
OntoTrack: Combining Browsing and Editing
with Reasoning and Explaining for OWL Lite

Ontologies

Thorsten Liebig and Olaf Noppens

Dept. of Artificial Intelligence
University of Ulm

D-89069 Ulm
{liebig|noppens}@informatik.uni-ulm.de

Abstract. OntoTrack is a new browsing and editing “in-one-view”
ontology authoring tool that combines a hierarchical graphical layout
and instant reasoning feedback for (the most rational fraction of) OWL
Lite. OntoTrack provides an animated and zoomable view with con-
text sensitive features like click-able miniature branches or selective de-
tail views together with drag-and-drop editing. Each editing step is in-
stantly synchronized with an external reasoner in order to provide ap-
propriate graphical feedback about relevant modeling consequences. The
most recent feature of OntoTrack is an on demand textual explanation
for subsumption and equivalence between or unsatisfiability of classes.
This paper describes the key features of the current implementation and
discusses future work as well as some development issues.

1 Introduction

High quality ontologies are crucial for the Semantic Web [1]. Unfortunately, the
task of building and maintaining mature ontologies turned out to be difficult even
for KR experts. The analysis of three different efforts of formalizing knowledge
for a given domain within the Halo project [2] may serve as a prime example
here. This evaluation showed, that up to 75 % of the system failures were caused
by modeling problems which in most cases were concerned with the act of writing
down non-conflicting axioms [3]. In order to avoid those modeling problems the
authors suggest to enforce development of convenient and interactive tools for
building, maintaining and evaluating ontologies.

However, many ontology authoring tools currently use functionally disjunct
interfaces for either editing, browsing, or reasoning with ontologies. Editing in-
terfaces commonly use list-based representations for selection of classes or prop-
erties together with predefined forms and pop-up windows for manipulation in
an additional display area. From a usability perspective, those interfaces inher-
ently have substantial drawbacks concerning search and navigation speed as well
as user orientation and editing efficiency in our opinion [4]. First, the number of
visible classes is limited by the screen height requiring scrolling even for middle

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 244–258, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

OntoTrack 245

sized ontologies. Second, because of the tree centered representation, multiple
inheritance needs to be approximated with help of “cloned” classes appearing
in the list of descendants of every superclass. Third, accessing or selecting other
classes during editing temporally requires additional expand and contract style
selection lists for a class hierarchy already on screen.

In order to compensate some of those deficits most editors include additional
browsing interfaces based on layout techniques like nested interchangeable views
[5], venn diagrams [6], spring embedding [7], or hyperbolic trees [8], [9]. How-
ever, the majority of those interfaces do not allow for substantial editing and
are designed as view-only plugins in most cases. Furthermore, hyperbolic tree
visualization is based on a mapping of euclidian to hyperbolic geometry typi-
cally resulting in translocation of nodes after each focus change [10]. In addition,
hyperbolic trees have the disadvantage of “fisheye distortion” which makes it dif-
ficult to read off-center labels for example. Other visualization techniques like
tree maps or venn diagrams heavily exploit nested graphical structurings over-
lapped with edges, obscuring the greater structure of ontologies in most cases.
In our opinion, none of these layout techniques are well suited for typical ontol-
ogy browsing tasks like comparison of different expansion paths concerning level
depth or common ancestors.

OntoTrack implements a novel approach using one integrated view for
straightforward browsing, manipulating, and understanding even large OWL
Lite schemas (also called TBoxes in Description Logics). Within this view ontolo-
gies are layouted as directed root graphs according to their primary structuring
relation, the subsumption relationship. OntoTrack provides animated expan-
sion and de-expansion of class descendants, continuous zooming, panning and
uses elaborated layout techniques like click-able miniature branches or selective
detail views. At the same time OntoTrack allows for quite a number of editing
features like mouse-over anchor buttons and graphical selections without switch-
ing into a special editing layout. In addition, every single editing step is send to
an external reasoner in order to make implicit modeling consequences explicitly
available for graphical feedback. OntoTrack is currently enhanced with an
on demand component for textual explanation of subsumption and equivalence
between or unsatisfiability of classes.

