Grounding Web Services Semantically:
Why and How?

Konstantin Pantschenko, Olaf Noppens, and Thorsten Liebig

University of Ulm, Dept. of Artificial Intelligence, Germany
{pantschenko |noppens|liebig}@informatik.uni-ulm.de

1 Introduction

Recent modeling frameworks for semantically enriched web services propose a
layered architecture of different functionalities and representations. For discov-
ery, selection, and composition of web services, an adequate semantic representa-
tion and a transport layer are (among others) necessary elements [1]. The seman-
tic layer takes care of a shared understanding between requester and provider
in order to enable automatic service provisioning. The most current approaches
propose to utilize ontologies for this task [2]. The far end with respect to se-
mantics is the transport layer, which specifies the details of how to access and
communicate with the service implementation on a technical level. In order to
invoke a service both layers need to be connected for data hand over between
each other. This requires a mapping from an abstract semantical model to a
concrete service specification in terms of a particular protocol, message format,
data types, and serialization. We argue, that this bi-directional mapping, also
called grounding, cannot be done syntactically as proposed by the OWL-S [3]
service framework for example. This problem of linking declaratively specified
parameter descriptions with primitive types (XML Schema in case of WSDL [4])
largely has been neglected in current semantic web services frameworks. In order
not to limit the portability and practicability of current framework specifications
we aim to bring this issue to the fore. In the following we will describe the mis-
match of syntax-based groundings and propose a semantic mapping framework
for which we refer to an existing algorithm and shortly describe our mapping
editor

2 A Semantic Mapping Approach for Grounding Web
Services

Common to all semantic web service frameworks is their distinction between a
semantical layer for description of a services characteristics and an execution
layer for concrete service invocation. In order to facilitate the execution of a ser-
vice a so called grounding is needed for mapping the semantical space into the
physical data space at transport level. The semantical layer is based on ontolog-
ical modeling principles. An encoding of such an ontological model may result
in many syntactically different serializations caused by encoding alternatives of



the language elements. Therefore, a syntactical mapping, like XSLT as proposed
by the OWL-S specification, is not adequate here.

In case of grounding an OWL-S service this issue comes into play when
linking parameters of OWL-S process steps with WSDL messages consisting of
XML Schema values. As can be seen on the left hand side of figure 1, an output
mapping from a XML Schema definition to OWL (from a lower to a higher
level description) is less problematical. In contrast, an input mapping, namely a

Model Serialization

A

Source
A

Style
sheet XMLSchema

XMLSchema Ontology format

/ L
E A E
Ontology Source Style
Source sstzlee! Target —> 5 sheet —> Target
B

e

A Style
sheet
Source C

C

Fig. 1. XSL Transformation problem

mapping from OWL to XML Schema, may result in different serializations (see
right hand side of figure 1). In oder to guarantee general applicability this kind
of mapping has to provide a style sheet for every possible serialization. Even
worse, the existence of nested relations or references results in an exponentially
growing number of serializations.

3 A Mapping Approach for Grounding Web Services

As described in the previous section a syntactical transformation between ab-
stract ontology based parameter and their corresponding low-level data types
for a concrete service grounding is not sufficient. The following shortly describes
our semantic transformation approach [5]. Our approach is neither limited to a
specific semantic service framework (like OWL-S or WSMO) nor to a specific
Web Service description language like WSDL. Only for demonstration purpose
we will refer to OWL-S as the service ontology language and to WSDL as web
service description language in the following.

A mapping establishes a bidirectional link between OWL types and XSD
type definitions for a specific Web service. The mapping will translate input
parameter values from OWL instances to XSD types as well as the other way
around, e.g. after a successful execution back to ontology instances for further
processing. Such a mapping can easily be specified with the help of a declarative
transformation description represented as an RDF model. Note that from an



OWTL perspective only filler of the owl:DatatypeProperty can be transformed
to an instance of an xsd:simpleType. Moreover, xsd: complexTypes are decom-

posed into simple types and therefore to fillers of a datatype property.

\

; ShippingAddress >--<==1 hasCity

* <t m Conpl exType rdf:|D="Cust oner. >
<t m hasOALType rdf:resource="&business; #Cust oner"/ >

<t m hasXSDType rdf:resour ce="&wsdl-t-ns1; #Cust oner™/ >
<t m hasEl ement >
<tm Si npl eType rdf: | D="Custoner_BirthDate">
<t m hasNest edNane>bi rt hDat e</ t m hasNest edNane>
<tm hasxSDType rdf:resource="&xsd; #date"/ >
<tm mapsTo rdf:resource="&busi nessj#hasBirthDate"/>

</tm Si npl eType>
</t m hasEl enent >

/)

<t m hasEl enent >
<tm|Si npl eType rdf:|D="Custonmer_Gty">

<tim hasNest edNanme>ci t y</tm.hasNest edNane>
<t m hasXSDType rdf:resource="&xsd; #string"/>
<t m napsTo rdf:resource="&busi ness;#hasCi ty"/>

</tm Sj npl eType>
</t m hasEl ement >
</t m Conpl exType>

=1 hasBirthDate " \ =1 hasShippingAddress

OWL Type

RDF Mapping

[ <wsdlwt ypes>
<schema (...) >
<i npor t~nanespace="htt p: // schemas. xn soap. or g/ soap/ encodi ng/ "/ >
<conpl exType name="Cust oner ">
<sequence>
<el ement nane="bi rt hDat e" type="xsd: date"/ >
(--)
<el ement nane="city" type="xsd:string"/>
</ sequence>
</ conpl exType>
(...)
</ schema>
</ wsdl : types>

XSD Type

Fig. 2. An example mapping schematically.



