
Efficient Processing of Huge Ontologies in Logic
and Relational Databases

Timo Weithöner, Thorsten Liebig, and Günther Specht

University of Ulm, D-89069 Ulm
{weithoener|liebig|specht}@informatik.uni-ulm.de

Abstract. Today ontologies are heavily used in the sematic web. As
they grow in size reasoning systems can’t work without secondary storage
anymore. Thus database technology is required for storing and process-
ing huge ontologies. In this paper we present an efficient technique for
representing and reasoning with ontologies in databases. We also present
some benchmarking results in comparison with previous approaches.

1 Mapping Ontologies into Logic Programs

Converting ontologies into description logic programs (DLP; DLP covers most of
OWL1 Lite plus a portion of OWL DL, namely general concept inclusions with
disjunction and qualified existential qualification on the left hand side) would
allow to use deductive database systems as reasoners. A straightforward “Direct
Mapping” approach (DiMA) to convert ontologies into a DLP was suggested
in [1]. This approach maps every class or property definition into a rule and
every class-instance or instance-property-instance relationship into a fact. The
following gives a brief example of some frequently used statements:
DL DLP DL DLP DL DLP DL DLP
A � B B(X) :- A(X). i : A A(i). B � C � A A(X) :- B(X), C(X). A � B � C B(X) :- A(X).

C(X) :- A(X).

Obviously, this approach has some conceptual drawbacks:

– First, the concept names cannot be used as query results. For that reason
it is impossible to get an answer to the queries like “give me all classes the
individual I is instance of”.

– The mapping typically results in only a few facts per literal. But the number
of different rules grows linear with the complexity of the ontology.

– The names of the relations used and the structure of the rules involved vary
from ontology to ontology. Consequently precompilation is impossible and
query optimization becomes a real issue in this approach.

We overcome these drawbacks with our approach, which we call the Meta
Mapping approach.

1 OWL is the Web Ontology Language, see http://www.w3.org/TR/owl-features/

R. Meersman et al. (Eds.): OTM Workshops 2004, LNCS 3292, pp. 28–29, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Processing of Huge Ontologies in Logic and Relational Databases 29

2 The Meta Mapping Approach (MeMA)

The “Meta Mapping” from OWL DL into DLPs has an emphasis on low com-
putational complexity and high representational flexibility. Two things have to
be done to overcome the limitations mentioned above: First the rules and facts
are pushed to a meta level, where names of concepts and properties become ar-
guments of “meta predicates”. Second we construct a constant set of rules valid
for all ontologies accompanied by a set of fact predicates with constant names.
As a result concept and property names can be used as query results as well as
inputs and query formulation and optimization is eased.

Asserting instance i to class C results in instantiating the binary relation
type("i","C"). In MeMA subclass relationships or any other kind of construc-
tors are converted into facts which state, that the ontology defines such relation-
ships. The following table shows some more examples:
DL DLP DL DLP
A � B isSub(”A”, ”B”). i : A type(”i”, ”A”).
B � C � A isSub(”I1”, ”A”). A � B � C isSub(”A”, ”I2”)..

intersectionOf(”I1”, {”B”, ”C”}). intersectionOf(”I2”, {”B”, ”C”}).

In order to reflect the underlying semantic of the introduced meta relations,
we have to add adequate rules2. E.g. type(I,X) :- type(I,Y), isSub(Y,X).
defines that if an individual I is instance of concept Y and Y is subclass of concept
X, I is also an individual of class X. All rules are completely independent of any
concrete ontology vocabulary and can thus be used for every ontology. With
the combination of the ontology specific facts and the general rule we can easily
perform common A- and TBox queries within the Meta Mapping approach.

3 Comparison

When benchmarking both mappings it turned out that in DiMA even a lin-
ear growth in relations results in fatal performance during preprocessing while
loading the program into the CORAL deductive database. The same operation
takes only seconds in the MeMA. Our experiments also observed a linear growth
of processing time for class instance and subclass querying with an increasing
number of individuals for both approaches. However, only in case of the MeMA
better results are reached by logic databases with secondary storage indexing
mechanisms. We thus get logarithmic behavior for the MeMA.

In consideration of the above we propose the Meta Mapping because of its
significant conceptual advantages, higher expressivity and better performance for
storing and evaluation of large scale real world ontologies in logical databases.

References

1. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programms:
Combining Logic Programms with Description Logic. In: Proceedings of the 12th

International World Wide Web Conference, Budapest, Hungary (2003)

2 The complete rule set with 23 rules is provided at http://www.informatik.uni-
ulm.de/ki/Liebig/MM-ruleset.txt

	Mapping Ontologies into Logic Programs
	The Meta Mapping Approach (MeMA)
	Comparison

