
Bridging the Gap Between Abstract and

Concrete Services

– A Semantic Approach for Grounding OWL-S –

Steffen Balzer and Thorsten Liebig

University of Ulm, Dept. of Artificial Intelligence, Germany
{balzer|liebig}@informatik.uni-ulm.de

Abstract. OWL-S [1] is one of the emerging standards for the semantic
description of web services in order to enable their automatic discovery,
execution and composition by software agents. An important task within
automatic execution of an OWL-S service is the bi-directional mapping
between semantically higher level OWL-S service parameter descriptions
and primitive XML Schema types of its grounding. OWL-S proposes to
utilize XSL Transformations (XSLTs) for the mapping between these rep-
resentation levels. However, this approach has a substantial shortcoming
due to the fact that one OWL model can have many different RDF se-
rializations whereas each requires a specific XSL stylesheet in the worst
case. This severely limits the practical applicability of OWL-S in general.
In this paper we present a simple approach of OWL-S parameter type
mappings on a semantical basis. We therefore define an RDFS ontology
of RDF Mappings that enable bi-directional mappings between OWL
and XML Schema types. We show how to integrate RDF Mappings into
the OWL-S grounding ontology and prove their feasibility by describing
our prototypical implementation.

1 Introduction

OWL-S1 is an ontology-based approach for the semantic description of web ser-
vices that is inspired by research in the field of the Semantic Web. It intends to
provide semantic markup that allows software agents to discover, execute, and
compose web services automatically. An executable OWL-S service description
consists of three parts: at least one service profile, exactly one process model,
and at least one service grounding.

The service profile provides a way to describe those services which are offered
by a provider, or those which are needed by a requester. In particular, the profile
can be used to provide information about the offering organization, the function
the service computes in terms of input, outputs, or conditions, and a set of
additional service properties.

The process model describes the execution of a web service in detail by spec-
ifying the interrelations of different execution steps down to the level of atomic

1 In the following we refer to the latest available version 1.0 of the OWL-S specification.

processes which are not further decomposable. In order to achieve the offered
service results an agent has to execute the corresponding process model step by
step considering all defined input/output dependencies and conditions.

The grounding of a web service specifies the details of how to access and
communicate with the service on a technical level. It enables the application of a
service by a mapping from an abstract specification of web service characteristics
given in the process model to a concrete specification in terms of a particular
protocol, message format, and serialization. Such a mapping approach has the
advantage of de-coupling higher level service descriptions from concrete message
specifications and therefore allows to layer on top of industry adopted standards
more easily.

The OWL-S specification exemplarily defines a grounding for process de-
scriptions to WSDL [2], which is the only type of developed grounding for
OWL-S so far. Figure 1 gives an overview over the classes and properties of
the grounding ontology for WSDL. In the following we focus on that highlighted

Fig. 1. The OWL-S grounding ontology

part of the grounding in figure 1, which is responsible for inputs and outputs
of atomic OWL-S processes. A specific instance of a WsdlGrounding contains
one WsdlAtomicProcessGrounding instance for each atomic process of the cor-
responding process model. The mapping of parameter types for each of them
is defined using rdf:Lists of Wsdl{Input|Output}MessageMaps. OWL-S considers
two ways of referring the appropriate OWL representations. If the web service
is an “OWL native speaker” the OWL class representing the parameter type is

referred directly by the property owlsParameter. For contemporary web services,
e. g. WSDL based services, the grounding has to establish a binding between
abstract inputs/outputs of OWL-S process steps and WSDL messages. This re-
quires a bi-directional mapping of OWL types into XML Schema types used in
WSDL communication protocols. The OWL-S specification proposes to use XSL
Transformations to convert OWL parameters into XML Schema and vice versa.

However, OWL is developed as a vocabulary extension of the Resource De-
scription Format (RDF). RDF is a data model whose models can be serialized
in XML syntax in many syntactically different but semantically equivalent ways.
As a result, the encoding of an OWL model in XML syntax is a one-to-many
mapping. Since XSLT is a pure syntactical approach it can not be used to pro-
vide a sufficient solution for mapping abstract to concrete services in general. In
this paper, we therefore propose an alternative, semantical approach for ground-
ing OWL-S services suitable for general use independent of any serialization
strategy. This approach is called the RDF-Mapping approach for OWL-S service
parameters in the following.