The remainder of this paper is organized as follows. The next section contains
a detailed description of the ontology authoring tool OntoTrack. In section
3 we discuss some implementation issues and describe the system architecture
as well as work in progress. We will end with an outlook about possible future
extensions.

2 OntoTrack: A New Graphical Authoring Tool for OWL
Lite−

OntoTrack is a multi-platform Java application combining authoring of on-
tologies with reasoning about ontologies. As a consequence, running Onto-
Track requires to have access to an appropriate reasoning system. Currently,

246 T. Liebig and O. Noppens

OntoTrack is adapted to the RACER server [11] via its TCP-based client
interface.

The next subsection specifies the OWL language constructs OntoTrack is
currently able to handle. For sake of broad usability and a clear and concise
graphical representation we restrict this language to a sensible fraction of OWL
Lite. This is followed by a more detailed explanation of OntoTracks browsing,
editing, reasoning as well as explaining abilities.

2.1 OWL Lite−: A Sensible Fraction of OWL Lite

OntoTrack is designed to be an authoring tool for ontology languages with an
expressivity almost comparable to that of OWL Lite. The expressivity of OWL
Lite is about that of the DL language SHIF(D) [12]. OWL Lite is a fraction
of OWL DL aiming to provide a useful subset of language features, that are
easier to present to naive users and relatively straightforward for tool developers
to support [13]. In particular, OWL Lite excludes syntax constructs for unions,
complements, and individuals in descriptions or class axioms. In addition, it lim-
its cardinalities to either 0 or 1 and nested descriptions to concept identifiers.
However, these restrictions come with relatively little loss in expressive power.
With help of indirection and syntactical “tricks” all of OWL DL can be captured
in OWL Lite except those descriptions containing either individuals or cardinal-
ities greater than 1 [12]. Atomic negation for example, is easily simulated via
complementary cardinality restrictions (e. g. A ≡ (≥ 1 r) and negA ≡ (≤ 0 r),
where r is a new property). A general concept inclusion (GCI) is expressible by
introducing two new classes with one complete and one partial definition for each
class (e. g. C � D together with two complete class descriptions for C and D).
A disjunction of two (or more) classes A and B can be simulated by negating
the conjunction of the negation of A and B (following the laws of deMorgan and
double negation). E. g. the expression (A�B) is semantically equivalent to negD
where negD ≡ (≤ 0 q) and D ≡ (negA � negB) ≡ (≥ 1 q).

Simulating GCIs or disjunction in OWL Lite with help of multiple definitions
for a single class identifier is kind of obscure and obviously conflicts with the
design goal of OWL Lite. Very likely most of the above will rarely occur in real
world OWL Lite ontologies. Instead, users will presumably use OWL DL when
it comes to disjunction or GCIs for a certain application domain. Beyond that,
there is no intuitive and unambiguous way for rendering classes with multiple,
possibly mixed partial and complete, definitions. We therefore decided to restrict
the usage of OWL Lite in a way we believe it was originally intended by the
language designers itself (called OWL Lite− in the following). In particular, we
restrict classes to be defined only once in a way that could be equally expressed
by one single owl:equivalentClass or rdfs:subClassOf statement over the
conjunction of the collection of superclasses and restrictions (i. e. the definition
of a class A is A � D or A ≡ D where A is an atomic name and has no other
definition). In terms of the normative abstract syntax and semantic of OWL Lite
[14] this prohibits the use of the EquivalentClasses axiom. As a result, GCIs and
disjunction are not expressible within OWL Lite−.

OntoTrack 247

Within this context, it is worth mentioning that different analyses of online
available ontologies (e. g. [15] or [16]) showed, that most users only exploit a
very limited set of the available language constructs. More concrete, only a very
small fraction of those ontologies would be outside the scope of the OWL Lite
subset processable with OntoTrack.

