-�ll-up: requires that the second container is �lled by an amountof the same type of substance. Therefore it is an instance-changing action,because the substances in both containers are merged to one new substancein the second container.partial-transfer: In contrast to complete-transfer it transfers only part of thesubstance from the �rst container. An existential extrinsic property (amountor volume) is changed and we have an instance-changing action (which isinherited by the actions partial-�ll and partial-�ll-up).partial-�ll: requires that the second container is empty before the transfer. Theold substance is divided into two parts, one in the �rst and one in the secondcontainer.partial-�ll-up: requires that the second container must contain an amount ofthe same substance.To illustrate the structure and the naming conventions of this taxonomy:The distinctive property for the �rst level is whether the �rst container is emptyafter the action has been carried out (named complete-...) or not (namedpartial-...). The distinction at the second level depends on the �lledness of thesecond container before the action. If it has been empty it is named ...-fill,in the other case ...-fill-up. More complex actions like the distribution asubstance into several empty new containers can be composed starting fromthese actions.5 Action hierarchies in description logicsThere are many di�erent approaches for representing actions in object cen-tered systems. For example, there are hierarchically organized action descrip-tions in systems for natural language processing (e. g. Penman Upper Model[BKMW90]). These descriptions classify actions by focusing mainly on the verbas the relevant object for classi�cation. Action descriptions of this kind are well



suited for natural language processing, but not su�cient for simulated execu-tion. Other action descriptions in AI are related to the �eld of planning or planrecognition (e. g. Rat [HKNP92], T-Rex [WL92]) and follow the Strips [FN71]approach. There, actions are interpreted as operators, mapping one world de-scription into another. As a result of their operational description, actions can beexecuted for planning or simulation purposes. But there is no satisfying approachfor de�ning actions by specializing more abstract actions.In order to support the qualitative simulation of actions and to ful�ll therequirements of object{centered languages, which are reusability, extensibilityand understandability [Mey88], we propose an action representation which{ is declarative and executable (operational),{ allows action de�nitions by specialization,{ supports the inheritance of pre- and postconditions and{ results in a hierarchical organization of action descriptions.Such an action representation allows the underlying inference mechanism toreason about actions in multiple dimensions. Performable actions, for example,are those which have a precondition which is true with respect to the currentstate of the world. Or one could ask for all those actions which ful�ll a particulargoal. All those answers are implicitly encoded in the action hierarchy and canbe inferred by the classi�er without much additional e�ort.Consider the following fraction of a simpli�ed action hierarchy as showngraphically in �gure 5. Let us assume that all transfer actions change the loca-tion attribute of their action object2, referenced here by the function has-action-object. The action complete-transfer inherits all properties (slots, pre- andpostcondition, etc.) of transfer. The most relevant di�erence between theseactions is, that the latter is de�ned to perform a complete transfer of the actionobject while specializing the former one. complete-fill is again more speci�cbecause this action assumes that the target container is empty.Our work showed that one should be able to express conditions about at-tributes which are not known explicitly at time of description. This is usefulin order to express abstract knowledge (consider an action change for exam-ple), shared by many di�erent actions, but rei�ed by di�erent attributes (e. g.transfer, change-temperature). At the hierarchical level of change we haveto abstract from the attribute we want to change because this could be eitherhas-location, has-temperature or others. Nevertheless we want to specify pre-and postconditions for this abstract action. However, this requires second orderfeatures because we need to work with referenced relations, which are predicatesin fact.3 Second order features are not present in ordinary description logic sys-2 An action object, i.e. the object whose property is changed by an action, should notbe confused with an instance of the category 'action'.3 What we actually need is unquali�ed existential quanti�cation on predicates.



tems. In PowerLoom (as well as in KIF [GF92]) this can be done via the holdspredicate4. The abstract action change could then look as in �gure 6.5(defaction change (action):slots ((affected-attribute :type RELATION)(has-new-value :type UNKNOWN)(has-old-value :type UNKNOWN)):precondition (holds (affected-attribute ?self)(has-action-object ?self)(has-old-value ?self)):postcondition (holds (affected-attribute ?self)(has-action-object ?self)(has-new-value ?self)))Fig. 6. De�nition of changeThe action transfer could then be de�ned as a specialization of changeinheriting all slots, pre- and postconditions of change. According to the actionhierarchy of �gure 5 we de�ne complete-fill (which is itself an indirect de-scendant of transfer) in �gure 7.(defaction transfer (change):constraints (= (affected-attribute ?self) has-location))(defaction complete-fill (complete-transfer):slots ((has-new-value :type container)(has-old-value :type container)):precondition (and (empty (has-new-value ?self))(>= (capacity (has-new-value ?self))(amount (has-action-object ?self)))):postcondition (empty (has-old-value ?self))Fig. 7. De�nition of transfer and complete-fillDue to the inheritance of the action parameter, pre{ and postcondition andconcretion of the a�ected attribute in transfer, the action complete-fill hasactually the internal de�nition, given in �gure 8 for the sake of completeness.4 The semantics of holds is de�ned in KIF and PowerLoom in the following way: If� denotes a relation, then the sentence (holds � �1 ... �k) is true if and only ifthe list of objects denoted by �1,...,�k is a member of that relation.5 For sake of simplicity we omit all potential actions which may exist in the hierarchybetween action and change.