The remainder of this paper is organized as follows. The next section gives
a more detailed insight about the shortcomings of a XSLT-based grounding. In
section 3 we propose our RDF-Mapping approach. Here, we introduce our RDF
typemapping schema and provide corresponding transformation algorithms. Sec-
tion 4 shortly describes our prototypical implementation followed by a brief dis-
cussion of related work in section 5. We will end with some conclusions and an
outlook in section 6.

2 Grounding OWL-S Services with XSLT

The eXtensible Stylesheet Language Transformation [3] is a recursive program-
ming language that allows XML documents to be transformed from one schema
to another (e. g. see [4] for an introduction). XSLT follows a rule-based approach
utilizing pattern matching substitutions and is therefore sensible to the struc-
ture of the XML source document. As mentioned before, OWL documents are
used to specify a semantical model — usually called an ontology. An encoding
of such a model may result in many syntactically different serializations. This is
caused by mapping alternatives of OWL language elements to RDF graphs [5]
and serializations thereof.

Within the task of grounding an OWL-S service this issue comes into play
when linking parameters of OWL-S process steps with WSDL messages consist-
ing of XML Schema values. However, the direction of mapping plays an impor-
tant role here. As can be seen on the left hand side of figure 2, an output mapping
from a XML Schema definition to OWL (from a lower to a higher level descrip-
tion) is less problematical. Here, serialization is predetermined by the WSDL
parameter specification. In contrast, an input mapping, namely a mapping from
OWL to XML Schema, may result in different serializations (see right hand side
of figure 2). In order to guarantee general applicability this kind of mapping has
to provide a style sheet for every possible serialization. Even worse, the existence

Fig. 2. XSL Transformations from XML Schema into OWL and vice versa (output
mapping l.h.s., input mapping r.h.s.)

of nested relations or references results in an exponentially growing number of
serializations.

Obviously, this method for grounding services does not meet the criteria of
practicability and will very likely hamper the adoption of OWL-S at industry
scale. However, the most important lesson from the above is the fact that ground-
ing an OWL-S service has to be done on a semantical rather than syntactical
level. Such a semantical, RDF-based approach is introduced in the following.

3 RDF Mappings

Our approach to semantic type mappings utilizes a simple RDFS ontology called
the RDF Typemapping Schema to specify semantic dependencies between OWL-
S parameter types and their corresponding low-level data types in XML Schema.
Data transformations are performed by a specific algorithm. The declaration of
RDF Mappings and the corresponding algorithm will be discussed in detail in
this section.

3.1 RDF Typemapping Schema

RDF-Mapping documents define instances of classes specified by the RDF Type-
mapping Schema ontology which is shown in figure 3. They represent repositories
of RDF-mappings, where each particular RDF-Mapping can be referenced in a
message map of a service grounding using an URI, i.e. RDF-Mappings can easily
be shared by different groundings.

RDFMapping is the base class of all type mappings that can be instantiated
in an RDF-Mapping document. RDF mappings cover all XSD types that can be
defined based on the WSDL 1.1 recommended approach for encoding abstract
types using XSD [2]. XSD complex types which comply to SOAP compound
types (see [6] for details) are covered by the XSDComplexTypeMapping class.
XSD simple types which correspond to SOAP simple types are mapped with

the XSDSimpleTypeMapping class. SOAP arrays are used in WSDL type defini-
tions to specify value arrays. They play a special role due to the fact that they
have not been considered in the XML Schema specification. They are mapped
separately with the SOAPArrayTypeMapping class to allow a simple and straight
forward definition of the transformation algorithm (see section 3.2). RDF Map-
pings are defined using nestings of RDFMapping sub-classes. The structure of
RDF-Mappings is cloned from their corresponding XSD types which are refer-
enced by the property hasXSDType. The property hasNestedName is specified in
nested RDF Mappings to define the name of the corresponding nested XSD type
element2.