2.2 Browsing

The primary structuring element of ontologies is the subsumption relationship
between classes and properties. Consequently, OntoTrack layouts an ontol-
ogy as a directed acyclic graph with either classes or properties as nodes and
the subsumption relationship as directed edges either in top-down, left-right,
bottom-up, or right-left orientation. The drawn hierarchy may vary from the ex-
plicitly given subclass statements of the loaded ontology source document. This
is due to OntoTracks most important layout principle aiming to visualize the
most relevant ontological commitments only. As a consequence, OntoTrack
will only show direct subsumption relationships while hiding all those which are
redundant due to the transitivity of this relationship. Furthermore, by taking
modeling consequences explicitly into account, OntoTrack is sensitive not only
to syntactically given but also to semantically implied subsumption relationships.

Figure 1 shows the OntoTrack application window. It solely consists of
a menu bar, a search bar, and a combined browsing and manipulation area.

Fig. 1. Upper fraction of the OpenCyc ontology with triangle and miniature sub-
branches. Anchor buttons for SolidTangibleThing show up because of mouse over action.

248 T. Liebig and O. Noppens

OntoTrack can handle multiple ontologies in parallel, which are accessible
via corresponding tabs at the bottom of the application window. The ontology
displayed in Figure 1 is a fraction of the OpenCyc knowledge base (version
0.7) in top-down orientation. Note, that the subsumption path of the currently
selected class (ComputationalThing) up to the OWL root class (Thing) is outlined
by a darker node background and thicker edges in order to provide an optimal
overview concerning depth and branching.

As an option, not expanded sub-branches of classes are rendered as triangles
of varying length, width, and shading, approximating the depth, branching and
number of subclasses (see class SomethingExisting in Figure 1 for an example).
Depending on the number of descendants, a not expanded sub-branch will alter-
natively be symbolized as a miniature graph in order to give an overview about
the structure of the sub-branch (see SpatialThing-Localized in Figure 1). The
icons of miniature graphs are expandable on mouse click and show their class
names via mouse-over tool tip. In addition, the whole ontology layout can con-
tinously be zoomed or panned simply by right button mouse-down movements.

The direct descendants of a class are expanded resp. de-expanded in an an-
imated fashion on left mouse button click. OntoTracks ontology layout is
driven by the expansion direction of the user. The layout strategy aims at “clus-
tering” the descendants of a selected class (locally simulating an ordinary tree
representation). This means that an ontology with multiple inheritance may
end up with a different layout for exactly the same set of expanded classes –
depending on the users expansion order.

OntoTrack always shows all (even implicit) direct subsumption relation-
ships between classes. However, when dealing with classes having multiple an-
cestors it might be the case that some ancestors are not visible (because they are
in not expanded branches). Those ancestors are drawn as clickable thumbnail
classes in order to show the semantically correct hierarchy while minimizing the
number of expanded classes at the same time. The class names of all thumbnail
classes are accessible via tool tips. As an example, Figure 2 shows two thumbnail
ancestors of class SpaceRegion appearing after expansion of class SpatialThing.
OntoTrack will not expand them by default because of the assumption, that

Fig. 2. Ancestor thumbnails of class SpaceRegion after expansion of class SpatialThing.

OntoTrack 249

the user is much more interested in the descendants of SpatialThing (the user
actually asked for) instead of their ancestors.

An auxiliary navigation feature of OntoTrack is the radar view, which will
appear in the upper left corner of the workspace only if the ontology will exceed
the available rendering area at its current scale factor. The radar view consists
of a miniaturized graph of the current ontology expansion and an overlayed
rectangle representing the current rendering area. The latter can be moved via
mouse which will result in a corresponding relocation of the original view. Figure
9 shows a larger ontology together with a radar view.

OntoTrack also implements a string matching search with graphical high-
lighting based on the principles of the dynamic query approach [17]. Each modifi-
cation of the search string directly results in an updated highlighting of matching
parts of the ontology (expanded or not). Figure 3 shows the sub-string matches

Fig. 3. Match highlighting for sub-string search for “ang” within class names.

for the search string “ang” within class identifiers. Note, that even thumbnails
or triangle sub-branches are highlighted. Optionally, the user can fan out the
ontology resulting in an expansion of all matching classes via one click.

