
Knowledge-based Middleware as an Architecture for Planning and Scheduling
Systems

Bernd Schattenberg and Steffen Balzer and Susanne Biundo
Dept. of Artificial Intelligence, University of Ulm, D-89069 Ulm, Germany

{firstname }. {lastname }@uni-ulm.de

Abstract

We present an architecture that provides a robust, scalable and
flexible software framework for planning and scheduling sys-
tems through the use of standardized industrial-strength mid-
dleware and multi-agent technology. It utilizes knowledge-
based components that dynamically perform and verify the
system’s configuration.
The system is based on a proper formal account of hybrid
planning, the integration of HTN and POCL planning, which
allows to decouple flaw detection, modification computation,
and search control. In adopting this methodology, plan-
ning and scheduling capabilities can be easily combined by
orchestrating respective elementary modules and strategies
without jeopardizing system consistency through interfering
module activity.

Introduction
Hybrid planning – the combination of hierarchical task net-
work (HTN) planning with partial order causal link (POCL)
techniques – turned out to be most appropriate for com-
plex real-world planning applications. Here, the solution of
planning problems often requires the integration of planning
from first principles with the utilization of predefined plans
to perform certain complex tasks.

(Schattenberg, Weigl, & Biundo 2005) introduced a
formal framework for hybrid planning, in which the plan
generation process is functionally decomposed into well-
defined flaw detecting and plan modification generating
functions. This allows to completely separate the computa-
tion of flaws from the computation of possible plan modific-
ations, and in turn both computations can be separated from
search related issues. The system architecture relies on this
separation and exploits it in two ways: module invocation
and interplay can be specified declaratively and search can
be performed on the basis of flaws and modifications without
taking their actual computation into account. This allows for
the formal definition of a variety of strategies, and even led
to the development of novel so-calledflexiblestrategies.

The functional decomposition induces a modular system
design, in which arbitrary system configurations, i.e. plan-
ning and scheduling functionalities, can be seamlessly integ-
rated. A corresponding prototype served as an experimental

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

environment for the evaluation of flexible strategies and
demonstrated the expansibility of the system: the integration
of scheduling (Schattenberg & Biundo 2002) and probabil-
istic reasoning (Biundo, Holzer, & Schattenberg 2005).

In addition to an effective planning and scheduling meth-
odology, real-world application scenarios like crisis man-
agement support, assistance in telemedicine, and personal
assistance in ubiquitous computing environments call for
software support to address the following issues: 1.) a de-
clarative, automated system configuration and verification
– for flexible and safe application-specific system tailoring;
2.) scalability, including transparency with respect to sys-
tem distribution, access mechanisms, concurrency, etc. – for
providing computational power on demand; 3.) standards
compliance – for interfacing with other services and soft-
ware environments.

This paper describes a novel planning and scheduling sys-
tem architecture that addresses these issues and does so on
the solid base of a formal framework. The resulting sys-
tem dynamically configures its components and even reas-
ons about the consistency of that configuration. The plan-
ning components are transparently deployed and distributed
while retaining a simple programming model for the com-
ponent developer.

Multiagent techniques have been proven to provide an
appropriate architectural basis. The O-Plan system (Tate,
Drabble, & Kirby 1994) uses a blackboard mechanism on
which planning related knowledge sources perfom changes
of the plan data structure. It has been extended by a
workflow-oriented infrastructure, called the I-X system in-
tegration architecture (Tate 2000). A plug-in mechanism
serves as an interface to application tailored tools, whereas
the planner itself remains to be a monolithic sub-system.

The Multi-agent Planning Architecture MPA (Wilkins
& Myers 1998) relies on a very generic agent-based ap-
proach for a more general kind of problem solving. Des-
ignated coordinators decompose the planning problem into
sub-problems, which are solved by subordinated groups of
agents that may again decompose and delegate the problem.

Formal Framework
Our planning system relies on a formal specification of hy-
brid planning (Schattenberg, Weigl, & Biundo 2005): The
approach features a STRIPS-like representation of action

422

schemata with sets of PL1 literals for preconditions and ef-
fects and state transformation semantics based on respective
atom sets. It discriminates primitive operators and abstract
actions (also called complex tasks), the latter representing
abstractions of partial plans. The plan data structure, in HTN
planning referred to astask network, consists of complex
or primitive task schema instances, ordering constraints and
variable (in-)equations, and causal links for representing the
causal structure of the plan. For each complex task schema,
at least onemethodprovides a task network for implement-
ing the abstract action.