Fig. 3. RDFS ontology for the definition of RDF Mappings

RDF Mappings now exploit the fact that from an OWL perspective every
data value to be transformed corresponds to a filler for the owl:DatatypeProperty

class. On the XML Schema side such a value is an instance of an xsd:anySimple-

Type according to the XML Schema Datatype Specification [7]. This relationship
is modelled with the mapsTo property of an XSDSimpleTypeMapping. It refer-
ences the owl:DatatypeProperty of the corresponding OWL type definition. This
justifies the reason for having chosen RDF as representation formalism. Due to
the fact that an owl:DatatypeProperty is a sub-class of rdf:Property it can be used
as a valid range for a rdf:Property while this is not possible in OWL DL. The
fillerOf Property references the owl:ObjectProperty that connects OWL instances
representing complex and array values to their preceeding instances. Its only
purpose is to simplify the transformation algorithms.

Figure 4 shows an example of a simple RDF mapping. The Customer class
represents an OWL type that can be used as an OWL-S parameter in an abstract

2 This property is of practical use only and could be omitted because the indentifier
can be extracted from the XSD type definition. However, WSDL4J (see section 4)
which is used to parse the WSDL documents does not provide a programming model
of the WSDLTypes section.

service description. It references both XSD types like xsd:date and other OWL
types like ShippingAddress which itself aggregates XSD types in turn. The XSD
type on the side of the concrete service description has a flat structure, i.e. all
XSD types to be mapped are aggregated in one complex type by a sequence of
simple type elements. The RDF-Mapping now clones the structure of the Cus-

tomer XSD type and extends the XSD simple types by specifying a reference to
their corresponding OWL attributes of the Customer OWL type. The generation
of hierarchical OWL instances resp. flat XSD values is considered by the specific
transformation algorithms which will be discussed in the next section.

Fig. 4. Example of an RDF Mapping

The following enumeration describes all information sources that are required
to perform a transformation along with their responsibilities:

1. WSDL documents contain the definitions of the XSD types in their WSDL
types section. These definitions serve as structural reference for generating
parameter instances required by concrete services.

2. OWL ontologies contain the definitions of the OWL types that will be
mapped to their XSD equivalents. They are used as a structural reference for
generating OWL instances from the results returned by a concrete service.

3. RDF-Mappings establish a link between OWL and XSD type definitions
enabling bijective type mappings as described above.

4. OWL-S groundings reference in their WsdlMessageMaps both the OWL pa-
rameter type of the abstract service indirectly with owlsParameter and the
corresponding RDF-Mapping with rdfMapping. Thus, embedding an RDF-
Mapping in a grounding finally connects the XSD type to its OWL type.

3.2 Transformation Algorithm

This section describes how a type mapping is performed on the basis of the infor-
mation sources specified above. Figure 5 shows the abstract design of the OWL-S
Type Mapping Module (TMM). The grounding of a service forms the root of the
information model. The TypeMapperFactory class which aggregates the infor-
mation model on its creation by obtaining a reference to the grounding is then
used by the programmer to instantiate so called type mappers that implement
the specific transformation algorithms for the particular RDF-Mappings. The
mappings of inputs and outputs require different algorithms. Thus, considering
all sub-classes of RDFMapping six different type mappers are required3.

Fig. 5. Abstract design of the OWL-S Type Mapping Module

3 Object classes that implement the different type mappers are named according to
the schema {Simple|Complex|Array}{Input|Output}TypeMapper

The basic algorithm can be divided into two phases. In phase I concrete in-
stances of the type mappers are generated recursively by calling either createIn-
putTypeMapper() or createOutputTypeMapper() of the TypeMapperFactory

with the corresponding WSDLMessageMap URI. Algorithm 1.14 shows exem-
plarily the creation of InputTypeMappers. OutputTypeMappers will be created
analogically. In both cases the algorithm will produce a type mapper hierarchy
reflecting the structure of the RDF-Mapping and the XSD type definition. The
creation methods return a reference to the root type mapper which delivers the
interface for the transformation in phase II. During instantiation a type mapper
collects required data from the information model, stores it in instance variables
and instantiates its direct sub-type mappers. Arrays are represented in OWL
using a special list construction similar to the one proposed in the OWL-S 1.0
DL ontologies5. Acording to the definition array elements cannot be instances of
XSD datatypes because owl-list:first is defined as object property. Therefore, no
SimpleTypeMapper needs to be considered for arrays (see line 38).