2.3 Editing

Browsing and editing in OntoTrack is done within one single view. This al-
lows to re-use already available navigation principles for the task of building
and manipulating ontology definitions. A new sub- or superclass can easily be
added by using OntoTracks anchor mode for example. Here, clickable triangle
buttons appear when moving with the mouse pointer over a class node (see class
SolidTangibleThing in Figure 1). These anchor buttons allow for specifying an
additional superclass or new subclass via mouse click and are sensible with re-
spect to the layout orientation. An existing subclass relationship can be changed
via mouse drag-and-drop or deleted by selection and “Del”-key usage as long as
this relationship is not implied by other logical axioms of the ontology.

250 T. Liebig and O. Noppens

In addition, OntoTrack offers further editing functions while in its “de-
tailed view” mode. The detailed view mode is activated or deactivated for each
class separately using the mouse-wheel down- resp. up-wards while being over
the class with the mouse pointer (alternatively PgDown/PgUp). When activated,
OntoTrack uses an UML-style class diagram showing the list of defined prop-
erty restrictions for this class in abstract DL syntax in its bottom compartment.
OntoTrack currently supports all OWL Lite restrictions: unqualified cardi-
nality restrictions (≤, ≥, = with cardinality 0 or 1) as well as existential and
universal (∃, ∀) quantifications. A restriction can be deleted by clicking on the
round (red) button at the right hand side of the corresponding row and a new
restriction will be added by clicking on the round (green) button at the bottom
of the class box. At present, properties as well as classes within those restrictions
are chosen with help of selection lists. In future versions, properties as well as
classes may be selectable by mouse click. The example in Figure 4 shows some
restrictions for the class TemporalThing.

Fig. 4. Detailed view mode for classes Individual and TemporalThing with restrictions
resp. specification of an universal quantification.

Semantically, a class is equivalent to (if complete) or subclass of (if partial)
the conjunction of the collection of superclasses and restrictions in OntoTrack.

Additional editing features like class deletion or switching between complete
and partial definitions are accessible via a right mouse button context menu. In
order to visually distinguish between a complete and a partial class definition1

we adopt the UML notation of derived types for complete class definitions. In
concrete, a complete class definition is characterized by a slanted line in the
upper left corner of the class box (see Figure 8 for examples).

In addition to the class hierarchy view, OntoTrack also provides an anal-
ogous graphical representation for properties. Here, different detailed property
views allow for manipulation of global domain and range restrictions, global car-

1 In OWL Lite− we allow for exactly one definition per class identifier (see subsection
2.1).

OntoTrack 251

dinality constraints as well as logical characteristics of the property with help of
selection lists or checkboxes as exemplarily shown in Figure 5.

Fig. 5. Property hierarchy with examples of different detailed view modes.

As an extra feature, the property representation can be rendered as a read-
only transparent layer onto the class representation and vice versa. The trans-
parency rate of the secondary layer is freely adjustable.

2.4 Reasoning

As mentioned before, OntoTrack is equipped with an interface for interac-
tion with an external OWL reasoner, namely RACER. All changes after each
editing step (e. g. list selection, subclass manipulation) are immediately send
to RACER. This reasoner will then make all modeling consequences explicitly
available. OntoTrack will hand over relevant consequences to the user by pro-
viding appropriate graphical feedback. Relevant consequences currently cover
subsumption and equivalence between as well as unsatisfiability of classes. For
example, adding an existential restriction (minimal or exact cardinality restric-
tion with 1 or existential quantification) on a property with a domain restriction
will result in a subsumption relationship between the edited class and the prop-
erty domain. Those updates are also animated in order not to confuse the user
with a new hierarchy layout in one step.

As an example, in Figure 6 we have a contradiction between a restriction
in class Individual and a restriction in class TemporalThing. The latter requires
exactly one filler for the property duration. The restriction in class Individual
however demands for exactly zero fillers. As a consequence, TemporalThing and
all subclasses thereof are unsatisfiable and therefore outlined in red.