(defaction complete-fill (complete-transfer):slots ((has-action-object :type (and stuff thing))(has-new-value :type container)(has-old-value :type container)):precondition (and (empty (has-new-value ?self))(has-location (has-action-object ?self)(has-old-value ?self))(>= (capacity (has-new-value ?self))(amount (has-action-object ?self)))):postcondition (and (empty (has-old-value ?self))(has-location (has-action-object ?self)(has-new-value ?self))))Fig. 8. Actual de�nition of complete-fillIntuitively, the semantics of actions in general, and pre- and postconditionsin particular, are straightforward with respect to PowerLoom semantics. Pre-and postconditions are semantically di�erent from ordinary slots or relations forat least two reasons. First, there is an inherent relationship between them inthe sense of a temporal ordering. Second, they characterize the action conceptby expressing conditions about an instance (the action object) di�erent fromthe action concept itself. Consequently the relationship between two actionshas more dimensions than the relation between ordinary concepts. As a result,there are di�erent subsumption relations between actions conceivable [LRn97].The keywords :precondition and :postcondition were introduced in order toexpress these di�erences syntactically.6 Related workWith respect to the analysis of substances, the distinction between count andmass expressions has for a long time been a subject in linguistic and philosophicalliterature (for an overview cf. [PS89]). The ontological distinction between thingand stu� motivated by intrinsic and extrinsic properties is adopted by manyauthors, for instance in the AI textbook of [RN95]. There exist many approachesfor modelling special kinds of substances for domains which are motivated bythe role substances play in certain application areas (e.g. the Plinius ontologyfor ceramic materials [vdVSM94]).Concerning the modelling of actions, a system for the representation of ac-tions and plans in a description logic (Rat { representation of actions usingterminological logics, [HKNP92]) was developed in the WIP project [WAB+92].Pre- and postconditions of atomic actions are described by using a subset of theunderlying description logic. They de�ne conjunctions of feature restrictions,agreements, and disagreements. However, Rat does not support the specializa-tion of actions, as it is not possible to de�ne similar actions as special cases of ageneral action. In contrast to the Rat sytem, actions in Clasp [DL91] as well



as in T-Rex [WL92] are primitive non-decomposable units. Yet, their languagefor composing plans is much richer. Another approach using Allen's temporalconstraints is proposed in [AF97]. Action specialization is not possible in any ofthese systems.The modelling of actions related to substances has been investigated by[Ter95] in the broader context of ontologies concerning processes or causes ande�ects. Especially the production or consumption of stu� has been treated butwithout considering the individuation problem for all physical states. PatrickHayes was the �rst to de�ne a detailed ontology for liquids [Hay85]. He solvedthe individuation problem for liquids by referring to a container and discussedactions by de�ning functions for modelling change and movements. He did, how-ever, only consider what we call substance-preserving actions. [Dal92] analysesactions related to substances in the context of recipes. He argues that any massobject can be converted into a countable object by packaging operations. Furtherhe proposes a representation for actions which admit decomposition and plan-ning. [NH98] have created an ontology for the domain of experimental molecularbiology where both substances and processes play a major role. In this domain,it is necessary to track substances through a series of experimental processesincluding transformations, which are modelled with the help of object histories.None of the proposals just mentioned is able to de�ne actions as a specializa-tion of abstract actions. For the individuation of substances we have shown thatall kinds of substances (especially in di�erent physical states) can be treateduniformly in an ontology by a factorisation into an 'intrinsic' part (the stu� hi-erarchy) and an 'extrinsic' part (the thing hierarchy). One might not need thisgeneral approach for speci�c application domains but ignoring it could makeextensions to include other kinds of substances very di�cult.7 Summary and outlookIn this paper we have described a proposal for the individuation of substancesand for the modelling of actions in dynamic contexts. Due to technical reasons(the implementation status of PowerLoom is still very unstable and incomplete)up to now we have not been able to fully implement our ideas in a more or lesscomplete ontology especially with respect to actions. Nevertheless we considerour approach an important step towards an ontology for substances and relatedactions.Aspects similar to the individuation problem for substances can be found inother domains. The action of assembling a (technical) object from its parts willresult in the creation of a corresponding instance. On the other hand, disassem-bling an object { e.g. for recycling { has the e�ect that the lifecycle of the objectends and the instance of the composite object ceases to exist.There are some subtle issues related to the questions of what constitutesthe identity of an instance and when the identity of an instance should change.Some even lead to paradoxa. For example we probably do not want to give upthe identity of a non-trivial object (e.g. a car) when we replace a minor part



