
Conjunctive Query Answering for the
Description Logic SHIQ

Birte Glimm1, Ian Horrocks1, Carsten Lutz2, Uli Sattler1

1 School of Computer Science 2 Institute for Theoretical Computer Science
University of Manchester, UK TU Dresden, Germany

Abstract

Conjunctive queries play an important role as an expressive query
language for Description Logics (DLs). Although modern DLs usually
provide for transitive roles, it was an open problem whether conjunc-
tive query answering over DL knowledge bases is decidable if transitive
roles are admitted in the query. In this paper, we consider conjunctive
queries over knowledge bases formulated in the popular DL SHIQ and
allow transitive roles in both the query and the knowledge base. We show
that query answering is decidable and establish the following complexity
bounds: regarding combined complexity, we devise a deterministic algo-
rithm for query answering that needs time single exponential in the size
of the KB and double exponential in the size of the query. Regarding
data complexity, we prove co-NP-completeness.

1 Introduction

Description Logics (DLs) [1] are a well-established family of logic-based knowl-
edge representation formalisms that have recently gained increased attention
due to their usage as the logical underpinning of ontology languages such as
DAML+OIL and OWL [7]. A DL knowledge base consists of a TBox, which
contains terminological knowledge, and an ABox, which contains assertional
knowledge. In the TBox, we can define concepts and specify background knowl-
edge. In the ABox, we can use the terms specified in the TBox to describe
individuals. Using a database metaphor, the TBox corresponds to the schema,
and the ABox corresponds to the data.

Standard DL reasoning services include testing concepts for satisfiability or
retrieving instances of a given concept. The latter retrieves all (ABox) individ-
uals that are an instance of the given (possibly complex) concept expression in

1

every model of the knowledge base. The underlying reasoning problems are well-
understood, and it is known that the combined complexity of these reasoning
problems is ExpTime-complete for SHIQ [12], where SHIQ is the DL un-
derlying DAML+OIL and OWL Lite. Despite this high worst-case complexity,
efficient implementations of decision procedures for these problems are known.
Furthermore, the TBox is usually small compared to the amount of data in the
ABox. Therefore, the data complexity of a reasoning problem, i.e., where the
complexity is measured in the size of the ABox only, is often a more useful
performance estimate. For SHIQ, instance retrievel is known to be data com-
plete for co-NP [9]. However, since instance retrieval only allows for querying
the relational structure of the knowledge base in a restricted, tree-like way, it is
commonly agreed that a more expressive query language is required, and that
conjunctive queries are a suitable basis for this.

To the best of our knowledge, however, no decision procedure is known for
conjunctive query answering in SHIQ: the presence of transitive and inverse
roles makes the problem rather tricky [4], and results are only available for two
kinds of restrictions. The first kind, grounded conjunctive queries, is obtained by
restricting the variables in queries to be bound to individual names in the ABox
only. This results in a form of closed-domain semantics which is different from
the usual open-world (and open-domain) semantics in DLs. Motik et al. [10]
show that answering grounded conjunctive queries for SHIQ is decidable, and
they form the basis for the query language nRQL [5]. In the second kind, the
binary atoms in conjunctive queries are restricted to simple roles, i.e., to those
that are neither transitive nor have transitive sub-roles. For this restriction,
decision procedures for various DLs around SHIQ are known [8, 11], and it is
known that answering conjunctive queries is data complete for co-NP [11].

In this paper, we present a decision procedure for conjunctive query answer-
ing over SHIQ knowledge bases without any of these restrictions. We achieve
this by transforming the conjunctive query into SHIQu-concepts,1 and show-
ing that conjunctive query answering can be reduced to consistency of SHIQ-
knowledge bases extended with SHIQu assertions and GCIs. From our decision
procedure, it follows that conjunctive query entailment is data complete for co-
NP, and can be decided in time double exponential in the size of the query and
single exponential in the size of the knowledge base.

2 Preliminaries

We first introduce the syntax and semantics of SHIQ and conjunctive queries.

1SHIQu is SHIQ plus role conjunction.

2

2.1 Syntax and Semantics of SHIQ
Let NC, NR, and NI be sets of concept names, role names, and individual names.
We assume that the set NR or role names is partitioned into a set NtR of transitive
role names and a set NrR of normal role names, i.e., NtR ∪ NrR = NR with
NtR ∩ NrR = ∅. A role is an element of NR ∪ {r− | r ∈ NR}, where roles of the
form r− are called inverse roles. A role inclusion is of the form r v s with r, s
roles. A role hierarchy H is a finite set of role inclusions.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain
of I, and a function ·I , which maps every concept name A to a subset AI ⊆ ∆I ,
every role name r ∈ NrR to a binary relation rI ⊆ ∆I × ∆I , every role name
r ∈ NtR to a transitive binary relation rI ⊆ ∆I×∆I , and every individual name
a to an element aI ∈ ∆I . An interpretation I satisfies a role inclusion r v s if
rI ⊆ sI and a role hierarchy H if it satisfies all role inclusions in H. We use the
following standard notation:

1. We define a function Inv which returns the inverse of a role. More precisely,
Inv(r) := r− if r ∈ NR and Inv(r) := s if r = s− for a role name s.

2. Since set inclusion is transitive, we define, for a role hierarchy H, v∗
H as

the reflexive transitive closure of v over H∪{Inv(r) v Inv(s) | r v s ∈ H}.
We use r ≡∗

H s as an abbreviation for r v∗
H s and s v∗

H r.

3. For a role hierarchy H and a role s, we define the set TransH of transitive
roles as {s | there is a role r with r ≡ s and r ∈ NtR or Inv(r) ∈ NtR}.

4. A role r is called simple w.r.t. a role hierarchy H if for each role s such
that s v∗

H r, s /∈ TransH.

The subscript H of v∗
H and TransH is dropped if clear from the context. The set

of SHIQ-concepts (or concepts for short) is the smallest set built inductively
from NC using the following grammar, where A ∈ NC, n ∈ N, r is a role and s is
a simple role:

C ::= > | ⊥ | A | ¬C | C1 u C2 | C1 t C2 | ∀r.C | ∃r.C |6 ns.C |> ns.C.

The semantics of SHIQ-concepts is defined as follows:

>I = ∆I (C uD)I = CI ∩DI (¬C)I = ∆I \ CI

⊥I = ∅ (C tD)I = CI ∪DI

(∀r.C)I = {d ∈ ∆I | if (d, d′) ∈ rI , then d′ ∈ CI}
(∃r.C)I = {d ∈ ∆I | There is a (d, d′) ∈ rI with d′ ∈ CI}

(6 ns.C)I = {d ∈ ∆I | |sI(d, C)| 6 n}
(> ns.C)I = {d ∈ ∆I | |sI(d, C)| > n}

3

where |M | denotes the cardinality of the set M and sI(d, C) is defined as

{d′ ∈ ∆I | (d, d′) ∈ sI and d′ ∈ CI}.

A general concept inclusion (GCI) is an expression C v D, where both C and D
are concepts. A finite set of GCIs is called a TBox. An interpretation I satisfies
a GCI C v D if CI ⊆ DI and a TBox T if it satisfies each GCI in T . An
assertion is an expression of the form C(a), r(a, b), ¬r(a, b), or a 6 .= b, where C
is a concept, r is a role, a, b ∈ NI. An ABox is a finite set of assertions. We use
Ind(A) to denote the set of individial names occurring in A, and if A is clear
from the context, we write only Ind. An interpretation I satisfies an assertion
C(a) if aI ∈ CI , r(a, b) if (aI , bI) ∈ rI , ¬r(a, b) if (aI , bI) /∈ rI , and a 6 .= b if
aI 6= bI . An interpretation I satisfies an ABox if it satisfies each assertion in
A, which we denote with I |= A.

A knowledge base (KB) is a triple (T , H, A) with T a TBox, H a role
hierarchy, and A an ABox. Let K = (T , H, A) be a KB and I = (∆I , ·I) an
interpretation. We say that I satisfies K if I satisfies T , H, and A. In this case,
we say that I is a model of K and write I |= K. We say that K is consistent if
K has a model.

2.2 Conjunctive Queries

Now that we have defined the syntax and semantics of SHIQ-concepts and
knowledge bases, we are ready to introduce conjunctive queries. Let NV be a
countably infinite set of variables disjoint from NC, NR, and NI. Moreover, let
NP = NC ∪ NR be the set of predicate names.

An atom is an expression A(v) or r(v, v′), where A ∈ NC, r is a role, and
v, v′ ∈ NV. A conjunctive query q is a non-empty set of atoms. Intuitively,
such a set represents the conjunction of the atoms in the set. We use Var(q) to
denote the set of variables occurring in q and we define the size |q| of q as the
number of atoms in q. Let I be an interpretation, q a conjunctive query, and
π : Var(q) → ∆I a total function. We write

• I |=π A(v) if (π(v)) ∈ AI ;

• I |=π r(v, v′) if (π(v), π(v′)) ∈ rI ;

If I |=π at for all at ∈ q, we write I |=π q. We say that I satisfies q and write
I |= q if there is a π with I |=π q.

One reasoning task regarding conjunctive queries is query answering. For
introducing this reasoning task, let the variables of a conjunctive query be typed:
each variable can either be non-distinguished, i.e., existentially quantified or
distinguished. We call distinguished variables also answer variables. Let q be a

4

query in n variables, of which v1, . . . , vm (m ≤ n) are distinguished. The answers
of K to q are those m-tuples (a1, . . . , am) ∈ NI

m such that for all models I of K,
I |=π q for some π that satisfies π(vi) = ai for all i with 1 ≤ i ≤ m. Observe that
we admit only concept names in atoms A(v), but no complex concepts. This is
no restriction since an atom C(a) with C complex can be simulated using the
atom A(a) and the concept inclusion C v A.