Note, that the last edited class is not necessarily the (only) one which poten-
tially will become inconsistent. OntoTrack will therefore query its reasoner
for conflicting or equivalent definitions in any part of the ontology after each

252 T. Liebig and O. Noppens

Fig. 6. Contradicting restrictions cause TemporalThing (and at least all its descendants)
to be unsatisfiable.

editing step. Concerning the example shown in Figure 6 one may notice that
there is at least one unsatisfiable descendant of PartiallyIntangibleIndiv (its sub-
branch triangle is colored red). This user triggered query strategy also applies
for implicit subsumption relationships between classes.

2.5 Explaining

Providing feedback about the logical consequences of recent user changes help
users to check for imprecise, redundant or faulty modeling. Important conse-
quences with respect to an ontology authoring tool are subsumption, equivalence
and unsatisfiability. Those consequences often depend on logical interrelations
of nested definitions, which itself may depend on other definitions. As a result,
most consequences are not easily traceable or intuitive to non-experienced users.
Current reasoning systems provide no or only limited support for explanation
of logical consequences.2 OntoTracks most recent extention is a prototypical
facility for an on demand explanation of subsumption, equivalence and unsat-
isfiability. This component is based on the work of Borgida et. al. [19] about a
sequent calculus for ALC. In [19] the authors sketch an extended DL tableaux
algorithm for the generation of sequent proof steps needed for explanation. How-
ever, currently available tableaux reasoners potentially capable of handling OWL
are either not avaliable as source code or based on highly optimized algorithms
not easily extensible for explanation generation. We therefore implemented our
own tableaux based explanation generator for OntoTrack.

Currently, this component is able to generate explanations within unfoldable
ALEN ontologies, i. e. ontologies with unique acyclic definitions (negation and
disjunction comes implicit due to the refutation strategy of the tableaux proofs).
The actual prototype uses a naive tableaux implementation with lazy unfolding.
It will generate a quasi natural language explanation compiled of text patterns
which correspond to applied rules of the underlying tableaux proof. Note, that
this explanation facility does not aim to replace RACER as core reasoning com-
ponent and will only be activated on user request.

2 The Classic system is a notable exception here [18].

OntoTrack 253

Explanation for A � B:

It holds that A is subsumed by B:

A � B

which is equivalent to the unfolded subsumption problem:

(∃ r E) � (∀ r C) � (∃ r D)

In order to check that (∃ r E) and (∀ r C) is subsumed by (∃ r D)
we need to check whether the conjunction of E and C is sub-
sumed by D:

E � C � D

which is equivalent to the unfolded subsumption problem:

E � (∃ q E) � (≥ 1 q)

In order to check that (∃ q E) is subsumed by (≥ 1 q) we need to
check whether E is subsumed by Thing:

E � Thing

By definition everything is subsumed by Thing.

Fig. 7. Explanation of a subsumption relationship of an example ontology shown in
Figure 8.

Figure 7 displays a textual explanation of the subsumption relationship be-
tween the two classes A and B which would appear in a separate window.

Figure 8 shows the relevant definitions and their graphical representation in
OntoTrack of the appertaining ontology within this small explanation example
of Figure 7 (which has been adapted from an example in [19]).

ObjectProperty(r)
ObjectProperty(q)
Class(E partial)
Class(A complete

restriction(r someValuesFrom(E))
restriction(r allValuesFrom(C)))

Class(C complete
restriction(q someValuesFrom(E)))

Class(B complete
restriction(r someValuesFrom(D)))

Class(D complete
restriction(q minCardinality(1)))

Fig. 8. Example ontology for subsumption explanation in OWL abstract syntax as well
as in OntoTrack (relevant definitions are shown in detailed view mode).

254 T. Liebig and O. Noppens

3 Implementation Issues and Current Work

A recent analysis of online available ontologies [15] showed, that most ontologies
contain more than hundred classes. Upcoming ontologies very likely will consist
of several hundreds of classes presumably referencing dozen of other ontologies.
Obviously, performance and scalability of ontology authoring tools are key for
user acceptance and wide adoption of Semantic Web techniques. We therefore
have chosen Piccolo [20] as our graphical library for OntoTrack, which has
proven to be sufficiently fast and reliable even for large numbers of graphical
objects. Piccolo is a Java2D interface toolkit supporting animation, zooming,
multiple cameras, layers, etc. Our implementation of OntoTracks visualization
components also adopts the linked tree diagram approach of SpaceTree [10]
which itself uses the Piccolo toolkit. SpaceTree makes use of elaborated layout
techniques to dynamically zoom and layout tree branches in an animated fashion.
Figure 9 shows, that OntoTracks layout technique is even suitable to depict
the greater structure of ontologies with more than 60 classes.