In phase II the transformation is performed by calling either the trans-

formToOWL() or the transformFromOWL() method of a root type mapper. The
transformation is propagated recursively through the type mapper hierarchy
constructed in phase I. transformToOWL() which must be implemented by an
output type mapper transforms an XSD value into an OWL instance, asserts
the new instance in the provided knowledge base, and returns its URI. trans-
formFromOWL() must be implemented by input type mappers and returns the
transformed XSD value representation of a given URI of an OWL instance that
resides in the provided knowledge base. The next two sections describe the ab-
stract transformation algorithms of each type mapper in more detail.

From OWL to XML Schema Algorithm 1.2 shows the transformation pro-
cedure for this direction exemparily for complex and simple types. The value
containers (see lines 5 and 14) represent an abstract model of an XML tree con-
taining the XSD values that will be generated during transformation. A value
container can be implemented in different ways, e.g. as XML document object
model or as nested JavaBeans (see section 4 for more details). The integrate()
method (see line 9) integrates nested value containers resp. XML trees into the
tree of the next higher level. The root value container can then be used to serialize
the complete model. The generateContainerRepresentation()method finally
creates a representation of the OWL datatype value that can be integrated into
the value container. Thus, the implementations of these two methods depend on
the chosen implementation for the value containers. An implementation based
on JavaBeans is presented in section 4.

The determineDataOwner()method (see line 23) traverses the assertion tree
of the OWL root instance to determine the instance that forms the direct prede-
cessor of the OWL datatype property that refers to the value to be transformed.
This instance is called data owner.

4 Error handling has been omitted in favour of brevity
5 http://www.daml.org/services/owl-s/1.0DL/generic/ObjectList.owl

From XML Schema to OWL Algorithm 1.3 shows the procedure for mapping
XML Schema values to OWL instances for complex and simple types again. The
transformToOWL() method utilizes the mapping information collected in phase
I to recursively generate an OWL instance tree from a given root value container
in the provided knowledge base by calling the appropriate type mappers for all
value containers nested in the root.

The root type mapper first asserts the instance tree in the given knowledge
base by invoking the createInstanceTree() method (see lines 8 and 20). It
asserts all necessary OWL instances and object relations according to the OWL
class definition. The leaves, i.e. the datatype properies and their fillers, how-
ever, are avoided. They will be asserted when their corresponding SimpleOut-

putTypeMappers will be called. createInstanceTree() could also cache data
owners and object owners6 to speed up execution of the following two methods.

The methods retrieveDataOwner() and retrieveObjectOwner() play a
crutial role in expanding a flattened XSD value. Just like detemineDataOwner()
for inputs, retrieveDataOwner (see line 23) returns the OWL instance from the
generated instance tree a SimpleOuputTypeMapper asserts its transformed value
to. The retrieveObjectOwner() method serves a dual purpose. Firstly, it is
used to determine the OWL instance a ComplexOutputTypeMapper corresponds
to. This instance is used as new root when calling the sub-type mappers. This
way the instance tree is only traversed once in an incremental fashion. Secondly,
an ArrayOutputTypeMapper determines its corresponding predecessor in the in-
stance tree to be able to assert its array elements.

The asserted OWL instances can then be serialized using standard serializa-
tion methods provided by the DL knowledge base. The algorithm pursues a lazy
assertion strategy, i.e. it only asserts relations and OWL instances that reside
on paths from the root instance to mapped values.

3.3 Conceptual Restrictions

In order to achieve termination and practical soundness of the above transfor-
mation algorithms the following restrictions have been assumed7.

1. Due to the strict hierarchical structure of RDF-Mappings and XSD types,
cyclic definitions of OWL types are not allowed, i.e. a Customer for example
cannot refer to a Customer as a property filler within its definition.

2. The mapsTo property of a XSDSimpleTypeMapping is only allowed to point
to directly or indirectly reachable attributes of the OWL type referenced in
the grounding. In other words, all referenced attributes in an RDF-Mapping
must have the same OWL type as direct or indirect predecessor and this
OWL type is referenced as OWL-S parameter type in the corresponding
WsdlMessageMap.

6 Analogical to data owners, an object owner determines the preceeding instance of
an object property.

7 A refinement of the mapping model and its algorithms may lead to less restrictive
assumptions.

3. Currently, a data or object owner is determined by executing a breadth-first-
search on the assertion graph of an OWL instance. Therefore, the occurence
of the OWL attribute assertion must be unique within the whole assertion
graph. As a consequence, sets cannot be defined simply by asserting the same
attribute several times with different data fillers8.

