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Abstract. This paper presents an approach towards proba-
bilistic planning with continuous resources. It adopts stochas-
tic concepts for continuous probabilities and integrates them
into a STRIPS-based planning framework. The approach en-
ables the construction of plans that are guaranteed to meet
certain probability thresholds w.r.t. the consumption of crit-
ical resources. Furthermore, the consumption probabilities
of multiple resources can be accumulated and thus an over-
all probability for a successful execution of an aggregate plan
can be computed. We extend our approach to HTN-based
planning and show how heuristics can be derived that lead to
plans with a minimized average value/variance of their over-
all resource consumption.

1 Introduction and Motivation
Autonomous agents that act in alien environments are ex-
posed to a variety of unpredictable conditions and devel-
opments. These may lead to non-deterministic effects of
the actions taken and may in particular cause some uncer-
tainty w.r.t. resource consumption. The consumption of
resources can be mission-critical, however. Autonomous
spacecrafts, for example, have only a limited amount of pro-
pellant available and must carefully plan consuming activ-
ities in order to guarantee or maximize the mission’s suc-
cess. At present, the literature provides a variety of con-
formant and conditional planners, which are able to deal
with discrete non-determinism (see e.g. (Bertoliet al. 2001;
Goldman and Boddy 1994; Majercik and Littman 1998;
Peot and Smith 1992; Weldet al. 1998)). If continuous
resources, like energy, fuel, or propellant are involved, these
approaches are often less suitable, however. The reason is
that they require a (simplifying) discretized representation,
which is often too imprecise for an informative prediction
about resource consumption in actual real-world applica-
tions.

In this paper, we introduce an approach to handle un-
certain consumptions of continuous resources in planning.
We adopt the concepts for continuous probabilities and their
computations from stochastics and integrate them into a
standard STRIPS-based planning framework. The result-
ing probabilistic planning approach allows for an adequate
representation of continuous resources and their consump-

tion under uncertainty. The probabilities of resource con-
sumptions of single actions and action sequences can be ef-
ficiently computed during planning. This enables the con-
struction of plans that are guaranteed to meet certain proba-
bility thresholds w.r.t. the consumption of critical resources.
Furthermore, the consumption probabilities of multiple re-
sources can be accumulated. This allows for the compu-
tation of an overall probability for a successful execution
of an aggregate plan. Not only does this enable a qualified
decision if various alternative solutions are at hand, it even
suggests a useful pruning of the search space. As a conse-
quence, we extend our approach to HTN-based planning and
show how heuristics can be generated semi-automatically
that lead to the generation of plans with a minimized average
value and/or variance of a particular resource consumption.

The rest of the paper is organized as follows. Section 2 in-
troduces the basic notions of our probabilistic planning ap-
proach. In Section 3 it is shown how the computation of
resource consumptions can be integrated into a simple plan-
ning framework. We extend our approach to HTN planning
in Section 4 and show how the probabilities for resource
consumptions of abstract tasks are accumulated across var-
ious decomposition methods and along the task hierarchy,
respectively. Finally, we review related work in Section 5
and conclude with some remarks in Section 6.

2 Basic Definitions
Our planning formalism relies on the usual STRIPS repre-
sentations of states and operators. Astate is a finite set of
ground atoms. Anoperator o = (prec(o), add(o), del(o)) con-
sists of three such sets: thepreconditions and thepositive
andnegative effects, respectively. An operatoro is applica-
ble in a states iff prec(o) ⊆ s. The result of applying opera-
tor o = (prec(o), add(o), del(o)) in states is a stateresult(s,
o) = (s ∪ add(o)) \ del(o).

A plan p = 〈o0...on〉 is a sequence of operators
such that for every statesi, in which oi is applica-
ble, we have thatoi+1 is applicable inresult(si, oi),
where si+1 = result(si, oi) for 0 ≤ i ≤ n. A
plan p is then applicable in s0, and the resulting state



result(result(...result(s0, o0), o1)..., on) of p is denoted
by result(s0, p).