A reasoning task closely related to query answering is query entailment. Here
we are given a knowledge base K and query q and asked whether I |= q for all
models I of K. If this is the case, we say that K entails q and write K |= q. In
this paper, we focus on query entailment. The reasons for this are two-fold: first,
query answering can be reduced to query entailment. And second, in contrast
to query answering, query entailment is a decision problem and can be studied
in terms of classical complexity theory.

We now make the connection between query answering and query entailment
more precise. Let K = (T ,H,A) be a knowledge base, q a conjunctive query
in n variables with answer variables v1, . . . , vm, and t = (a1, . . . , am) ∈ NI

m a
tuple. Our aim is to reduce checking whether t is an answer of K to q to query
entailment. To this end, let A′ := A ∪ {Ai(ai) | 1 ≤ i ≤ m}, where A1, . . . , Am

are concept names that do not occur in K. Moreover, let K′ := (T ,H,A′) and
let q′ := q ∪ {Ai(vi) | 1 ≤ i ≤ m}. The following is not difficult to prove.

Lemma 1. The tuple t is an answer of K to q iff K′ entails q′.

This technique is well known and the newly introduced concept names are
often referred to as representative concepts [8] or name formulae [3]. The same
technique can be used in order to represent constants (individual names) in the
query.

In the rest of this paper, for convenience we assume that conjunctive queries
are closed under inverses, i.e., if r(v, v′) ∈ q, then Inv(r)(v′, v) ∈ q and if we
add or remove atoms from a query, we implicitly assume that we do this such
that the resulting query is again closed under inverses. We will also assume that
queries are connected. More precisely, let q be a conjunctive query. We say
that q is connected if for all v, v′ ∈ Var(q), there exists a sequence v0, . . . , vn−1

such that v0 = v, vn−1 = v′, and for all i < n − 1, there exists a role r such
that r(vi, vi+1) ∈ q. A collection q1, . . . , qk of queries is a partitioning of q if
q = q1 ∪ · · · ∪ qk, Var(qi) ∩ Var(qj) = ∅ for 1 ≤ i < j ≤ k, and each qi is
connected. The next lemma says that we can restrict ourselves to the entailment
of connected queries. In what follows, we assume queries to be connected without
further notice.

Lemma 2. Let K be a knowledge base, q a conjunctive query, and q1, . . . , qn a
partitioning of q. Then K |= q iff K |= qi for 1 ≤ i ≤ n.

5

In the rest of this paper, we use q for a connected conjunctive query and K
= (T , H, A) for a knowledge base such that, in all assertions C(a) ∈ A, C is
a (possibly negated) concept name. Moreover, for a mapping f , we use dom(f)
and ran(f) to denote f ’s domain and range, respectively.

3 Forests and Trees

We will first define canonical (forest-shaped) interpretations, and prove that we
can limit our attention to such interpretations.

Definition 3. Let N∗ be the set of all (finite) words over the alphabet N. A
tree T is a non-empty prefix-closed subset of N∗. For w,w′ ∈ T , we call w′ a
successor of w if w′ = w · c for some c ∈ N, where “·” denotes concatenation.
We call w′ a neighbor of w if w′ is a successor of w or vice versa. Let K =
(T ,H,A) be a SHIQ knowledge base. A forest base for K is an interpretation
I that interpretes transitive roles in unrestricted (i.e., not necessarily transitive)
relations and additionally satisfies the following conditions:

T1 ∆I ⊆ Ind(A)×N∗ such that for all a ∈ Ind(A), the set {w | (a, w) ∈ ∆I}
is a tree;

T2 if ((a, w), (a′, w′)) ∈ rI , then either w = w′ = ε or a = a′ and w′ is a
neighbor of w;

T3 for all a ∈ Ind(A), aI = (a, ε).

Let I be an interpretation. Then I is canonical for K if there exists a forest
base J for K such that J is identical to I except that, for all non-simple roles
r, we have

rI = rJ ∪
⋃

sv∗r, s∈Trans

(sJ)+

In this case, we say that J is a forest base for I. 4

Observe that if I is canonical for K, then ∆I satisfies Condition T1 and T3
above.

Lemma 4. K 6|= q iff there exists a canonical model I with I 6|= q.

Proof. Using standard unravelling (see e.g. [12]), each model of K can be
converted into a canonical one. Moreover, if I |= K and I ′ is the canonical
model obtained by unravelling I, then it is not hard to show that I 6|= q implies
I ′ 6|= q, for all conjunctive queries q. o

6

In order to decide whether K |= q, our algorithm will check for the existence
of a counter model, i.e., a model I of K such that I 6|= q. Obviously, the above
observation means that it suffices to look only for canonical counter models.

Let I be a canonical model of K, and π : Var(q) → ∆I such that I |=π q. We
say that π is a forest match if for all r(v, v′) ∈ q, we have one of the following:

• π(v) = (a, ε) and π(v′) = (b, ε) for some a, b ∈ Ind(A);

• π(v) = (a, w) and π(v′) = (a, w′) for some a ∈ Ind(A) and w, w′ ∈ N∗.

Let I be a canonical model and π a forest match. A variable v is grounded
w.r.t. I and π if π(v) = (a, ε) for some a ∈ Ind(A). A forest match π defines
a “partial grounding” for q, and allows us to view q as being split into a set of
sub-queries, each of which is mapped into a single tree of I.

We will now describe a series of transformations that we will apply to a query.
The first of these, transitive rewriting, will allow us to restrict our attention to
forest matches.

Definition 5. Let K = (T , H, A) be a knowledge base and q a conjunctive
query. Then a query q′ is called a transitive rewriting of q w.r.t. K (or simply a
transitive rewriting when K is obvious from the context) if it is obtained from q
by choosing atoms r0(v0, v

′
0), . . . , rn(vn, v

′
n) ∈ q and roles s0, . . . , sn ∈ Trans such

that si v∗ ri for all i ≤ n, and then replacing ri(vi, v
′
i) with

si(vi, ui), si(ui, u
′
i), si(u

′
i, v

′
i)

or
si(vi, ui), si(ui, v

′
i)

for all i ≤ n, where ui and u′i are variables that do not occur in q. We use trK(q)
to denote the set of all transitive rewritings of q w.r.t. K. 4

We assume that trK(q) contains no isomorphic queries, i.e., differences in
(newly introduced) variable names only are neglected.

Together with Lemma 4, the following lemma shows that in order to decide
whether K entails q, we may enumerate all transitive rewritings q′ of q and check
whether there is a canonical model I of K such that I |=π q with π a forest
match.

Lemma 6. Let K = (T , H, A) be a knowledge base, q a conjunctive query, and
I a model of K. Then the following holds:

1. If I is canonical and I |= q, then there is a q′ ∈ trK(q) such that I |=π′ q′,
with π′ a forest match.

2. If I |= q′ with q′ ∈ trK(q), then I |= q.

7

Proof. 1. If there is a forest match π w.r.t. q and I already, we are done,
since q is a transitive rewriting of itself. Therefore, assume that there is no
forest match π w.r.t. I and q. Now, choose any π such that I |=π q. Since
π is no forest match, there are two variables v, v′ with r(v, v′) ∈ q such that
π(v) = (a, w), π(v′) = (a′, w′), a 6= a′, and w 6= ε or w′ 6= ε. We distinguish two
cases:

1. Both v and v′ are not mapped to roots, i.e., w 6= ε and w′ 6= ε. Since
I |=π r(v, v′), we have that (π(v), π(v′)) ∈ rI . Since I is a canonical
(forest) model, there must be a role s with s v∗ r and s ∈ TransH such that
{(π(v), (a, ε)), ((a, ε), (a′, ε)), ((a′, ε), π(v′))} ⊆ sI . Hence, we can define a
transitive rewriting q′ of q by replacing r(v, v′) with s(v, u), s(u, u′), s(u′, v′)
for u and u′ new variables in q. We then define π′ as the extension of π
that maps u to (a, ε) and u′ to (a′, ε). It immediately follows that I |=π′ q′.

2. Either v or v′ is mapped to a root. W.l.o.g., let this be v, i.e., π(v) = (a, ε).
We can use the same arguments as above: Since I |=π r(v, v′), we have that
(π(v), π(v′)) ∈ rI and since I is a canonical (forest) model, there must be a
role s with s v∗ r and s ∈ TransH such that {(π(v), (a′, ε)), ((a′, ε), π(v′))} ⊆
sI . Hence, we can define a transitive rewriting q′ of q by replacing r(v, v′)
with s(v, u), s(u, v′) for u /∈ Var(q) and by defining π′ as the extension of
π that maps u to (a′, ε). It immediately follows that I |=π′ q′.