Fig. 9. A modified fraction of the IEEE SUMO ontology [21] with more than 60 classes
expanded and radar view in the upper left corner.

For importing and exporting of ontologies we use the Jena 2.1 [22] RDF API
and parser functionality. OntoTracks core ontology model is also based on
Jena which we enriched with a high-level event notification mechanism needed

OntoTrack 255

for propagating changes from the core model to their corresponding graphical or
external reasoner representations resp. vice versa.

The RACER server is used to provide reasoning feedback about logical im-
plied consequences. However, implementing this feedback functionality turned
out to become difficult for some reasons. For example, in order to become aware
of a new subsumption relationship due to a just added property restriction, On-
toTrack needs to query the reasoner about direct superclasses for almost all
classes of the ontology in turn.3 Instead of querying for all possible changes with
respect to a specific consequence for each editing step we would like to have
an event-triggered publish-subscribe mechanism on reasoner side [23]. Another
problem is concerned with incremental reasoning and retraction of definitions.
Because of lack of algorithms for appropriately handling incremental additions
to a knowledge base [24] complete reclassification after each user interaction is
necessary.

A current extension is concerned with the handling of direct and follow-
up consequences of user changes. E. g. a user manipulation may result in one
unsatisfiable class (not necessarily the one which has been changed) or even
many unsatisfiable classes in worst case. Depending on this outcome the editor
should inform or even warn the user about the impact of his action in order to
identify faulty modeling as early as possible.

OntoTracks prototypical explanation facility is currently implemented in
CommonLisp as an external component in parallel to RACER. In order to avoid
redundant computation, it is desired to combine reasoning and explaining within
one system component in the future. Beyond that, we plan to enhance the expla-
nation presentation with additional mouse-enabled features and different levels
of detail information.

Current work also focuses on further editing features. Comments, labels as
well as ontology header information are imported as well as exported correctly
but are not editable in OntoTrack at the moment. We also work on the in-
tegration of further editing and searching functionality like undo operations or
regular expression search. Because of user demand we also plan to add a view-
only mode for OWL DL ontologies with a detail view showing OWL abstract
syntax. Actual graphical extensions cover the optional visualization of entailed
disjointness between classes.

4 Summary and Outlook

The broad adoption of Semantic Web technology strongly depends on the avail-
ability of convenient and flexible tools for browsing, editing, and evaluation of
ontologies. A clear presentation, intuitive editing abilities, and subsidiary rea-
soning services are key properties of ontology editors suitable even for users
3 One could of course narrow this set to those classes that also have an explicit or

inherited restriction on that particular property or a subproperty thereof. But this
requires to have explicit knowledge about inherited restrictions or subproperties,
which in turn may result in additional queries.

256 T. Liebig and O. Noppens

without much logical background. Traditional expand and contract style inter-
faces, template based editing forms, or tree-centered visualizations inherently
have substantial drawbacks in this respect. To our knowledge, there is currently
no appropriate tool for displaying the greater structure of more than 60 directly
editable classes together with additional information about unsatisfiable classes,
selective detail information and search results, as it is shown in Figure 9.

Our new ontology authoring tool OntoTrack combines navigation and di-
rect manipulation in one single hierarchical view together with instant reasoning
feedback and rudiments of an explanation component. We see OntoTrack as
a first step towards an easy-to-use interactive ontology editor even for non ex-
perienced users and large ontologies.

Future work will be concerned with the visualization and manipulation of
individuals in OntoTrack, either with help of an additional visualization com-
ponent optimized for this purpose (e. g. like in [25]) or embedded within our
current hierarchy-based layout.