A planning problem is a triple (O, I, G), whereO is a
set of operators andI andG are sets of ground atoms, the
initial state and thegoal, respectively. A planp is a solution
of such a planning problem iffp is applicable inI andG ⊆
result(I, p) holds.

In stochastics, continuous events are modelled by contin-
uousrandom variables. A random variable X : Ω → IR
is a measurable function that maps the event spaceΩ onto
the real numbers IR. Thedistribution of X is described by a
probability density D : IR → IR, denoted byXD or X ∼ D.

The mean value µ = E(XD) of a random vari-
able, with densityD is defined as

∫ +∞
−∞ xD(x)dx and

the variance Var(XD) of a random variable is given as
E((XD)2)−E(XD). Thestandard derivation σX is defined
by
√

Var(XD); i.e. thevariance is also denoted byσ2.
A probability distribution F (τ) over a probability den-

sity D(x) is defined by the functionF (τ) :=
∫ τ

−∞D(x)dx.
GivenF (τ), probabilities for events can be computed as fol-
lows: Pr[XD < a] = F (a), for example, is the probability
of the “event”, that the value ofXD is less thena. The event
that the valueXD lies in the interval(a..b) is described by
a < XD < b, and the probability of this event is computed
by Pr[a < XD < b] = F (b)− F (a).

Random variables are specifications of resource con-
sumptions. They represent rigid random functions and do
not get bound to values like common logical variables. They
are calledrandom variables because the function value for
a preimage is not fixed. For example, suppose that the life
time of a MOS FET transistor is a random variableX with a
mean valueµ of 100 years and a varianceσ2 of 12 years. It
is known thatX is approximately normal-distributed∗. The
point in time when a specific transistor fuses cannot be pre-
dicted exactly but using the (known) distribution ofX we
can be sure by99.8% that the transistor works up to 90 years
without a failure.

The first step to handle continuous uncertain resources
in planning is to integrate random variables in the under-
lying representation formalism. To this end, we extend our
STRIPS-based operator description by adding to each oper-
ator o a set of random variablesrc(o). We also extend the
definition of a state by adding a set of random variables to
each state. Each such random variable represents the amount
of a resource available in that state.rc(o) is the resource
consumption containing a random variableoXri for every
resourceri ∈ R, whereR is supposed to be a set of resource
symbols. A random variableoXr specifies the consumption
of resourcer of operatoro. The density functionD of oX

ri

defines the distribution, thereby reflecting the uncertainty of

∗The normal-distribution has the probability density

ϕµ,σ2(x) = 1√
2πσ

e
− (x−µ)2

2σ2

the resource consumption. If an operatoro does not con-
sume a resourceri the respective random variableoX

ri has
a variance and amean value of zero.

Using random variables in planning has the advantage that
we can compute the probability of an over-allocation of a
resource prior to execution.

Often, interval arithmetic is used to represent an uncertain
consumption. However, using interval arithmetic, one can
only assert whether a plan will succeed (the sum of all upper
bounds of the respective intervals is less than the available
amount of the resource) or fail (the sum of the lower bounds
exceeds the resource). We cannot make quantitative or qual-
itative predictions for the case between these extremes. Ran-
dom variables, on the other hand, allow for exactly this kind
of assertions.