We can proceed as described above for each role atom r(v, v′) for which π(v) =
(a, w) and π(v′) = (a′, w′) with a 6= a′ and w 6= ε or w′ 6= ε. Since each obtained
q′ is a transitive rewriting of q and I |=π′ q′ for the extended π′, it is clear that
we obtain a transitive rewriting q′ and a mapping π′ such that I |=π′ q′ and π′

is a forest match.
2. If q = q′, we are done. Therefore, let r(v, v′) ∈ q \ q′ and let π be a

mapping such that I |=π q′. Since q′ is a transitive rewriting of q, there is
a role s such that s v∗ r, s ∈ TransH, and either {s(v, u), s(u, v′)} ⊆ q′ or
{s(v, u), s(u, u′), s(u′, v′)} ⊆ q′. However, since s ∈ TransH, (π(v), π(v′)) ∈ sI

and since s v∗ r, (π(v), π(v′)) ∈ rI . Therefore, I |=π q as required. o

Lemma 7. Let K = (T , H, A) be a knowledge base, q a query, |q| = n, and
|H| = mH. Then there is a polynomial p such that

(a) |trK(q)| ≤ 2p(n)·log p(mH)

(b) for all q′ ∈ trK(q), |q′| ≤ p(n),

Proof. First for (a). Since there are at most n binary atoms in q and at most
mH roles in TransH that may be selected for a transitive rewriting, there are
(mH+1)n = 2n·log(mH+1) such rewritings. For (b), it is easily seen that |q′| ≤ 3n.

o

8

Let q be a query and I a canonical interpretation. A special case of forest
matches are tree matches, i.e., matches π : Var(q) → ∆I for which there exists
an a0 ∈ Ind(A) such that for all v ∈ Var(q), we have π(v) = (a0, w) for some
w ∈ N∗. Intuitively, in this case the whole match concerns only one of the trees
in the forest ∆I , and we call π an a-tree match if, for each v ∈ Var(q), there is
some w such that π(v) = (a, w). In our algorithm, forest matches of a query q
will be broken down into tree matches of subqueries of q.

We will now show how a query can be rewritten as a tree-shaped query.
This procedure, which we call tree transformation, can be applied to the sub-
queries identified by a forest match; we can then use rolling-up to transform
each sub-query into a concept.

Tree transformation of q is a three stage process. In the first stage, we derive
a collapsing q0 of q by (possibly) identifying variables in q. This allows us, e.g., to
transform atoms r(v, u), r(v, u′), r(u, w), r(u′, w) into a tree shape by identifying
u and u′. In the second stage, we derive an extension q1 of q0 by (possibly)
introducing new variables and role atoms that make redundant existing role
atoms r(v, v′), where r is non-simple. In the third stage, we derive a reduct q′

of q1 by (possibly) removing redundant role atoms, i.e., atoms r(v, v′) such that
there exist variables v0, . . . , vn ∈ Var(q1) with v0 = v, vn = v′, s(vi, vi+1) ∈ q1

for all i < n, s v∗ r, and s ∈ Trans. Combining the extension and reduct steps
allows us, e.g., to transform a “loop” r(v, v) into a tree shape by introducing a
new variable v′ and edges s(v, v′), s(v′, v) such that s v∗ r and s ∈ Trans, and
then removing the redundant atom r(v, v).

We will now describe this procedure more formally.

Definition 8. Let K = (T ,H,A) be a knowledge base. A conjunctive query
q is tree-shaped if there exists a bijection τ from Var(q) into a tree such that
r(v, v′) ∈ q implies that τ(v) is a neighbor of τ(v′). Then

• a collapsing of q is obtained by identifying variables in q.

• the query q′ is an extension of q w.r.t. K if the following hold:

1. q ⊆ q′;

2. A(v) ∈ q′ implies A(v) ∈ q;

3. r(v, v′) ∈ q′ \ q implies that r occurs in H;

4. |Var(q′)| ≤ 4|q|;
5. |{r(v, v′) ∈ q′ | r(v, v′) /∈ q}| ≤ 171|q|2.

• the query q′ is a reduct of q w.r.t. K if the following hold:

1. q′ ⊆ q;

2. A(v) ∈ q implies A(v) ∈ q′;

9

3. if r(v, v′) ∈ q \ q′, then there is a role s such that s v∗ r, s ∈ Trans,
and there are v0, . . . , vn such that v0 = v, vn = v′, and s(vi, vi+1) ∈ q′

for all i < n.

• a tree transformations of q is a query q′ for which there are queries q0 and
q1 such that

– q0 is a collapsing of q;

– q1 is an extension of q0 w.r.t. K;

– q′ is a tree-shaped reduct of q1.

We use ttK(q) to denote the set of all tree transformations of q w.r.t. K. 4
We note that Condition 5 of extensions is not strictly needed. However, without
this condition the algorithm for query entailment to be developed would require
double exponential time in the size of the input knowledge base instead of only
single exponential time. As in the case of trK(q), we assume that ttK(q) does
not contain any isomorphic queries.

We now derive an upper bound on the number and size of elements in ttK(q).
The size |T | (|H|, |A|) of T (H, A) is the number of symbols needed to write
it. For a knowledge base K = (T , H, A), the size |K| of K is the number of
symbols needed to write all the components T , H, and A of K.

Lemma 9. Let K = (T , H, A) be a knowledge base, q a query, |q| = n, and
|H| = mH. Then the following hold:

(a) |ttK(q)| ≤ 2p(n)·log p(mH)

(b) for all q′ ∈ ttK(q), |q′| ≤ p(n),

where p is a polynomial.

Proof. (a) is a consequence of the following and some easy computation:

• the number of transitive rewritings of q is bounded by 2p′(n)·log p′(mH) for
some polynomial p′;

• the number of collapsings of q is bounded by 2n;

• the number of extensions of q w.r.t. K is bounded by 3n · (mH · 8n2)171 n2
;

• the number of reducts of q is bounded by 2n.

(b) is a consequence of the following:

• if q′ is a collapsing of q, then |q′| ≤ n;

• if q′ is an extension of q, then |q′| ≤ 171n2;

• if q′ is a reduct of q, then |q′| ≤ n.
o

10

Let K be a knowledge base, q a query, and q′ ∈ ttK(q). For each v ∈ Var(q), let
σ(v) be the variable in Var(q′) that v has been identified with (σ(v) = v if v has
not been identified with another variable). Take mappings π : Var(q) → N

∗ and
π′ : Var(q′) → N

∗. We call π and π′ ε-compatible iff, for all variables v ∈ Var(q),
π(v) = ε iff π′(σ(v)) = ε. Since q′ is tree-shaped, π′ is a tree with ε as the
root and intuitively, ε-compatibility then also guarantees us that we can use
v ∈ Var(q) for which π(v) = ε as the root or starting point in π and use the
above defined transformations in order to transform q into q′.

Lemma 10. Let K = (T ,H,A) be a knowledge base, I a canonical model of K, q
a conjunctive query, and π an a-tree match. If I |=π q, then there is a q′ ∈ ttK(q)
and an a-tree match π′ such that I |=π′ q′ and π and π′ are ε-compatible.

Proof. “⇒”. Let J be a forest base of I. Since π is an a-tree match and I is
canonical, we can restrict our attention to the tree rooted in (a, ε) and we call
the restriction of J to domain (a, ·) an a-tree base. For convenience, we denote
the domain elements of an a-tree base with w instead of (a, w).

Let J ′ be an a-tree base for I and assume that I |=π q. We now use I, its
a-tree base J ′, and the mapping π for q to guide the transformation process.
Let q0 be the collapsing of q that is obtained by identifying all variables v, v′

with π(v) = π(v′), and let π0 be the restriction of π to the variables in q0. It is
not hard to verify that I |=π0 q0 and that π0 is an injection.

Next, we define a query q1 that is an extension of q0 and a corresponding
mapping π1. This will involve a number of steps. We start with proving the
following:

Claim 1. Let r(v, v) ∈ q0. Then there exists a neighbor d of π0(v) and a role
s ∈ Trans such that s v∗ r and (π0(v), d) ∈ sI ∩ Inv(s)I .

Proof. Let r(v, v) ∈ q0. Since I |=π0 q0, we have (π0(v), π0(v)) ∈ rI . Since J ′ is
an a-tree base, we have (π0(v), π0(v)) /∈ rJ

′
. It follows that there is a sequence

d0, . . . , dn−1 ∈ ∆I and a role s ∈ Trans such that s v∗ r, d0 = π0(v) = dn−1, and
(di, di+1) ∈ sJ

′
for i < n − 1. Let d0, . . . , dn−1 be the shortest such sequence.

Then it is not hard to see that, because J ′ is tree-shaped, we have d1 = dn−2.
Since (d0, d1) ∈ sJ

′
and (dn−2, dn−1) ∈ sJ

′
with dn−2 = d1 and dn−1 = d0, the

role s and the element d = d1 are as required. This finishes the proof of Claim 1.

For each r(v, v) ∈ q0, select a d and s as in Claim 1. We will denote the former
with dr,v and the latter with sr,v. Now let q∗ be obtained from q0 by doing the
following for each r(v, v) ∈ q0:

• if dr,v = π0(v
′) for some v′ ∈ Var(q0), then add the atoms sr,v(v, v′) and

sr,v(v
′, v);

• otherwise, introduce a new variable vr,v and add the atoms sr,v(vr,v, v) and
sr,v(v, vr,v).

11

Let π∗ be defined as π0 extended with π∗(vr,v) = dr,v for each newly introduced
variable vr,v. It is easily seen that q∗ is connected, π∗ is injective, and I |=π∗ q∗.

For w, w′ ∈ N∗, the longest common prefix (LCP) of w,w′ is the longest
w∗ ∈ N∗ such that w∗ is prefix of both w and w′. Set

D := ran(π∗) ∪ {d ∈ ∆I | ∃v, v′ ∈ Var(q′) : d LCP of π∗(v), π∗(v′)}.

The following are not too difficult to see:

Fact (a) if d, d′ ∈ D, then the LCP of d, d′ is in D;

Fact (b) |D| ≤ 2|Var(q∗)| (since 2n is an upper bound on the number of nodes
in a tree that has n leaves and is at least binarily branching at every
non-leaf).