4. The hierarchical structure of an RDF-Mapping must exactly match the struc-
ture of the corresponding XSD type referenced via hasXSDType to ensure the
correct generation of the XML representation of the XSD value.

5. Fillers of hasNestedName must match with the parameter names of the corre-
sponding nested XSD types. A mismatch would lead to incorrect tag names
within an XSD value representation.

6. An instance of XSDSimpleTypeMapping must own exactly one mapsTo prop-
erty. Otherwise the mapping would be defined ambiguously.

It can easily be observed that the consistency of RDF-Mappings w.r.t. the
above restrictions cannot be verified only on the basis of RDFS semantics. How-
ever, all restrictions can be tested using special purpose algorithms.

4 Implementation

This section describes the prototypical implementation of the proposed type
mapping approach. It is part of an OWL-S process execution engine that has
been developed by the authors. Figure 6 shows the concrete architecture of the
TMM.

Fig. 6. Concrete architecture of the OWL-S Type Mapping Module

The different information sources are interfaced to Java with the following
components: OWL domain models and OWL-S service descriptions are managed

8 This restriction can be eliminated by saving the complete property chain in the
RDF-Mapping e.g. as rdf:Seq.

by the description logics reasoning system Racer [8] which is accessed via its Java
API JRacer2. RDF-Mappings and WSDL documents can be shared by differ-
ent groundings. Therefore, they are loaded into caches. The Jena framework9

provides graph based access to RDF-Mappings and basic RDFS inference. The
WSDL4J 10 package delivers the java programming model for WSDL documents.

The bean repository plays a central role in the implementation of the value
containers that have been introduced in section 3.2. In the TMM value con-
tainers and their nestings are implemented as JavaBeans in order to provide
seamless integration into the AXIS Web Service Framework11. The beans are
generated and compiled as required using Axis’ WSDL2Java tool. Hereafter, the
bean classes are loaded dynamically into the bean repository. Access to bean
instances is realized via Java Introspection. The bean instances consumed or
returned by the type mappers can directly be used in the Axis framework with
its default bean serializers.

5 Related Work

The task of grounding OWL-S has rarely been addressed so far. Two more or
less distantly related approaches of mediating XML data on a conceptual level
are shortly analysed in the following.

The author of [9] proposes an RDFS meta-ontology called RDF Transforma-
tions (RDFT) for B2B integration. The services that a business provides and
the documents which must be exchanged in order to invoke them are assumed
to be represented in WSDL descriptions and their included XML Schema def-
initions. RDFT utilizes the Process Specification Language PSL12 to augment
WSDL with basic temporal semantics. Parts of the OMG’s Common Warehouse
Model (CWM)13 have been adopted to describe mappings of RDF schemas and
specific concepts like PSL events, WSDL messages, vocabularies etc. Therefore,
different kinds of RDFT Bridges are specified. RDFBridges like Class2Class or
Property2Property map between different RDF schemas whereas XMLBridges like
Tag2Class or Tag2Property map between XML and RDF elements. If it is not fea-
sible to specify the correspondence of two elements directly, XPath expressions
can be used. Bridges are aggregated into Maps which are parsed to generate XSL
stylesheets that are then used for XML document transformations. Despite the
fact that RDFT does not support mappings with OWL classes it is more mature
in satisfying business integration needs compared to our approach. It covers e.g.
one-to-many and many-to-one document transformations which are not consid-
ered in RDF-Mappings, yet. However, transformations are still intended to be
executed on a syntactic level by utilizing XML transformation languages and
therefore still depend on serialization variants. In contrast, RDF-Mappings are

9 http://www.hpl.hp.com/semweb/jena.htm
10 http://oss.software.ibm.com/developerworks/projects/wsdl4j
11 http://ws.apache.org/axis/
12 http://www.mel.nist.gov/psl/
13 http://www.omg.org/cwm/

completely serialization independent due to their model-based transformation
algorithms.

The Piazza system [10] provides an architecture to answer queries over het-
erogeneous XML data resources distributed in a peer-to-peer network. The XML
data (i.e. XML schema instances) and the domain knowledge (i.e. RDF/OWL
ontologies) of different network nodes are integrated in a pairwise resp. point-to-
point manner by defining mappings in a special language that utilizes XQuery.
The queries can be issued from a node using its local schema and domain model.
A query rewriting algorithm transforms the query using the defined mappings so
it can be executed on neighbour nodes using their local model. Piazza however is
focused on XML data retrieval and the proposed language is quite complicated.
The mediation of data for execution of XML web services which is the main
purpose of RDF Mappings has not been addressed.