3 Computing the Resource Consumption of a
Plan

We assume that all random variables in a plan are stochas-
tically independent. The probability density of a plan is
calculated by the sum of all random variables in the plan.
Suppose we are given a domain model with one resource,
i.e. R = {r}, and let the operator sequenceo1, . . . , on be a
plan. oiX

r is the random variable which describes the con-
sumption of resourcer by actionoi. The density of the sum
of two random variablesoi

Xr
D1

andoj
Xr

D2
is defined as the

densityD
oi

Xr
D1

+oj
Xr

D2
which is calculated byconvolution:

Doi
Xr

D1
+oj

Xr
D2

(t) :=
+∞∫
−∞

D1(τ)D2(t− τ)dτ

=
+∞∫
−∞

D1(t− τ)D2(τ)dτ

In the general case, the computation of a convolution
is hard and time consuming. A restriction to normal-
distributed random variablesXN (µ,σ2)

relaxes this problem

and speeds up the planning process. This is because ifoi
Xr

are normal-distributed random variables with distributions
N(µoi,r, σ

2
oi,r) (denoted asoi

Xr ∼ N(µoi,r, σ
2
oi,r)), the fol-

lowing holds:

oiX
r ∼ N(µoi,r, σ

2
oi,r) :

∑
i

oiX
r ∼ N

(∑
i

µoi,r,
∑

i

σ2
oi,r

)

The density of the sum of normal-distributed random vari-
ables can be computed efficiently, because only2n real-
valued additions are necessary to convoluten densitiesDi.
The convolution is commutative and associative. This al-
lows to compute the overall resource density during plan
generation without constraining, e.g., the order in which op-
erators are inserted.

The initial amount of a resource is modelled by a random
variable with a positive mean value. This random variable



can have a variance of zero if the amount of the resource is
certain†.

An Example
Imagine a robot which is currently at positionA and has
initially 10 units of energy. The goal of the robot’s mission
is to drive over the open field to a stone at locationB and
get a sample for further analysis. A sample can be extracted
by either using a drill or a milling cutter.

To get distributions for the resource consumption of the
operators test data is used. The generated test samples
are evaluated by, e.g., themaximum likelihood estimation
(Daniels and Carrillo 1997) to construct approximative nor-
mal distributed densities.

The Planning Problem Suppose our domain model con-
tains the three actions:moveAtoB , milling , anddrill .
In the following we often use as abbreviation mo, mi, and dr.

moveAtoB prec(mo) ={at(A)}
add(mo)={at(B)}, del(mo)={at(A)}
res(mo)={moX

energy
N(−4,1)}

drill prec(dr) ={at(B)}
add(dr)={hasSample}, del(dr)={}
res(dr)={drX

energy
N(−4.5,2)}

milling prec(mi) ={at(B)}
add(mi)={hasSample}, del(mi)={}
res(mo)={miX

energy
N(−4.65,0.1)}
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Figure 1: Energy densities of the random variables of the
actions.

The initial state is given asat(A) with the initial re-
source value modelled byinitX

energy
N(10,0); σ2 is zero in this

case because this value is exactly known. The goal is
hasSample. Figure 1 shows the energy densities of the ac-
tions described above.

†A normal-distribution with variance zero is a distribution, not

a function. It is described by the constraints
+∞R
−∞

f(x)dx = 1 and

f(x) > 0 ∀x.

The Planning Process There are two possible plans
to solve the problem. The first plan contains the ac-
tions moveAtoB anddrill , the secondmoveAtoB and
milling . All actions have an uncertain normal-distributed
energy consumption.

The energy consumption of the first plan can be rep-
resented by the random variable(mo,dr)X

energy
N(−8.5,3) =

moX
energy
N(−4,1) + drX

energy
N(−4.5,2). To get the probability of a suc-

cessful execution we have to compute thePr function of the
eventX ≥ 0. ThePr function maps events likeX < 0 onto
a probability.