Set V := Var(q∗)∪{vd | d ∈ D \ ran(π∗)} and π1 := π∗∪{vd 7→ d | vd ∈ V }. The
members of V will be the variables of the new query q1.

Next, we prove a technical claim. Let d, d′ ∈ ∆I . The path from d to d′ is
the (unique) shortest sequence of elements d0, . . . , dn−1 ∈ ∆I such that d0 = d,
dn−1 = d′, and di+1 is a neighbor of di for all i < n− 1. The length of a path is
the number of elements in it, i.e., the path d0, . . . , dn−1 is of length n.

Claim 2. Let d ∈ D \ ran(π∗). Then there is a v ∈ Var(q∗) and a role s such
that (d, π∗(v)) ∈ sI .

Proof. Since d ∈ D \ ran(π∗), there are v, v′ ∈ Var(q∗) such that d is LCP of
π∗(v) and π∗(v′). Since q∗ is connected, there is a sequence v0, . . . , vn−1 ∈ Var(q∗)
such that v0 = v, vn−1 = v′, and for all i < n − 1, there is a role ri such that
ri(vi, vi+1) ∈ q∗. We distinguish two cases:

1. There is an i < n such that d is not a prefix of π∗(vi).

Since d is a prefix of π∗(v0) and π∗(vn−1), it follows that there is an ` < n−1
such that d is a prefix of π∗(v`+1), but not of π∗(v`). Let d0, . . . , dm−1

be the path from π∗(v`) to π∗(v`+1). Let k < m − 1 such that dk = d
(such a k clearly exists). Since r`(v`, v`+1) ∈ q∗ and I |=π∗ q∗, we have
(d0, dm−1) = (π∗(vl), π

∗(vl+1)) ∈ rI` . We have three subcases:

• m = 1. Impossible since π∗(v`) 6= π∗(v` + 1).

• m = 2. Then d0 and dm−1 are neighbors. Since d is a prefix of π∗(v`+1)
but not of π∗(v`), we have π∗(v`) = d. Contradiction to d /∈ ran(π∗).

• m > 2. Then (d0, dm−1) ∈ rI` \ rJ
′

` . By construction of I from
J ′, this means that there is a role s ∈ Trans such that s v∗ r`

and (di, di+1) ∈ sJ
′

for all i < m − 1. Again by construction of
I, this means (dk, dm−1) ∈ sI . Since π∗(v`+1) = dm−1, we have
(d, π∗(v`+1)) ∈ sI and are done.

12

2. For all i < n, d is a prefix of π(vi).

Since d is LCP of π∗(v) and π∗(v′) and d /∈ ran(π∗), d is distinct from
π∗(v) and π∗(v′) and we have π∗(v) = d · w and π∗(v′) = d · w′ for some
w, w′ ∈ N∗ such that the first symbol of w is different from the first symbol
of w′ (π∗(v) and π∗(v′) are in different branches of the tree). Since d is a
prefix of π(vi) for all i < n, it follows that there is an ` < n− 1 such that
π∗(v`) and π∗(v`+1) are in different branches of the tree, i.e., π∗(v`) = d · u
and π∗(v`+1) = d · u′ for some u, u′ ∈ N∗ such that the first symbol of u is
different from the first symbol of u′.

Since (π∗(v`), π
∗(v`+1)) ∈ rI` , I is a canonical interpretation based on J ,

and ran(π∗) is restricted to the a-tree base J ′, this means that there is an
s ∈ Trans such that

• s v∗ r`,

• (d · û · c, d · û) ∈ sJ
′
for each prefix û · c of u (with u ∈ N∗ and c ∈ N),

• and (d · û′, d · û′ · c) ∈ sJ
′
for each prefix û′ · c of u′.

Since s ∈ Trans, it follows that (d, π∗(v`+1)) ∈ sI and we are done.

This finishes the proof of Claim 2.

Let q∗∗ be obtained from q∗ as follows: for each d ∈ D\ran(π∗), select a variable v
and role s as in Claim 2 and include s(vd, v) in q∗∗. The query q∗∗ is our starting
point for defining q1, which will contain additional atoms (but no additional
variables). It is obvious that q∗∗ is connected and that I |=π1 q∗∗.

Next, we prove another technical claim. Let d, d′ ∈ ∆I and d0, . . . , dn−1 with
d0 = d and dn−1 = d′ the path from d to d′. The relevant path d′0, . . . , d

′
m−1

from d to d′ is the subsequence of d0, . . . , dn−1 that is obtained by dropping all
elements not in the range of π1.

Claim 3. Let r(v, v′) ∈ q∗∗ such that the length n of the relevant path
d0, . . . , dn−1 from π1(v) to π1(v

′) is greater than 2. Then there exists an s ∈ Trans
such that s v∗ r and (di, di+1) ∈ sI for all i < n− 1.

Proof. Let d′0, . . . , d
′
m−1 be the path from π1(v) to π1(v

′). Then n > 2 implies
m > 2. We have to show that there is a role s as in the claim. Since I |=π1 q∗∗,
m > 2 implies (π(v), π(v′)) ∈ rI \ rJ . Since I is based on J , it follows that
there is an s ∈ Trans such that s v∗ r, and (d′i, d

′
i+1) ∈ sJ for all i < m− 1. By

construction of I from J , it follows that (di, di+1) ∈ sI for all i < n− 1, which
finishes the proof of the claim.

Now let q1 be obtained from q∗∗ as follows: for all atoms r(v, v′) ∈ q∗∗ with
relevant path d0, . . . , dn−1 such that n > 2, select a role s as in Claim 3, include
s(v0, v1), . . . , s(vn−2, vn−1) in q1, where v0, . . . , vn−1 ∈ V are the variables such

13

that vi = di for all i < n (there is no ambiguity here since π1 is injective). It is
obvious that I |=π1 q1.

Let us show that q1 is an extension of q∗. Conditions 1 to 3 are easily verified.
For Condition 4, note that q∗ contains at most |q0| ≤ |q| additional nodes and
q∗∗ contains at most |q∗| additional nodes by Fact (b) above.

For Condition 5, we note the following:

• The number of atoms in q∗ \ q0 is bounded by 4|q0| (4 instead of 2 because
queries are closed under inverse roles).

• The number of atoms in q∗∗ \ q∗ is bounded by 4|q0| (we add at most one
edge for each of the 2|q0| nodes in q∗ and close off under inverse roles).

• The number of atoms in q1 \ q∗∗ is bounded by 2|q∗∗|2. This is due to the
following facts: There are at most |q∗∗| binary atoms in q∗, each gives rise
to a single relevant path, every relevant path has length at most |q∗∗| and
in the worst case we introduce a new binary atom (plus its inverse) for
each edge of each such relevant path. Therefore, we can use 2|q∗∗|2 as a
bound for the number of new role atoms in q1.

• Since |q∗| 6 |q0|+4|q0| = 5|q0| and |q∗∗| 6 |q∗|+4|q0| = 9|q0|, the size of new
atoms in q1\q∗∗ is bounded by 2(9|q0|)2 = 162|q0|2 and, overall, the number
of new role atoms in q1 (compared to q0) is bounded by 162|q0|2 + 9|q0| 6
171|q0|2.

Now, let q′ be the query obtained from q1 by dropping all r(v, v′) ∈ q1 such that
v = v′ or the relevant path from π1(v) to π1(v

′) is longer than two elements.
Also, let π′ = π1. Clearly, I |=π′ q′ and π′ is injective. We show that q′ is
a reduct of q1. As the first two conditions of reducts are easily verified, we
concentrate on the third. Assume that r(v, v′) ∈ q1 \ q′. There are two cases:

• v = v′. It can be checked that in the process described above, we do
not introduce new role atoms s(u, u′) such that u = u′, i.e., s(u, u′) ∈
(q∗ \ q0) ∪ (q∗∗ \ q∗) implies u 6= u′, and thus we have r(v, v) ∈ q0. By
construction of q∗, there is a v∗ ∈ Var(q∗) and an s ∈ Trans such that
v 6= v∗, s v∗ r, s(v, v∗) ∈ q∗, s(v∗, v) ∈ q∗, and π∗(v) is a neighbor
of π∗(v∗). By building a reduct we only drop role atoms r(v, v′) with
v = v′ or for which the relevant path is longer than two elements, neither
of which is the case for v and v∗, since π∗(v) and π∗(v∗) are neighbors.
Hence, s(v, v∗) and s(v∗, v) remain in q′ and we can choose the sequence
v0, . . . , vn in Condition 3 as v, v∗, v and thereby satisfy the condition for
the binary atom r(v, v′).

• The relevant path d0, . . . , dn−1 from π1(v) to π1(v
′) is such that n > 2.

By construction of q1, it follows that there exists an s ∈ Trans such that

14

s v∗ r and s(v0, v1), . . . , s(vn−2, vn−1) in q1, where v0, . . . , vn−1 ∈ V are the
variables such that vi = di. Clearly, vi 6= vj for all i, j with i < j < n
and the relevant path between di and di+1 consists of only two nodes for
all i < n − 1. Therefore s(vi, vi+1) ∈ q′ for all i < n − 1. It follows that
Condition 3 is satisfied for the binary atom r(v, v′).

Since π and π′ are clearly ε-compatible, it remains to prove that q′ is tree-shaped.
Let vr ∈ Var(q′) such that, for all v ∈ Var(q′), π′(vr) is a (not necessarily proper)
prefix of π′(v). Such a variable exists due to Fact (a) above. Define a trace to
be a sequence t = v0 · · · vn ∈ Var(q′)+ such that

• v0 = vr;

• for all i < n, π′(vi) is a true prefix of π′(vi+1) and the length of the relevant
path from π′(vi) to π′(vi+1) is 2.