6 Conclusion and Future Work

OWL-S aims to provide semantic markup in order to enable agents to discover,
invoke, and compose web services. However, in the course of realizing a vertical
prototype of an OWL-S web service we have been faced with a couple of serious
difficulties on different conceptual levels of the OWL-S specification.

One of the major problems concerning web service invocation has been re-
lated with the WSDL grounding of OWL-S services. The OWL-S specification
proposes to use XSLT for mapping between abstract service parameters and con-
crete WSDL messages. It has turned out, that this approach is not practical in
general because of serialization variants. Our RDF-Mapping approach is based
on a semantic mapping and is therefore independent from any syntactical issues.
This mapping has been sucessfully implemented and tested. Even though the
RDF-Mapping approach worked very well with our test cases we have not made
any extensive evaluations or realistic benchmarks yet. However, our algorithms
have been developed in a simple straightforward manner without exploiting any
optimizations, yet.

A major feature of our approach is the fact, that the generation of RDF-
Mappings can be automatized to a maximal extent. In fact, an automatic OWL-
S service grounding via the RDF-Mapping approach only requires a manual
specification of the mapsTo and fillerOf properties.

Moreover, we have shown that data transformations on a semantic level can
be realized with structurally very simple descriptions like RDF-Mappings. The
usage of additional languages like XSLT, XPath or XQuery could be omitted.
Therefore, RDF-Mappings are simple to learn and easy to understand.

As a logical consequence, we aim to publish the RDF-Mapping system as
a standalone module. Beyond that, we plan to develop a simple GUI-tool for
intuitive and semi-automatic generation of RDF-Mappings. However, the devel-
opment of the system is still at a very early stage and to be able to serve more
realistic B2B scenarios current limitations of the approach as desribed in section
3.3 must be eliminated.

References

1. Ankolekar, A.: OWL-S: Semantic Markup for Web Services (2003) http://www.

daml.org/services/owl-s/1.0/owl-s.pdf.
2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-

scription Language (WSDL) 1.1. Technical report, Word Wide Web Consortium
(2001) http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

3. Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommendation (1999)
4. Kay, M.: XSLT Programmer’s Reference. 2nd edn. Wrox (2001)
5. Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-

mantics and Abstract Syntax (2004) W3C Recommendation.
6. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.,

Thatte, S., Winer, D.: Simple Object Access Protocol (SOAP) 1.1. Technical
report, Word Wide Web Consortium (2000) http://www.w3.org/TR/SOAP.

7. Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes. Techni-
cal report, Word Wide Web Consortium (2001) http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/.
8. Haarslev, V., Möller, R.: Description of the Racer System and its Applications.

In: Proc. Int. Workshop on Description Logics (DL-2001), Stanford, USA (2001)
9. Omelayenko, B.: RDFT: A Mapping Meta-Ontology for Business Integration.

In: Proc. of the Workshop on Knowledge Transformation for the Semantic Web
(KTSW 2002) at the 15th European Conference on Artificial Intelligence, Lyon,
France (2002)

10. Halevy, A.Y., Yves, Z.G., Mork, P., Tatarinov, I.: Piazza: Data Management In-
frastructure for Semantic Web Applications. In: Proc. of the 12th International
Conference on World Wide Web (WWW 2003), Budapest, Hungary (2003)

Algorithm 1.1 Phase I: Type mapper creation

1: mm ⇐ grnd:wsdlInputMessageMap

2: pn ⇐ parameter name as filler of mm.grnd:wsdlMessagePart

3: rm ⇐ RDF-Mapping as Filler of mm.grnd:rdfMapping

4:
5: TypeMapperFactory.createInputTypeMapper(mm, pn, rm)
6: ct ⇐ OWL type as filler of mm.grnd:owlsParameter.proc:parameterType

7: if rm is instance of tm:XSDSimpleTypeMapping then

8: return new SimpleInputTypeMapper(rm, pn, ct)
9: else if rm is instance of tm:XSDComplexTypeMapping then