of it (e.g. a spark-plug). But what about the case { already discussed by Greekphilosophers { where we would step by step replace all parts that make up acompound object?A related question with respect to instances of a substance: Assume thata 
uid in a container continuously looses small amounts of substance. Will wecreate a new instance when we re�ll the more or less insigni�cant amount lost?Is there a di�erence to doing a signi�cant �ll-up (e.g. when more than half ofthe required amount has to be re�lled)?As often in issues of modelling there is no single and simple answer to thesequestions. The adequacy of the chosen granularity of a model has to be judgedfrom the perspective of the application and the inferences needed. For the moreabstract levels of an ontology this gives support for a `strategy of least commit-ment', i.e. only those decisions should already be �xed on the ontological levelthat will not vary between di�erent applications.References[AF97] Alessandro Artale and Enrico Franconi. A temporal description logic forreasoning about action and plans. In Journal of Arti�cial IntelligenceResearch, 1997.[BKMW90] J. Bateman, R. Kasper, J. Moore, and R. Whitney. A general organizationof knowledge for natural language processing: the penman upper model.Technical report, USC/ISI, 1990.[Dal92] Robert Dale. Generating Referring Expressions, Constructing Descrip-tions in a Domain of Objects and Processes. MIT Press Cambridge, Mas-sachusetts, 1992.[DL91] Premkumar T. Devanbu and Diane J. Litman. Plan-based terminologicalreasoning. In J. F. Doyle, R. Files, and Erik Sandewall, editors, Principlesof Knowledge Representation and Reasoning, Proceedings of the SecondInternational Conference (KR '91), pages 128 { 138, Cambridge, MA, April1991. Morgan Kaufmann Publishers, Inc., San Francisco, CA.[FN71] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to theapplication of theorem proving to problem solving. Arti�cial Inteligence,2(3-4):189 { 208, 1971.[GF92] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange For-mat, V. 3.0, Reference Manual. Stanford University, June 1992.[Gru95] Thomas R. Gruber. Towards principles for the design of ontologies usedfor knowledge sharing. International Journal of Human Computer Studies,43:907 { 928, 5/6 1995. Also available as Technical Report KSL 93-04,Knowledge Systems Laboratory, Stanford University.[Hay85] Patrick J. Hayes. Formal theories of the commensense world, chapter Naivephysics I: Ontology for Liquids, pages 71{107. Ablex Publishing Corpora-tion, 1985.[HKNP92] J. Heinsohn, D. Kudenko, B. Nebel, and H. Pro�tlich. RAT: represen-tation of actions using terminological logics. Technical report, DFKI,Saarbr�ucken, 1992.



[LRn97] Thorsten Liebig and Dietmar R�osner. Action hierarchies for the auto-matic generation of multilingual technical documents. In R�emi Zajac, edi-tor, IJCAI-97 Workshop Ontologies and Multilingual NLP, Nagoya, Japan,August 1997. International Joint Conference on Arti�cial Intelligence.[Mac94] Robert M. MacGregor. A description classi�er for the predicate calculus. InProceedings of the Twelfth National Conference on Arti�cial Intelligence,pages 213 { 230, 1994.[Mey88] Bertrand Meyer. Object{oriented Software Construction. Prentice Hall,New York, 1988.[NH98] Natalya Fridman Noy and Carole D. Hafner. Representing Scienti�c ex-periments: Implications for Ontology Design and Knowledge Sharing. In15th National Conference on Arti�cial Intelligence (AAAI98), MadisonWisconsin, July 1998. AAAI Press.[PS89] Francis Je�ry Pelletier and Lenhart K. Schubert. Handbook of philosoph-ical logic, chapter Mass Expressions, pages 327{407. D. Reidel PublishingCompany, 1989.[RN95] Stuart Russel and Peter Norvig. Arti�cial Intelligence: A Modern Ap-proach, pages 241 { 243. Prentice Hall, 1995.[Ter95] Paolo Terenziani. Towards a causal ontology coping with the temporalconstraints between causes and e�ects. International Journal for Human-Computer Studies, 43(5/6):847{863, 1995.[vdVSM94] Paul E. van der Vet, Piet-Hein Speel, and Nicolaas J. I. Mars. The pliniusontology of ceramic materials. Workshop Notes ECAI'94 in Amsterdam,Workshop Comparison of Implemented Ontologies, pages 187 { 205, 1994.[WAB+92] W. Wahlster, E. Andr�e, S. Bandyopadhyay, W. Graf, and T. Rist. WIP:The Coordinated Generation of Multimodal Presentations from a CommonRepresentation. In A. Ortony, J. Slack, and O. Stock, editors, Communi-cation from an Arti�cial Intelligence Perspective: Theoretical and AppliedIssues, pages 121 { 144. Springer-Verlag, New York, Berlin, Heidelberg,1992.[Web97] Lars Webel. Modellierung eines Teilgebiets der Dom�ane Werksto�e f�urtechnische Produkte und Implementation in LOOM. Technical report,Otto-von-Guericke Universit�at Magdeburg, Institut f�ur Informations- undKommunikationssysteme, 1997.[Web98] L. Webel. Untersuchungen zur Modellierung von Substanzen. Diplomar-beit, Otto-von-Guericke Universit�at Magdeburg, 1998.[WL92] R. Weida and D. Litman. Terminological reasoning with constraint net-works and an application to plan recognition. In Nebel, Swartout, andRich, editors, Proceedings of Principles of Knowledge Representation andReasoning (KR'92), 1992.