Let f be an injection from Var(q′) to N and define τ(t) := ε · f(v1) · · · f(vn). It
is easily seen that T = {τ(t) | t is a trace} is a tree. For a trace t = v0 · · · vn, let
last(t) = vn. Clearly, for every variable v ∈ Var(q′) there is a unique trace tv such
that last(tv) = v. Define a mapping ν : Var(q′) → T by setting ν(v) := τ(tv). It
is not difficult to verify that ν is a bijection. Let r(v, v′) ∈ q′. By construction of
q′, this implies that the length of the relevant path from π′(v) to π′(v′) is exactly
2. It is not hard to check that thus, ν(v) and ν(v′) are neighbors in T . o

Lemma 11. Let I be an interpretation, q a query, q′ ∈ ttK(q), and π′ a mapping
such that I |=π′ q′. Then there is a π such that I |=π q and π and π′ are ε-
compatible.

Proof. Let q0 be a collapsing of q, q1 an extension of q0, and q′ a tree-shaped
reduction of q1. Further suppose that I |=π′ q′. We first show that I |=π′ q1. Let
at ∈ q1. If at ∈ q′, then I |=π′ q′ implies I |=π′ at. Otherwise, at is of the form
r(v, v′) and there is an s ∈ Trans such that s v∗ r and there are v0, . . . , vn−1

such that v0 = v, vn−1 = v′, and s(vi, vi+1) ∈ q′ for all i < n− 1. Since I |=π′ q′,
we have (π(v), π(vi+1)) ∈ sI for all i < n − 1. Since s ∈ Trans and s v∗ r, we
have (π(v), π(v′)) ∈ rI as required. Summing up, we have shown that I |=π′ q1.
Since q0 ⊆ q1, this implies I |=π′ q0. Now, let π be obtained from π′ by setting
π(v′) = π′(v) if v is the variable that v′ has been identified with when collapsing
q to q0. It is easy to check that I |=π q and that π and π′ are ε-compatible. o

Let q be a conjunctive query. It is easy to see how to produce the set S of all
reducts of extensions of collapsings of q. To select the tree-shaped queries from
S, we may proceed as follows. Let q′ ∈ S and select a vr ∈ Var(q′). Then define
a mapping τ : Var(q′) → N

∗ inductively as follows:

• Initially, set τ(vr) := ε;

15

• if τ(v) is already defined and

V = {v′ ∈ Var(q) | r(v, v′) for some role r and τ(v′) undefined},

then fix an injection f : V → N and set τ(v′) = τ(v) · f(v′) for all v′ ∈ V .

Clearly, ran(τ) is a tree. The following is not difficult to prove.

Lemma 12. The query q′ is tree-shaped iff for all r(v, v′) ∈ q′, τ(v) is a neighbor
of τ(v′).

The algorithm to be designed in the following section crucially relies on the
observation that tree-shaped queries can be converted into concepts formulated
in the description logic ELIu, which offers only the concept constructors u and
∃r0 u · · · u rn−1.C, where r0, . . . , rn−1 are (possibly inverse or non-simple) roles.
The semantics of the latter operator is as follows:

(∃r0 u · · · u rn−1.C)I := {d ∈ ∆I | ∃e : (d, e) ∈ rIi for 0 6 i < n and e ∈ CI}.

More precisely, this conversion can be done as follows. Let q be a tree-shaped
query and τ : Var(q) → N

∗ with ε ∈ ran(τ) such that r(v, v′) ∈ q iff τ(v) is a
neighbor of τ(v′). Then assign to each variable v a concept Cq(v) by proceeding
in a bottom-up fashion through the tree ran(τ):

• if τ(v) is a leaf of ran(τ), then Cq(v) :=
d

A(v)∈q A

• if τ(v) has successors τ(v0), . . . , τ(vn−1), then

Cq(v) :=
l

A(v)∈q

A u
l

06i<n

∃
(l

r(v,vi)∈q

r
)
.Cq(vi).

Then Cq is Cq(vr) for τ(vr) = ε.

Lemma 13. Let q be a tree-shaped query, I an interpretation, and vr ∈ Var(q).
Then I |= q iff Cq(vr)

I 6= ∅. In particular, d ∈ Cq(vr)
I implies that there is a π

with vr 7→ d such that I |=π q.

Lemma 13 shows that for all queries q, interpretations I, and variables v, v′ ∈
Var(q), we have Cq(v)I 6= ∅ iff Cq(v

′)I 6= ∅. This justifies the following: given a
conjunctive query q, we use Cq to denote Cq(v) for some arbitrary (but fixed)
v ∈ Var(q).

We could now apply tree transformations to the sub-queries identified by a
forest match, and use so-called representative concepts [8] or name formulae [3]
to roll up the resulting query into a concept Cq. This would allow us to straight-
forwardly obtain a decision procedure: K |= q iff for every model I of K there is

16

some C such that C is a concept that can be obtained by rolling-up a tree trans-
formation of the sub-queries identified by a forest match of a transitive rewriting
of q, and CI 6= ∅. If C is the set of all such concepts, then for K = (T ,H,A),
K |= q iff (T ′,H,A) is inconsistent, where

T ′ = T ∪ {> v ¬C | C ∈ C}.

By doing so, however, we would compromise the clear separation between the
TBox and the ABox, and thus we could no longer obtain tight data complex-
ity results. We will therefore present a decision procedure that uses extended
ABoxes to check for the existence of forest matches; this decision procedure
yields the desired complexity results.

4 The Decision Procedure

In order to gain insight into the data complexity of query entailment, we devise a
procedure that uses extensions of both TBox and ABox. We proceed as follows:
roughly speaking, we look for a KB K′ such that K′ extends K (both w.r.t. TBox
and Abox), and the additional axioms and assertions prevent the existence of
a transitive rewriting q′ of q, a canonical model I of K, and a forest match π
such that I |=π q′. Lemmas 4 and 6 and the fact that K′ extends K clearly also
implies K 6|= q. We consider all “relevant” extensions of K so that, if we find no
extension K′ such that K′ 6|= q, we can conclude that K |= q.

In order to define K′, we use Lemma 13, and thus K′ will not be a SHIQ
knowledge base. An extended knowledge base K′ is of the form (T ∪Tq,H,A∪A′)
with

• T , H, and A are as in a SHIQ knowledge base;

• Tq is a finite set of GCIs > v C with C a SHIQu concept;

• A′ is an ABox such that if C(a) ∈ A′, then a ∈ Ind(A) and C is a negated
SHIQu concept.

The extended knowlegde bases K′ that we construct from K and q will be such
that every counter model against K |= q (i.e., I 6|= q) is a model of some K′

and, for each model I of a K′, we have that I 6|= q. Thus, K |= q iff each K′

is inconsistent. From Lemmas 4 and 6, to ensure that models of the K′ are
counter models, it suffices to prevent forest matches of transitive rewritings of
q w.r.t. K in canonical models of K′—and this is the role played by Tq and A′.
We distinguish between two kinds of forest matches: a-tree matches and true
forest matches, i.e., forest matches that are not a-tree matches. To prevent a-
tree matches, it suffices to consider the tree transformations of q. Therefore, Tq

17

is defined as follows:

Tq = {> v ¬Cq′ | q′ ∈ ttK(q)}.

To prevent true forest matches, we further include an ABox A′, which con-
tains additional information about the individuals in A. This is similar to the
well-known precompletion approach for reducing ABox consistency to concept
satisfiability [6]. Each A′ represents a model in which there is no “true forest
match” of a transitive rewriting of q, i.e., it contains, for each possible forest
match, an assertion that “spoils” it.

This can consist either of an assertion which ensures that, for some grounded
variable v ∈ Var(q′) with π(v) = (a, ε), a is not an instance of any rolling-up
of a tree transformation of the a-tree match containing v, or of an assertion
that ensures, for some grounded variables v, v′ ∈ Var(q′), with r(v, v′) ∈ q′,
π(v) = (a, ε) and π(v′) = (b, ε), a is not r-related to b (i.e., ¬r(a, b)).

In the following, a sub-query of q is simply a non-empty subset of q (including
q itself). Let Q be the set of all queries that are a tree transformation of a sub-
query of a transitive rewriting of q w.r.t. K, and let cl(q) be the set of all Cq′

such that q′ ∈ Q. Note that this implies that cl(q) contains every concept name
occurring in q.

An ABox A′ is called a q-completion if it contains only assertions of the form

• ¬C(a) for some C ∈ cl(q) and a ∈ Ind(A) and

• ¬r(a, b) for a role name r occurring in cl(q) and a, b ∈ Ind(A).

Let n = |q|, mH = |H|, mA = |A|, and k = |cl(q)|. By Lemmas 7 and 9 and
since the number of sub-queries of q is bounded by 2n, there is a polynomial p
such that k ≤ 2p(n)·log p(mH). Also by Lemmas 7 and 9, there is a polynomial p′

such that the size of each concept in cl(q) is bounded by p′(n). Therefore, the
number of q-completions is bounded by 2kmA+2km2

A .
Let q′ be a transitive rewriting of q, and τ : Var(q′) → Ind(A) be a partial

mapping. For a ∈ Ind(A), we set Root(a, τ) = {v ∈ Var(q′) | τ(v) = a}, and we
use Reach(a, τ) to denote the set of variables v ∈ Var(q′) for which there exists
a sequence of variables v0, . . . , vn−1, n ≥ 1, such that

• τ(v0) = a and vn−1 = v

• {v0, . . . , vn−1} ∩ dom(τ) ⊆ Root(a, τ);

• for all i < n− 1, there is a role r s.t. r(vi, vi+1) ∈ q.