Pr[initX
energy
N(10,0) + (mo,dr)X

energy
N(−8.5,3) ≥ 0]

= Pr[(init,mo,dr)Y
energy
N(1.5,3) ≥ 0]

= 1− Pr[(init,mo,dr)Y
energy
N(1.5,3) < 0]

≈ 80.68%

This means, the plan will succeed with a probability of
80.68%. Suppose, the planner is given a threshold of 90%
for the lowest acceptable probability, it will reject this plan
and generate another one. This new plan has the two actions
moveAtoB andmilling . The probability of a successful
execution is:

Pr[initX
energy
N(10,0) + moX

energy
N(−4,1) + miX

energy
N(−4.65,0.1) ≥ 0]

= 1− Pr[(init,mo,mi)Y
energy
N(1.35,1.1) ≥ 0]

≈ 90.1%

This probability is greater than the threshold and the plan
can be accepted by the planner. Section 4 describes how a
planner can be guided to search for plans with minimalµ
andσ2.
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Figure 2: Probability density and distribution of the energy
consumption of the two generated plans.



Comparison with Interval Arithmetic In an interval
arithmetic approach instead, the resource consumption
would be represented by intervals which are symmetric to
the mean value and cover, for example, 90% of the pos-
sible events. With this constraints we would get the in-
terval [2.36, . . . , 5.65] for moveAtoB , [2.18, . . . , 6.83] for
drill , and[4.13, . . . , 5.17] for milling .

The consumption of the first plan would then be repre-
sented by[4.54, . . . , 12.48], the consumption of the second
plan by[6.49, . . . , 10.82]. It is impossible to make any pro-
found prediction about the success of the execution of the
plan this way, because the upper bounds of the intervals of
both plans are greater than the initial resource, which is 10.

Another advantage of random variables is the possibility
to compute cumulative probabilities. When using interval
arithmetic, an interval is computed for every resource. It al-
lows for a (rather weak) conclusion about the respective re-
source (certain over-allocation, certain non-over-allocation,
or no conclusion). The accumulation of an overall conclu-
sion concerning various resources is not supported. When
using random variables, we are able to deal with plans
that contain multiple uncertain continuous resources: Given
n = |R| resources as part of a domain model, the operators
in our model contain up ton random variables to describe
their resource consumption. Like in the example above, we
first compute the cumulative densityDi for every resource
ri ∈ R. Secondly, the probabilitypri

= Pr[Yri

Di
≤ 0] of an

over-allocation is determined as shown above.
In the last step the cumulative probability of the whole

plan can be computed. This covers also the probability of a
plan failure due to over-allocation. For this computation we
assume that all resourcesri ∈ R are independent. The prob-
ability for a successful execution of the planP is defined as
pplan :=

∏
i

(1− pri
).

4 Knowledge-based Planning and Heuristics
In contrast to disjunctive planners (e.g., partial order plan-
ners), planners like those based on theHierarchical Task
Network (HTN) paradigm make extensive use of domain
knowledge (see e.g. (Wilkins and desJardins 2001)). In gen-
eral, it is theseknowledge-based planners that are used in
real-world applications.

HTN planning (Erol 1995) relies on so-calledtasks and
task networks. Roughly, tasks correspond to operators,
while task networks correspond to plans. Taskst are either
abstract or primitive and task networks represent partially
ordered (abstract) plans. In our setting, primitive tasks are
the STRIPS-based operators introduced in Sections 2 and 3.
Abstract tasks are “abstract operators”, which can be step-
wise refined into task networks using so-called methods. A
method m = (t, tn) indicates thatt can bedecomposed
into the (abstract) plantn. Starting from an initial abstract
task, HTN planning performs the stepwise decomposition of

abstract tasks until a network is reached that contains only
primitive tasks. This network represents a plan solving the
initial task. (For further details see also (Biundo and Schat-
tenberg 2001)).

Decomposition methods are part of the domain model. By
representing legal decompositions of tasks, methods are a
means to encode additional domain knowledge. This knowl-
edge can be used to generate heuristics, which help to speed
up planning (Clementet al. 2001). In view of continuous re-
source consumption, we aim at heuristics that allow to find
plans with the highest probability for a successful execution.
So far, information about resource consumption is only pro-
vided with primitive tasks, however. This information has
to be propagated along the abstraction hierarchy in order to
enable the derivation of useful heuristics without enforcing
the generation of every possible primitive plan beforehand.