Support for cross ontology references between different definitions is also a
point of further investigations and are still under discussion within the Web On-
tology Working Group [26]. In a first naive approach our plan was to draw a
superclass from a different ontology as a thumbnail ancestor using a dashed sub-
sumption link (in order to distinguish between local and external ancestors). In
case of selecting such an ancestor the corresponding ontology should be loaded
and expanded up to the referred class in a new tab of OntoTrack. Unfortu-
nately, this functionality bears some problems regarding import statements and
referencing mechanisms of OWL/RDF. E. g. OWL allows to distribute a class
specification across multiple definitions at various RDF documents. It is even
possible to define a class bearing a virtual URI not related to any of the defining
documents. Now, when referring to this class from elsewhere its corresponding
definition cannot be found at the URI implied by the class ID. In other words,
we can’t infer the location of a definition from its URI reference. Beyond that,
the meaning of the referenced description can only be taken into account when
importing those documents which contain RDF triples about the description.
Furthermore, the notion of an ontology is an additional but optional structuring
concept within OWL. In fact, the relationship between class/property descrip-
tions and an ontology definition is unclear. More complex, even it is optional
or may appear more than once in a document, an ontology header is the only
way to import other documents. This means that a serious OWL authoring tool
needs to carefully distinguish between documents, ontologies and references.

Another serious issue of general future research is concerned with debugging
of ontologies not developed from scratch within OntoTrack. Here standard
inference services provide only little help to resolve inconsistencies in logical in-
coherent ontologies. In [27] a new reasoning service for pinpointing logical con-
tradictions within ALC ontologies has been introduced. A likewise methodology
would obviously be helpful within OntoTrack.

Other novel inference services intended to support building an ontology have
been developed (see sec. 6.3 in [28] for a summary). One interesting service

OntoTrack 257

consists of matching of class patterns against class descriptions in order to find
already defined classes with a similar structure. Another approach tries to create
class definitions by generalizing one or more user given ABox assertions. Other
non-standard inference services like least common subsumer (e. g. like in [29]) or
most specific concept are also relevant during authoring of ontologies.

We also see OntoTrack as a platform for further tasks like cooperative
ontology construction, ontology merging and alignment, or ontology evaluation.

This contribution tries to inspire the Semantic Web community in two ways.
Concerning research we hope to stimulate the development of non-standard in-
ference services and incremental reasoning systems. On user side we aim to
motivate even non experienced domain experts to build, understand and use
ontologies more widely in order to push the Semantic Web from academia to
industry.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description Logics as Ontology Languages for
the Semantic Web. In Hutter, D., Stephan, W., eds.: Festschrift in honor of Jörg
Siekmann. Lecture Notes in Artificial Intelligence, Springer (2003) To appear.

2. Project-Website: Project Halo. http://www.projecthalo.com/ (2004)
3. Fiedland, N.S., Allen, P.G., Witbrock, M., Matthews, G., Salay, N., Miraglia, P.,

Angele, J., Stab, S., Israel, D., Chaudhri, V., Porter, B., Barker, K., Clark, P.:
Towards a Quantitative, Plattform-Independent Analysis of Knowledge Systems.
In: Proc. of the Ninth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Whistler, BC, Canada, AAAI Press (2004) 507–514

4. Liebig, T., Noppens, O.: OntoTrack: Fast Browsing and Easy Editing of Large
Ontologies. In: Proc. of the 2nd International Workshop on Evaluation of Ontology-
based Tools (EON2003), Sanibel Island, USA (2003)

5. Storey, M.A., Musen, M., Silvia, J., Best, C., Ernst, N., Fergerson, Noy, N.: Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge ac-
quisition in Protégé. In: Proc. of the Workshop on Interactive Tools for Knowledge
Capture (K-CAP 2001), Victoria B.C., Canada (2001)

6. Kalyanpur, A.: Venn diagram approach for visualizing OWL in SVG. University
of Maryland, http://www.mindswap.org/˜aditkal/svg owl.shtml (2003)

7. Mutton, P., Golbeck, J.: Visualization of Semantic Metadata and Ontologies. In:
Proc. of Information Visualization 2003 (IV03), London, UK (2003)