Observe that Root(a, τ) = dom(τ) ∩ Reach(a, τ).

18

We call τ a split mapping if dom(τ) 6= ∅ and, for all a, b ∈ Ind(A), a 6= b
implies Reach(a, τ) ∩ Reach(b, τ) = ∅. Each split mapping τ induces, for each
a ∈ ran(τ), a sub-query qa as follows:

qa = {at ∈ q | Var({at}) ⊆ Reach(a, τ)}\
{r(v, v′) ∈ q′ | v, v′ ∈ Root(a, τ)}.

An extended query is a query where disjunctions of ELIu concepts can occur
in concept atoms. From a transitive rewriting q′ ∈ trK(q) and a split mapping
τ : Var(q′) → Ind(A) we obtain a groundable rewriting q′′ of q′ as follows:

• drop all atoms in q′ which contain a variable v 6∈ dom(τ);

• for each a ∈ ran(τ), replace all variables v ∈ Root(a, τ) with a new variable
va; and

• for each a ∈ ran(τ), let qa be the sub-query of q′ induced by τ , replace all
v ∈ Root(a, τ) with va and add (Cq1

a
t . . . t Cqm

a
)(va), where each qi

a is a
tree transformation of qa in which va was not replaced and Cqi

a
= Cqi

a
(va).

In this case, we call τ the grounding of q′′ and use τ(q′′) for the result of replacing
each va in q′′ with a.

We say that a q-completion A′ spoils τ(q′′) if there is some

• r(a, b) ∈ τ(q′′) and ¬r(a, b) ∈ A′ or

• (Cq1
a
t . . . t Cqm

a
)(a) ∈ τ(q′′) and ¬Cqi

a
(a) ∈ A′ for 1 ≤ i ≤ m.

Finally, a q-completion A′ is called a counter candidate for q and K if, for all
groundable rewritings q′′ of transitive rewritings q′ of q with grounding τ , A′

spoils τ(q′′).

Let us estimate the complexity of checking whether a given q-completion
is a counter candidate. By Lemma 7, there is a polynomial p such that there
are 2p(n)·log p(mH) transitive rewritings of q and it is easily seen that all tree
transformations can be computed in this time bound as well. The number of
q-completions (and therefore of counter candidates) is bounded by 2kmA+2km2

A .
Moreover, for q′ ∈ tr(q), it can be decided in time polynomial in n and mA
whether a partial mapping τ is a split mapping for q′ and A, and there are
at most (mA + 1)|q

′| such partial mappings. In order to check whether a q-
completion is a counter candidate, we have to check for the existance of certain
concepts C such that C(a) ∈ A′. Clearly, the number of concepts relevant here
is bounded by the cardinality of cl(q), which is bounded by 2p(n)·log p(mH) for a
polynomial p. Together with Lemma 7, this implies that there is a polynomial
p′ such that checking whether a q-completion is a counter candidate can be done
in time 2p(n)·log p(mH)·log p(mA).

19

The following lemma forms the base of our decision procedure. A proof can
be found in Section A.

Lemma 14. K 6|= q iff there exists a counter candidate A′ for q and K such that
the extended knowledge base K′ = (T ∪ Tq,H,A ∪A′) is consistent.

Intuitively, counter candidates are those q-completions that do not give rise
to true forest matches. Since we prevent tree matches via the TBox Tq, the
knowledge bases K′ of Lemma 14 capture exactly the counter models against
K |= q.

Based on this lemma, we define two versions of our decision procedure for
query entailment in SHIQ. The first version is deterministic and provides us
with an upper bound for combined complexity, where all three components of
the input knowledge base K = (T ,H,A) and the query are considered as the
input. The second version is non-deterministic and yields a tight upper bound
for data complexity, where T , H, and q are assumed fixed, and only A is the
input. For the deterministic version, we make use of the following result which
is proved in the appendix.

Theorem 15. Given an extended knowledge base K′ = (T ∪ Tq,H,A ∪ A′),
where |(T ,H,A)| = r, the cardinality of Tq ∪ A′ is s, and the maximum length
of concepts in Tq and A′ is t, we can decide consistency of K in deterministic

time 22p(t·log r·log s)
with p a polynomial.

The deterministic version of our algorithm is as follows: generate all q-comple-
tions ofA and then check whether all extended knowledge bases that are induced
by the counter candidates are inconsistent. By Lemma 14, this algorithm is
correct. Observe that for all extended knowledge bases K′ = (T ∪Tq,H,A∪A′)
whose inconsistency needs to be checked, the cardinality of Tq is bounded by
k, the cardinality of A′ is bounded by kmA + 2km2

A, and hence the cardinality
of Tq ∪ A′ is bounded by k + kmA + 2km2

A (where k = |cl(q)|), and (due to
Parts (b) of Lemmas 7 and 9) the maximum length of concepts in Tq and A′

is bounded by p(n) for some polynomial p. This together with Theorem 15,
the bound established above on the number of q-completions of A, and the fact
that deciding if a q-completion is a counter candidate can be checked in time
2p(n)·log p(mH)·log p(mA) with p a polynomial, yields the following result.

Theorem 16. Given a SHIQ knowledge base K and a conjunctive query q with
|K| = m and |q| = n, it can be decided in deterministic time 22p(n)·log p(m)

whether
K |= q, where p is a polynomial.

20

Observe that this bound is single exponential in the size of the knowledge base
and double exponential in the size of the query.

The non-deterministic version of our decision procedure actually decides non-
entailment of queries: guess a q-completion of A, check whether it is a counter
candidate and consistent, return “yes” (K 6|= q) if the check succeeds and “no”
(K |= q) otherwise. Regarding the complexity of inconsistency, we make use of
the following result which is also proved in the appendix.

Theorem 17. Let T and Tq be TBoxes and H a role hierarchy. Given ABoxes
A and A′ such that K′ = (T ∪ Tq,H,A ∪ A′) is an extended knowledge base
and |A ∪ A′| = r, we can decide in non-deterministic time p(r) whether K′ is
consistent.

Again, Lemma 14 yields correctness of our algorithm. Let mA = |A|. The
bound established above on the maximal size of q-completions implies that q-
completions of A are polynomial in mA. Whether a q-completion is a counter
candidate can be decided in time 2p(n)·log p(mH)·log p(mA), which is also polynomial
in mA. Thus, Theorem 17 implies that the data complexity of query entailment
in SHIQ is in co-NP. The lower bound easily follows from the fact that con-
junctive query entailment is already co-NP-hard regarding data complexity in
the very restricted DL AL [2].

Theorem 18. Conjunctive query entailment in SHIQ is data complete for
co-NP.

A Correctness

Our aim is to prove Lemma 14. To this end, we first prove that every extended
knowledge base that is consistent has a canonical model.

Lemma 19. Every extended knowledge base that is consistent has a canonical
model.

Proof. We translate an extended knowledge base K′ = (T ∪ Tq,H,A∪A′) into
an equisatisfiable ALCQIb knowledge base by extending the translation given
in [12, 6.22]. Checking the consistency of an ALCQIb knowledge base is reduced
(via precompletions) to ALCQIb concept satisfiability. Since the satisfiability
of an ALCQIb concept is reduced to an emptiness test of an infinite automaton,
it immediately follows that every ALCQIb concept has a canonical model. This
yields that also every consistent extended knowledge base has a canonical model.

o

21

We can now prove Lemma 14.

Lemma 14. K 6|= q iff there is some counter candidate A′ of A such that the
extended knowledge base K′ = (T ∪ Tq,H,A ∪A′) is consistent.

Proof. “⇒”. Assume that K 6|= q. We now have to show that there is a counter
candidateA′ ofA such that the extended knowledge base K = (T ∪Tq,H,A∪A′)
is consistent. Since K 6|= q, there is a model I of K such that I 6|= q. We first
show that I is a model of Tq. To this end, let > v ¬C in Tq. Then C = Cq′

for some q′ ∈ ttK(q). Assume to the contrary of what is to be shown that
CI

q′ 6= ∅. Then we get I |= q′ by Lemma 13 and I |= q by Lemma 11, which is a
contradiction.

Next, we define a q-completion A′ such that

• if C ∈ cl(q), a ∈ Ind(A), and aI ∈ ¬CI , then ¬C(a) ∈ A′;

• if the role name r occurs in cl(q), a, b ∈ Ind(A), and (aI , bI) /∈ rI , then
¬r(a, b) ∈ A′.

Clearly, I |= A′ and therefore K′ = (T ∪ Tq,H,A ∪ A′) is consistent. Thus,
it remains to be shown that A′ is a counter candidate of A. Assume to the
contrary that there is a transitive rewriting q′ ∈ trK(q), a split mapping τ for q′

and A′, and A′ does not spoil τ(q′′) for a groundable rewriting q′′ of q′. For each
a ∈ ran(τ), let qa be the sub-query of q′ induced by τ and A. Since A′ does not
spoil τ(q′′), we have that for all a ∈ ran(τ),

(i) qa is empty or

(ii) there is a tree transformation qi
a of qa w.r.t. K such that ¬C(a) /∈ A′ where

C = Cqi
a
(va).