In this section we show how to extract heuristics for
monotonic continuous uncertain resource consumption out
of an HTN domain model. Monotonic resource consump-
tion means that the domain model contains only operators
that either consume the resource or leave it untouched.

One problem with generating heuristic values for resource
consumption represented through normal-distributed ran-
dom variables is that we have to deal with two valuesµ
andσ2 which cannot be minimized independently from each
other. Moreover, as shown in the example in Section 3, it is
not appropriate to reduce only the mean valueµ of a con-
sumption because a large variance can also cause a lower
probability for a successful plan execution (Daniels and Car-
rillo 1997). The first question is how to represent an under-
estimationYr of uncertain continuous resource consump-
tionsXr. We propose to use a random variable for this pur-
pose too. We choose asYr a variable that has the lowest
mean value and the lowest variance of all distributionsXr.
This is expressed using themin function:

min
(

oi
Xr

N(µi,σi)

)
:= Yr

N

„
max

i
µi,min

i
σi

«
min(oi

Xr) is an underestimation of alloi
Xr. In a second

step, abstract tasks have to be enriched by random variables
that represent these heuristic values. To this end, every task
is extended by one random variable for every uncertain con-
tinuous resource that is consumed by an operator that ap-
pears in any decomposition of this task.

The algorithm that generates the heuristic values works
bottom-up. All primitive tasks are associated with the ran-
dom variables of the respective operator definition. The al-
gorithm searches all task networks that contain only tasks
which are already associated with random variables. For
each such task network the consumption for every resource
is computed as it is done for a plan (cf. Section 3). As we
restrict ourselves to monotonic resource consumption, the
order in which the primitive tasks are executed can be ne-
glected. The consumption is stored in a random variable,



which is propagated to all tasks that are related to the task
network by a method.

After all task networkstn1, .., tnn into which a taskt
can be decomposed are processed, the underestimation for
t is computed bymin(tn1X

r, . . . , tnn
Xr), wheretni

Xr is a
propagated value for a resource in task networktni. This
is illustrated in Figure 3 where the abstract taskt can be
decomposed using one of the methodsm1, ...,m3. The pro-

t

t1 t2 t3

m1 m2 m3

Y = min ( X1, X2, X3 )

Figure 3: An example of the upward propagation

cess continues until a heuristic value has been computed for
each task. Since our domain model is supposed to contain
only non-recursive methods, termination of the algorithm is
obvious.

In order to compute its total consumption, each task
network is processed once. This means, the complexity
is O(m), wherem is the number of tasks in the largest
task network. Recall, that the computation of the convo-
lution is linear, when using normal-distributed random vari-
ables. For each task the heuristic value is computed using
the min(t1X

r, . . . , tnXr) function. This means2 · n com-
parisons have to be carried out to find the minimal mean
value and variance. So the complexity of the algorithm is
O(t · m + a · b), wheret is the number of task networks,
m is the number of tasks in the largest task network,a is
the number of abstract tasks, andb is the maximum num-
ber of methods for a task. This computation has to be done
for every resource separately, thus the complexity for cre-
ating heuristic values for allρ resources in a domain is
ρ ·O(t ·m + a · b) = O(ρ · t ·m + ρ · a · b).

The propagation algorithm can be used this way to ex-
tract underestimations for continuous resource consump-
tions for each abstract task. It provides the underestimations
as heuristic values in a domain analysis step prior to plan-
ning. During the planning process the heuristic values can
be used to prune the search space by rejecting decomposi-
tions that may lead to resource consumptions that are too
large or too uncertain.

5 Related Work
β-robust scheduling for single machines is presented in
(Daniels and Carrillo 1997), where the total flow time of

all scheduled jobs is minimized. In this context, information
is gathered about the execution time of single tasks and the
duration of the abstract action is estimated by a maximum
likelihood, the result of which is a random variable. A fast
heuristic function for scheduling performance is compared
with correct but slow computations, and it is shown how to
select the schedule which promises the best performance.