8. Eklund, P., Green, S., Roberts, N.: OntoRama: Browsing RDF Ontologies Using
a Hyperbolic Browser. In: Proc. of the 1st International Symposium on Cyber
Worlds (CW2002), Tokyo, Japan (2001)

9. Hu, B., Shadbolt, N.: Visualising a DL Knowledge Base with DeLogViz. In: Proc.
of the International Workshop on Description Logics (DL2003), Rome, Italy (2003)

10. Plaisant, C., Grosjean, J., Bederson, B.B.: SpaceTree: Supporting Exploration in
Large Node Link Tree, Design Evolution and Empirical Evaluation. In: Proc. of
the IEEE Symposium on Information Visualization (INFOVIS 2002), Boston, USA
(2002) 57 – 64

11. Haarslev, V., Möller, R.: RACER System Description. In: Proc. of the International
Joint Conference on Automated Reasoning (IJCAR’2001), Siena, Italy, Springer
Verlag (2001) 701–705

258 T. Liebig and O. Noppens

12. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1 (2003)
7–26

13. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference. W3C Rec-
ommendation (2004)

14. Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax. W3C Recommendation (2004)

15. Tempich, C., Volz, R.: Towards a benchmark for Semantic Web reasoners – an
analysis of the DAML ontology library. In: Proc. of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON2003), Sanibel Island, USA (2003)

16. van Harmelen, F.: The Complexity of the Web Ontology Language. IEEE Intelli-
gent Systems 17 (2002) 71 – 72

17. Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Software
11 (1994) 70–77

18. McGuinness, D.L., Borgida, A.: Explaining Subsumption in Description Logics.
Technical Report LCSR-TR-228, Dept. of Computer Sciences, Rutgers University
(1994)

19. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D., Patel-Schneider, P.F.: Ex-
plaining ALC subsumption. In: Proc. of the International Workshop on Description
Logics (DL1999). (1999) 37–40

20. Bederson, B., Grosjean, J., Meyer, J.: Toolkit Design for Interactive Structured
Graphics. Technical Report CS-TR-4432, University of Maryland (2002)

21. Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: Proc. of the 2nd
International Conference on Formal Ontology in Information Systems (FOIS-2001),
Ogunquit, Maine (2001)

22. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations. In: Proc. of the 13th
International World Wide Web Conference (WWW2004), New York, NY, USA
(2004) 74–83

23. Liebig, T., Pfeifer, H., von Henke, F.: Reasoning Services for an OWL Authoring
Tool: An Experience Report. In: Proc. of the 2004 International Workshop on
Description Logics (DL2004), Whistler, BC, Canada (2004) 79–82

24. Möller, R., Haarslev, V.: Description Logics Systems. In: The Description Logic
Handbook. Cambridge University Press (2003)

25. Fluit, C., Sabou, M., van Harmelen, F.: Supporting User Tasks through Visual-
isation of Light-weight Ontologies. In: Handbook on Ontologies in Information
Systems. Springer Verlag (2004) 414–432

26. Mail-Archives: Web Ontology Working Group. http://lists.w3.org/Archives/
Public/www-webont-wg/ (2004)

27. Schlobach, S., Cornet, R.: Non-Standard Reasoning Services for the Debugging of
Description Logic Terminologies. In: Proc. of the Belgian-Dutch Conference on AI
(BNAI03), Nijmegen, The Netherlands (2003)

28. Baader, F., Küsters, R., Wolter, F.: Extensions to Description Logics. In: The
Description Logic Handbook. Cambridge University Press (2003)

29. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the Least Common Subsumer
w.r.t. a Background Terminology. In: Proc. of the 2004 International Workshop
on Description Logics (DL2004), Whistler, BC, Canada (2004) 11–20

	Introduction
	OntoTrack: A New Graphical Authoring Tool for OWL Lite-
	OWL Lite$^-$: A Sensible Fraction of OWL Lite
	Browsing
	Editing
	Reasoning
	Explaining

	Implementation Issues and Current Work
	Summary and Outlook