For all a such that (ii) holds, we therefore have, together with the definition of
A′ and the fact that each Cqi

a
(va) is in cl(q), that aI ∈ C with C = Cqi

a
(va) for

some tree transformation qi
a of qa.

Let a1, . . . , an be the elements of ran(τ) for which (ii) is true. Since I |= A′

and by Lemmas 13 and 11, there are mappings π1, . . . , πn such that for 1 ≤ i ≤ n,
we have

(a) I |=πi qai
;

(b) πi(vai
) = ai

I .

We now define a mapping π : Var(q′) → ∆I as follows:

π(v) :=

{
aI if v ∈ Root(a, τ)

πi(v) if v ∈ Reach(ai, τ) \ Root(ai, τ)

22

Using the definition of Reach(ai, τ) and Root(ai, τ), it can be seen that π is well-
defined, i.e., that the different cases are mutually exclusive: first, if τ(v) = a,
then v ∈ Reach(a, τ) implies a = ai and v = vai

, and thus v /∈ Reach(ai, τ) \
Root(ai, τ); and second, the definition of the sets Reach ensures that i 6= j implies
(ai 6= aj and thus) Reach(ai, τ) ∩ Reach(aj, τ) = ∅.

Also observe that π is total on Var(q′) because each v ∈ Var(q′) is either in
the range of τ or in one of the sets Reach(a1, τ), . . . , Reach(an, τ).

To finish the proof, we show that I |=π q′. This yields I |= q by Lemma 6
and thus the desired contradiction. First, let A(v) ∈ q′. There are two cases:

• v ∈ dom(τ). Let ai = τ(v), then by definition of Reach(ai, τ), v ∈
Reach(ai, τ), and hence A(v) ∈ qai

. Then (a), (b), and the definition
of π yield I |=π A(v) as required.

• v /∈ dom(τ). Then connectedness of q′ and the definition of the sets
Reach(ai, τ) implies that v ∈ Reach(ai, τ) \ Root(ai, τ) for some i with
1 ≤ i ≤ n. Then we have A(v) ∈ qai

and (a) together with the definition
of π yields I |=π A(v).

Next, let r(v, v′) ∈ q′. There are four cases:

• v, v′ ∈ dom(τ). By construction of q′′ from q′ and since A′ does not spoil
τ(q′′) by assumption, we have that r(τ(v), τ(v′)) ∈ A′. Since I |= A′ and
by definition of π, we have that I |=π r(v, v′).

• v ∈ dom(τ) and v′ /∈ dom(τ). By definition of the sets Reach(ai, τ),
this means that for some i with 1 ≤ i ≤ n, we have τ(v) = ai and
v′ ∈ Reach(ai, τ) \ Root(ai, τ). Due to the definition of qai

, it follows that
r(v, v′) ∈ qai

. Now (a), (b), and the definition of π yield I |=π r(v, v′) as
required.

• v /∈ dom(τ) and v′ ∈ dom(τ). Symmetric to the previous case.

• v, v′ /∈ dom(τ). Then connectedness of q′ and the definition of the sets
Reach(ai, τ) implies that v, v′ ∈ Reach(ai, τ) \ Root(ai, τ) for some i with
1 ≤ i ≤ n. We can continue as in the second case for atoms A(v).

“⇐”. Assume that there is a counter candidate A′ of A such that K′ = (T ∪
Tq,H,A ∪ A′) is consistent. We now have to show that K 6|= q. By Lemma 19,
there is a model I = (∆I , ·I) of K′ that is a canonical intepretation. Since I is
clearly also a model of K, it suffices to show that I 6|= q. Assume to the contrary
that I |= q. By Lemma 6, there exists a transitive rewriting q′ ∈ trK(q) and a
forest match π such that I |=π q′. We distinguish two cases.

23

First, assume that π is an a-tree match, i.e., there is an a ∈ NI such that for
all v ∈ Var(q′), we have π(v) = (a, w) for some w ∈ N∗. Let J be the forest base
of I, Ja the a-tree base obtained from J by restricting the domain to tuples
(a, w′) with w′ ∈ N∗, and Ia the canonical interpretation based on Ja. Since the
range of π is a subset of ∆Ia , it is not hard to see that I |=π q′ implies Ia |=π q′.
By Lemma 6, Ia |= q and by Lemma 10, there is a q∗ ∈ ttK(q) such that Ia |= q∗.
It is easy to see that this implies I |= q∗. Finally, Lemma 13 yields that CI

q∗ 6= ∅,
which is a contradiction to I satisfying the concept inclusion > v ¬Cq∗ .

Now assume that π is a true forest match. Recall that in order to show a
contradiction, we assumed that I |=π q′ for some q′ ∈ trK(q). We now show that
A′ cannot be a counter candidate, i.e., there is a split mapping τ and groundable
rewriting q′′ of q′ such that A′ does not spoil τ(q′′).

We define a mapping τ by setting

τ(v) = a if π(v) = (a, ε), for all v ∈ Var(q′).

By definition of τ and since π is a forest match, τ is a split mapping. Now, let
q′′ be the groundable rewriting for q′ and τ . We have to show that A′ does not
spoil τ(q′′).

• Let r(a, b) ∈ τ(q′′) and assume for a contradiction that ¬r(a, b) ∈ A′.
Since r(a, b) ∈ τ(q′′), there are variables v, v′ ∈ dom(τ) such that τ(v) = a
and τ(v′) = b for a, b ∈ Ind(A) and r(v, v′) ∈ q′. By definition of τ from
π, π(v) = (a, ε) and π(v′) = (b, ε). Since I |=π q′ and r(v, v′) ∈ q′,
((a, ε), (b, ε)) ∈ rI and hence, by definition of A′, ¬r(a, b) /∈ A′, which
clearly is a contradiction.

• Let (Cq1
a
t . . . t Cqm

a
)(a) ∈ τ(q′′) and assume for a contradiction that

¬Cqi
a
(a) ∈ A′ for 1 ≤ i ≤ m. Let qa be the subquery induced by τ

and a, and q′a the result of replacing each v ∈ Root(a, τ) with va. Since
(Cq1

a
t . . . t Cqm

a
)(a) ∈ τ(q′′), (Cq1

a
t . . . t Cqm

a
)(va) ∈ q′′, q′a is non-empty

and q1
a, . . . , q

m
a are all the tree transformations of q′a in which va has not

been replaced. Note also that π(va) = (a, ε).

Due to the fact that I |=π q′, it is easily seen that I |=π qa. Since π is
a forest match and since qa contains only variables from Reach(a, τ), the
claim yields that π is even a tree match for qa. Let J be the forest base
of I, Ja the a-tree base obtained from J by restricting the domain of J
to pairs (a, ·), and Ia the canonical interpretation based on Ja. Since π
maps all variables in qa to ∆Ia , it is not hard to see that I |=π qa implies
Ia |=π qa. By Lemma 10, there is a qi

a ∈ ttK(qa) such that Ia |=π′ qi
a for

some π′ that is ε-compatible with π. It is easy to see that we also have
I |=π′ qi

a. This together with the facts that π(va) = (a, ε) and π and π′

24

are ε-compatible yields aI = (a, ε) ∈ CI for C = Cqi
a
(va) and hence, by

construction of A′, ¬C(a) /∈ A′, which clearly is a contradiction.

Since this argument was independent of the chosen C(a) ∈ τ(q′′), we
conclude that A′ does not spoil τ(q′′) as intended.

o

B Complexity

Tobies [12, Corollary 6.30] showed that deciding knowlege base consistency for
SHIQ is ExpTime-complete (even for binary coding of numbers) by reducing
SHIQ knowledge base consistency to concept satisfiability testing in ALCQIb.
The b stands for safe Boolean role expressions build fromALCQIb roles using the
operator u (role intersection), t (role union), and ¬ (role negation/complement)
such that, when transformed into disjunctive normal form, every disjunct con-
tains at least one non-negated conjunct. Given a query q and a SHIQ knowledge
base K = (T , H, A), we reduce query entailment to deciding knowledge base
consistentcy of an extended SHIQu knowledge base K′ = (T ∪ Tq,H,A ∪ A′).
Recall that Tq and A′ are the only parts that contain role conjunctions.

We assume here, that all concepts are in negation normal form (NNF); any
concept can be transformed in linear time into an equivalent one in NNF by
pushing negation inwards, making use of de Morgan’s laws and the duality
between existential and universal restrictions, and between atmost and atleast
number restrictions (6 nr.C and > nr.C respectively). For a concept C, we use
¬̇C to denote the NNF of ¬C.

We first recall some of the facts that we have shown before. Let m =
|K|, mH = |H|, mA = |A|, and n = |q|. By Lemmas 7 and 9, the number of
transitive rewritings and of tree transformations for a query q is bounded by
2p(n)·log p(mH) for some polynomial q, the size of each transitive rewriting and of
each tree transformation is polynomial in n, and hence the length of each concept
in Tq and A′ is also polynomial in n. Therefore, there is a polynomial p such that
|Tq| 6 2p(n)·log p(mH). Let k = |cl(q)|. As we have shown before, k 6 2p(n)·log p(mH)

for a polynomial p. A q-completion A′ contains at most kmA +2km2
A assertions

each of size at most p(n). Therefore, 2p′(n)·log p′(mH)·log p′(mA) is an upper bound
for |A′| with p′ a polynomial and it is easy to see that |Tq ∪ A′| is exponential
in n and polynomilal in mH and mA.

Let now |Tq ∪A′| = s and t the maximal length of concepts in Tq ∪A′. Due
to the above computations, we have t 6 p(n) and s 6 2p(t)·log p(mH)·log p(mA) for p
a polynomial.