In a NASA challenge paper (Bresinaet al. 2002), a Mars
rover is used as an example to describe the problem of uncer-
tain continuous variables. There is also given an overview of
previous work on planning under uncertainty and the issues
are discussed why the discrete probability model of those
planners is generally not applicable to the presented rover
problem.

The Graphplan planning system has been extended to
handle contingencies with probability distributions that are
used to represent continuous uncertain resource consump-
tion (Deardenet al. 2002). In contrast to common plan-
ning problem descriptions, the planning problem has a set of
goals with usability annotations. The planner tries to max-
imize the usability of the whole plan by satisfying a subset
of the given goal set. To achieve this, the extended planning
algorithm first generates aseed plan which is incrementally
extended by contingency branches to reduce the probability
of failure and increase the usability of the plan.

A lot of work is done in the field of handlingdiscrete
probabilities in planning, of which we address that about
epsilon-safe planning here (Goldman and Boddy 1994). It
deals with the feature of uncertain sensing actions and intro-
duces an approach to generate anε-safe plan, which means
to generate a plan that has only a probability ofε to fail in
execution.

Our idea on heuristic propagation of resource consump-
tion is loosely based on (Clementet al. 2001), an approach
in which intervals on abstract tasks are used as a heuris-
tics function for resource consumption on the action layer.
But uncertain resources consumption in operators is not dis-
cussed.

6 Conclusion and Discussion
We have described an approach to handle uncertainty w.r.t.
continuous resource consumption in AI planning. Resources
are represented by continuous normal-distributed random
variables. By adopting appropriate stochastic concepts, the
consumption probabilities of multiple resources can be ac-
cumulated. With that, overall probabilities for the success-
ful execution of aggregate plans can be computed. The ap-
proach extends to hierarchical planning in a straightforward
way. We have shown how it can be embedded into an HTN-
based planning framework, where it allows for the derivation
of heuristics to guide the planning process towards solutions
that meet certain probability thresholds w.r.t. the consump-
tion of critical resources.

So far, our approach is restricted to monotonic resource



consumption and the use of non-recursive HTN methods. In
the following, we will briefly sketch how these restrictions
can be overcome.

The restriction to non-monotonic resource consumption
can easily be abandoned. The heuristic values can be com-
puted in exactly the same way as presented for monotonic re-
source consumption. However, the heuristic is much weaker
then. This is because the order in which resources are pro-
duced and consumed by tasks plays an important role. To
investigate this in detail, experiments are required. The re-
sults are expected to provide detailed information about the
cases in which the heuristic still works and cases for which
new heuristics have to be developed.

To extend the approach to recursive HTN methods is
somewhat harder. The reason is that the generation of
heuristic values can only be done if invariants for all recur-
sive methods (resp. the corresponding tasks networks) can
be provided. However, an automated generation of such in-
variants is not feasible. The question therefore is: Can recur-
sive methods be restricted in a way such that invariants can
be generated without restricting the expressiveness to much?
Alternatively, the user has to annotate the invariants by hand.

The approach presented here belongs to the class of con-
formant planners. It does not use sensors or conditional
branches. To extend our approach to conditional planning,
a conditional HTN planner is required. Another possibil-
ity would be to transfer the heuristic generation method to
a respective planning approach. In the case of continuous
resource consumption, the events possibly influencing the
execution of a plan are infinite, however. Therefore, it is
necessary to branch for intervals or just some quartile of the
random variable like it is discussed in (Bresinaet al. 2002).
The problem with splitting a random variable is to find an
appropriate density for the resulting intervals.

The approach we have presented in this paper will be im-
plemented in the context of a hybrid planning architecture
that integrates HTN and partial order causal link planning
(Biundo and Schattenberg 2001).
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