Figure 2 shows an example mapping. Here, the OWL class ’Customer’ is
mapped to the ’Customer’ type of the concrete service description. Note that
tm:hasXSDType tags refer to XSD datatypes in the WSDL document whereas
tm:mapsTo refers to the corresponding datatype property in OWL. XSD types
of the service description always have a flat structure, so all XSD types are ag-
gregated in one complex type as a sequence of simple type elements (denoted by
tm:hasElement). For example, the tm:SimpleType 'Birthday’ maps a filler of
the datatype property ’hasBirthDate’ to an value instance of ’xsd:date’. More-
over, the tag tm:hasNestedName refers to the corresponding attribute of the
complex type ’Customer’ of the service description. Our mapping approach is
not sensitive to syntactical serializations because all mappings are declaratively
specified on a semantical level within a RDF model.

A detailed description of an algorithm which actually performs the mapping
and discussion about related work can be found in [5].

4 The Type-Mapping Workbench

We have implemented an editor which guides and assists the user (i.e. service
provider) through all the steps needed to create a mapping as described in the
previous section. Note that currently, it only supports the mapping between
WSDL datatypes and OWL types.

TypeMapper {v. 1.0} =] |

File RDF Info

<
lﬂ.:FEMBhServil:e.wsdl aOnanl :

lﬂ.:}:lper!RDFMapperrsuurc efcustomeriWebSenviceTypes. owl @ Open |

ey .4
schema targetNamespace="http:/localhost" 2} owl:Thing || (=1 this:hasShipping & ddress) -
§ complexType name="Custorer" @ this:Customer || thisshasShippingAddress is OWL- ObjectProperty
9 sequence (© this:ShippingAdd || Has domain:
element names "birthDate " types "wsd date ' @ this:Customerld +this:Person.
element name="rams" type="xsd:string" @ basePhysicalThing | Has range:
el ‘city” type="xsd:string" (C) base:Set : this: ShinpinzAdd
@ complexType name="ArrayOfCustomer™ (C) base:Resource 2 GiiEEn *
(C) base:Literal |(= 1 thishasPirthdate
|| & © paserList ||  this:hasBirthdate iy OWL DatatypeProperiy
: @ baseAbsiraciThing ||  Has domain:
(C) base:Identifier ihis:Person
| Has Tange:

m - —

NewRDF __ [ComplexType ref:iD="Customer" | nTRiPLE |
Delete SimpleType rdf:ID="Customer _City"* H — - =
i Namemnace|  SImPleType rdfiD="Customer_BirthDate" (| SipleType rdf: ID=""Customer_BirthDate
e ameTpare) i ; e
[ TestService_TypeMappingCustomer
m trhasElement
Save As.. :

TestService_Typellapping Customey_BirthDate

Fig. 3. Type-mapping editor with WSDL in upper left, OWL ontology in upper right
and a mapping structure in the bottom compartment.



Figure 3 shows the user interface which is divided into three panes. On the
left hand side, all type information (e.g. complex types and simple types) of a
WSDL document are displayed. After loading the corresponding OWL ontology
document, all class types and restrictions on properties are shown in a taxonomy
tree on the right hand side. Next, the user creates a new (empty) mapping
which will be displayed at the bottom of the display area. To establish a new
map between a WSDL complex type and an OWL datatype, the user needs
to select the corresponding elements in the WSDL and the OWL view, and
then click on "CreateMap’ to create a new mapping structure. The editor semi-
automatically creates the corresponding structure or offers a list of choices for
further specification of the type of mapping. Possible types are ComplexType,
SimpleType or ArrayType. For instance, to build a mapping as shown in figure
2, one first selects the entry for the complex type 'Customer’ in the WSDL
display and the OWL class ’Customer’ which results in the creation of a mapping
structure ’"ComplexType Customer’ in the mapping display. After selecting the
simple type 'birthday’ (WSDL entry) and the datatype property "hasBirthday’ of
cardinality restriction = 1 hasBirthday’, the user can create the corresponding
mapping structure (by clicking on the button ’CreateMap’). Restrictions are
displayed on the right display area next to the selected OWL class. In a similar
way all other map entries of figure 2 can be created. Moreover, the building
of a complex type mapping structure may involve to exploit a chain of OWL
classes. In our running example of figure 2, to create the mapping structure
for the WSDL attribute ’City’ the user may select ’Customer’, the range of
property ’hasStreet” which lead one to the OWL class ’ShippingAddress’ and
to the property ’'hasCity’. For an ArrayType it is necessary to choose one of
the already created types. At any stage, it is possible to remove map entries
and to view or save the mapping as an RDF model in XML format. Already
linked WSDL elements are marked with a background color and are not longer
selectable unless the user removes the corresponding map entry.

References

1. Bussler, C.: B2B Protocol Standards and their Role in Semantic B2B Integration
Engines. IEEE Data Engineering 24 (2001)

2. Cabral, L., Domingue, J., Motta, E., Payne, T., Hakimpour, F.: Approaches to Se-
mantic Web Services: An Overview and Comparisons. In: First European Semantic
Web Symposium (ESWS2004), Heraklion, Crete, Greece (2004)

3. Ankolekar, A.: OWL-S: Semantic Markup for Web Services (2003) http://www.
daml.org/services/owl-s/1.0/owl-s.pdf.

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Descrip-
tion Language (WSDL) 1.1. Technical report, Word Wide Web Consortium (2001)
http://www.w3.org/TR/2001/NOTE-wsd1-20010315.

5. Balzer, S., Liebig, T.: Bridging the Gap Between Abstract and Concrete Services —
A Semantic Approach for Grounding OWL-S —. In: Proceedings of the Workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan (2004) 16-30