Our aim is to translate SHIQu to ALCQIb and reuse the complexity results
obtained by Tobies. Therefore, we first show how we can extend the translation
given by Tobies, which encodes the role hierarchy by means of role conjunctions.

25

We first consider SHIQu-concept satisfiability w.r.t. a role hierarchy and, by
using “internalization”, this is enough in order to decide the satisfiability of a
TBox with respect to a role hierarchy.

Definition 20. For r, r0, . . . , rn−1 roles, let

r↑ =
l

rv∗s

s

and
(r0 u . . . u rn−1)

↑ = r↑0 u . . . u r↑n−1.

4
Note that, since r v∗ r, r occurs in r↑.

Lemma 21. Let H be a role hierarchy, and R = r0 u . . . u rn−1 a conjunc-

tion of roles. For every interpretation I with I |= H, ((r0 u . . . u rn−1)
↑)
I

=
(r0 u . . . u rn−1)

I.

Proof. By definition of r↑, (r0u . . .urn−1)
↑ = r↑0u . . .ur↑n−1. By definition of

the semantics of role conjunctions, we have that (r↑0 u . . . u r↑n−1)
I

= (r↑0)
I∩ . . .∩

(r↑n−1)
I
. If s v∗ r, then {s′ | r v∗ s′} ⊆ {s′ | s ⊆∗ s′} and hence (s↑)

I ⊆ (r↑)
I
.

If I |= H, then rI ⊆ sI for every s with r v∗ s. Hence, (r↑)
I

= rI and

(r↑0 u . . . u r↑n−1)
I

= r0
I ∩ . . . ∩ rn−1

I as required. o

With the extended definition of ↑ on role conjunctions, we can now adapt
the definition (Def. 6.22) that Tobies provides for translating SHIQ-concepts
into ALCQIb-concepts.

Definition 22. Let C be a SHIQu-concept and H a role hierarchy. For every
concept ∀(r0 u . . .u rn−1).D ∈ cl(C), let Xr0u...urn−1,D ∈ NC be a unique concept
name that does not occur in cl(C). We define the function ·tr inductively on the
structure of concepts by setting

Atr = A for all A ∈ NC

(¬A)tr = ¬A for all A ∈ NC

(C1 u C2)
tr = Ctr

1 u Ctr
2

(C1 t C2)
tr = Ctr

1 t Ctr
2

(./ n(r0 u . . . u rn−1).D)tr = (./ n(r0 u . . . u rn−1)
↑.Dtr)

(∀(r0 u . . . u rn−1).D)tr = Xr0u...urn−1,D

(∃(r0 u . . . u rn−1).D)tr = ¬Xr0u...urn−1,¬̇D

where ./ stands for 6 or >. We now define an extended TBox TC by setting

TC = {Xr0u...urn−1,D ≡
∀(r0 u . . . u rn−1)

↑.Dtr | ∀(r0 u . . . u rn−1).D ∈ cl(K)}∪
{Xr0u...urn−1,D v

d

T∈{t0u...utn−1|tiv∗ri,ti∈Trans,i≤n}
∀T ↑.XT,D}

26

4

Lemma 23. Let H be a role hierarchy, C = CT u ¬̇Cq with CT a SHIQ-
concept and Cq an ELIu-concept, and ·tr and CT defined as in Def. 22, then C
is satisfiable w.r.t. H iff the ALCQIb-concept Ctr is satisfiable w.r.t. CT .

Proof. Given Lemma 21, the proof is a long, but straightforward extension
of the proof given by Tobies [12, Lemma 6.23]. o

Observe, however, that the translation of a SHIQ-concept C w.r.t. a role
hierarchy H is polynomial in |C| and |H|, while for a SHIQu-concept C it is
polynomial in |C|, but exponential in |H|, due to the last step in the definition
of CT , which is required for handling all possible combinations of transitive sub-
roles in the different conjuncts. Therefore, we would not obtain the ExpTime
upper bound we are aiming for. However, for deciding query entailment, the
input concept consists of the two parts CT and Cq, where CT is the internaliza-
tion of the SHIQ TBox and Cq the internalization of the SHIQu TBox, i.e.,
Cq is a conjunction of negated concepts from cl(q) such that |Cq| 6 s. Only Cq

contains role conjunctions, the number of roles in each conjunction is bounded
by t, and mH gives a bound on the number of roles in H. Hence the size of Ctr

q

is bounded by 2p(t)·log p(s)·log p(mH) for p a polynomial.

Theorem 15. Given an extended knowledge base K′ = (T ∪ Tq,H,A ∪ A′)
where |(T ,H,A)| = m, the cardinality of Tq ∪A′ is s, and the maximum length
of concepts in Tq and A′ is t, we can decide consistency of K′ in deterministic

time 22p(t·log r·log s)
with p a polynomial.

Proof. Since the given translation works also for concepts in the ABox and
since ALCQIb provides for negated roles, we can directly translate an extended
SHIQ knowledge bases into an ALCQIb knowledge base with the translation
given in Def. 22. For the SHIQ parts, the translation is again polynomial in the
size of the knowledge base, i.e., for the SHIQ knowledge base K = (T ,H,A)
the size of the obtained ALCQIb knowledge base Ktr = (T tr,Atr) is polynomial
in m. However, the size of the translation for the SHIQu ABox A′ is polyno-
mial only in mH and s, but exponential in t. For p a polynomial, we therefore
obtain an upper bound of 2p(t)·log p(s)·log p(m) for the size of the ALCQIb knowl-
edge base Ktr = (T tr∪T tr

q ,Atr∪A′tr) obtained by applying the translation from
Definition 22. Since deciding whether an ALCQIb knowledge base is consistent
is an ExpTime-complete problem (even with binary coding of numbers) [12,

Theorem 4.42], it can be checked in time 22p(t)·log p(s)·log p(m)
if K is consistent or

not. o

27

Let K = (T , H, A) be a SHIQ knowledge base. In order to obtain an
upper bound on the data complexity of the query entailment problem, we assume
w.l.o.g. that all concept assertions in the ABox A are of a fixed size, i.e., for
each C(a) ∈ A, |C| ≤ t for some fixed t. We now give the proofs for Theorem 17
and Theorem 18.

Theorem 17. Let K = (T ,H,A) be a SHIQ knowledge base, q a Boolean
conjunctive query, K′ = (T ∪ Tq,H,A ∪ A′) the extended knowledge base for
K and q, and r = |A ∪ A′|. Deciding whether K′ is consistent can be done in
non-deterministic time p(r) for some polynomial p.

Proof. We assume q, T , Tq, and H to be fixed. Let c = |T ∪Tq∪H| and n = |q|.
By Lemmas 7 and 9 and since only the role hierarchy H increases the number of
atoms in transitive rewritings and tree transformations (the ABox has no effect),
the assumption that the size of Tq is fixed is valid.

Since the number of matching candidates is polynomial in r, checking if a
q-completion is a counter-candidate can be done in time polynomial in r.

Since the translation of an extended knowledge base into an ALCQIb knowl-
edge base is exponential only in n and since we assume n to be fixed, we can
translate K′ into an equisatisfiable ALCQIb knowledge base K′tr in time poly-
nomial in r.

In order to determine the consistency of an ALCQIb knowledge base, Tobies
uses precompletions and in Lemma 4.40 Tobies shows that an ALCQIb knowl-
edge base is consistent iff it has a precompletion as defined in Definition 4.39.
Hence, we can guess such a precompletion A∗ of Atr ∪ A′tr and a mapping
f from individuals in A∗ to Atr ∪ A′tr and since checking the conditions on
precompletions can be done in time polynomial in r, it is then an immediate
consequence of [12, Theorem 4.42] that checking consistency of K′ can be done
in non-deterministic time p(r) for some polynomial p. o

Theorem 18. Conjunctive query entailment in SHIQ is data complete for
co-NP.

Proof. The lower bound immediately follows from the fact that conjunctive
query answering is already co-NP-hard regarding data complexity in the very
restricted DL AL [2]. The upper bound is a consequence of Lemma 14 and
Theorem 17. o

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-

28

tion, and Applications. Cambridge University Press, 2003.

[2] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proceedings of the
18th International Workshop on Description Logics (DL 2005), 2005.

[3] D. Calvanese, G. D. Giacomo, and M. Lenzerini. On the decidability of
query containment under constraints. In Proceedings of the 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS 1998), pages 149–158. ACM Press, 1998.

[4] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answering for
description logics with transitive roles. In Proc. of DL 06. CEUR, 2006.

[5] V. Haarslev, R. Möller, R. V. D. Straeten, and M. Wessel. Extended query
facilities for racer and an application to software-engineering problems. In
Proc. of DL 04. CEUR, 2004.

[6] B. Hollunder. Consistency checking reduced to satisability of concepts in
terminological systems. Annals of Mathematics and Artificial Intelligence,
18(2–4):133–157, 1996.

[7] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web
Semantics, 1(1), 2003.

[8] I. Horrocks and S. Tessaris. A conjunctive query language for description
logic aboxes. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI 2000), pages 399–404, 2000.

[9] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in
very expressive description logics. In Proceedings of the Int. Joint Conf. on
Artificial Intelligence (IJCAI-05), pages 466–471, 2005.

[10] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with
rules. In Proceedings of the 3rd International Semantic Web Conference
(ISWC 2004), Hiroshima, Japan, November 2004.

[11] M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity
for conjunctive query answering in expressive description logics. In Proc.
of AAAI 2006, 2006. To appear.

[12] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, RWTH Aachen, 2001.

29