10: return new ComplexInputTypeMapper(rm, pn, ct)
11: else if rm is instance of tm:SOAPArrayTypeMapping then

12: return new ArrayInputTypeMapper(rm, pn, ct)
13: end if

14:
15: ComplexInputTypeMapper.<constructor>(rm, pn, ct)
16: this.rm ⇐ rm; this.pn ⇐ pn; this.ct ⇐ ct

17: this.nn ⇐ nested name as filler of rm.tm:hasNestedName

18: this.op ⇐ OWL object property as filler of rm.tm:fillerOf

19: this.xt ⇐ XSD complex type as filler of rm.tm:hasXSDType

20: S = {}: Set of all sub-type mappers
21: for each Filler e of rm.tm:hasElement do

22: if e is tm:XSDSimpleTypeMapping then

23: s ⇐ new SimpleInputTypeMapper(e, null , null)
24: else if e is instance of tm:XSDComplexTypeMapping then

25: s ⇐ new ComplexInputTypeMapper(e, null , null)
26: else if e is instance of tm:SOAPArrayTypeMapping then

27: s ⇐ new ArrayInputTypeMapper(e, null , null)
28: end if

29: this.S ⇐ S ∪ {s}
30: end for

31:
32: ArrayInputTypeMapper.<constructor>(rm, pn, ct)
33: this.rm ⇐ rm; this.pn ⇐ pn; this.ct ⇐ ct

34: this.nn ⇐ nested name as filler of rm.tm:hasNestedName

35: this.op ⇐ OWL object property as filler of rm.tm:fillerOf

36: this.oe ⇐ OWL element type as range of ct.owl-list:first

37: this.xt ⇐ XSD content type as filler of rm.tm:hasContentType

38: if xt is instance of tm:XSDComplexTypeMapping then

39: this.s ⇐ new ComplexInputTypeMapper(xt, ”” , oe)
40: else

41: this.s ⇐ new ArrayInputTypeMapper(xt, ”” , oe)
42: end if

43:
44: SimpleInputTypeMapper.<constructor>(rm, pn, ct)
45: this.rm ⇐ rm; this.pn ⇐ pn; this.ct ⇐ ct

46: this.nn ⇐ nested name as filler of rm.tm:hasNestedName

47: this.oa ⇐ OWL attribute as filler of rm.tm:mapsTo

48: this.xt ⇐ XSD datatype as range of this.oa

Algorithm 1.2 Phase II: Transformations from OWL to XML Schema

1: KB ⇐ knowledge base holding the OWL instance
2: i ⇐ URI of the OWL instance
3:
4: ComplexInputTypeMapper.transformFromOWL(KB, i)
5: Co ⇐ outer value container for nested elements
6: for each s ∈this.S do

7: j ⇐ determineDataOwner(KB, s, i)
8: Ci ⇐ s.transformFromOWL(KB, j)
9: integrate(Ci, Co)

10: end for

11: return Co

12:
13: SimpleInputMapper.transformFromOWL(KB, i)
14: C ⇐ value container for leaf element
15: v ⇐ OWL value as attribute filler of i.(this.oa)
16: r ⇐ generateContainerRepresentation(this.xt, v)
17: return C ∪ {r}

Algorithm 1.3 Phase II: Transformations from XML Schema to OWL

1: KB ⇐ target knowledge base
2: Co ⇐ root value container
3: ip ⇐ URI of the preceeding OWL instance or null
4:
5: ComplexOutputTypeMapper.transformToOWL(KB, Co, ip)
6: i0 ⇐ null
7: if this.nn = null then

8: createInstanceTree(KB , this.ct)
9: i0 ⇐ ip

10: else

11: i0 ⇐ retrieveObjectOwner(KB, i, this.op)
12: end if

13: for each (Ci, s) : Ci ∈ Co and s ∈ this.S and s sub-type mapper of Ci do

14: this.s.transformToOWL(KB, Ci, null)
15: end for

16: return i0
17:
18: SimpleOutputTypeMapper.transformToOWL(KB, Co, ip)
19: if this.nn = null then

20: createInstanceTree(KB , this.ct)
21: end if

22: v ⇐ extract XSD simple value from Co)
23: i ⇐ retrieveDataOwner(KB, ip, this.oa)
24: assert attribute relation i.(this.oa) {v} in KB
25: return ir