Planning problems are given by an inital state, an initial
task network, i.e. an abstract plan, optionally a goal state
specification, a set of primitive and complex task schemata,
and a set of methods specifying possible implementations of
the complex tasks. A partial plan is a solution to a given
problem, if it contains only primitive operators, the order-
ing and variable constraints are consistent, and the causal
links support all operator preconditions, including the goal
state description, without being threatened. The violation
of solution criteria is made explicit byflaws – data struc-
tures which literally “point” to deficiencies in the plan and
allow for the problems’ classification: A flawf is a pair
(flaw,E) with flaw indicating the flaw class andE be-
ing a set of plan components the flaw refers to. The set
of flaws is denoted byF with subsetsFflaw for given la-
belsflaw. E.g., the flaw representing a threat between a
plan steptek and a causal link〈tei, φ, tej〉, is defined as:
(Threat, {〈tei, φ, tej〉, tek}). In the context of hybrid plan-
ning, flaw classes also cover the presence of abstract actions
in the plan, ordering and variable constraint inconsistencies,
unsupported preconditions of actions, etc.

The generation of flaws is encapsulated by detection mod-
ulesfdet

x : P → 2Fx . Without loss of generality we may
assume, that there is exactly one such function for each flaw
class. The function for the detection of causal threats, e.g.,
is defined as follows:

fdet
CausalThreat(P) 3 (Threat, {〈tei, φ, tej〉, tek}) iff

tek 6≺∗ tei or tej 6≺∗ tek in the transitive closure≺∗ of
P ’s ordering relation and the variable (in-) equations ofP
allow for a substitutionσ such thatσ(φ) ∈ σ(del(tek)) for
positive andσ(|φ|) ∈ σ(add(tek)) for negative literalsφ.

The refinement steps for obtaining a solution out of a
problem specification are explicit representations of changes
to the plan structure. A plan modificationm is a pair
(mod, E⊕ ∪ E) with mod denoting the modification
class. E⊕ and E	 are elementary additions and dele-
tions of plan components, respectively. The set of all plan
modifications is denoted byM and grouped into subsets
Mmod for given classesmod. Adding an ordering con-
straint between two plan stepstei andtej is represented by
(AddOrdCons, {⊕(tei ≺ tej)}). Hybrid planning also uses
the insertion of new action schema instances, variable (in-)
equations, and causal links, and the expansion of complex
tasks according to appropriate methods.

Modification generation is encapsulated by modules
fmod

y : P × 2Fx → 2My which compute all plan refine-
ments that solve flaws. E.g., promotion and demotion as an
answer to a causal threat is defined as:

fmod
AddOrdCons(P, {f, . . .}) ⊇ { (AddOrdCons, {⊕(tek ≺ tei)}),

(AddOrdCons, {⊕(tej ≺ tek)})}
for f = (Threat, {〈tei, φ, tej〉, tek}).
Obviously, particular classes of modifications address

particular classes of flaws. This relationship is explicitly
represented by amodification triggering functionα which
relates flaw classes with suitable modification classes. As an
example, causal threat flaws can in principle be solved by ex-
panding abstract actions which are involved in the threat, by
promotion or demotion, or by separating variables through
inequality constraints (Biundo & Schattenberg 2001):

α(FThreat) = MExpandTask ∪MAddOrdCons ∪MAddVarCons

Apart from serving as an instruction, which modifica-
tion generators to consign with which flaw, the definition
of the triggering function gives us a general criterion for dis-
carding un-refineable plans: For any detection and modi-
fication modules associated by a trigger functionα, fdet

x
andfmod

y1
, . . . , fmod

yn
with My1 ∪ . . . ∪Myn = α(Fx): if⋃

1≤i≤n fmod
yi

(P, fdet
x (P)) = ∅ then P cannot be refined

into a solution.
A generic algorithm can then be defined which uses these

modules (see Algorithm 1): In a first loop, the results of all
detection module implementations are collected. A second
loop propagates the resulting flaws according to the trigger-
ing functionα to the respective modification modules, any
un-answered flaw indicates a failure. A strategy module se-
lects (a backtracking point) finally the most promising modi-
fication, which is then applied to the plan. The algorithm is
called recursively with that modified plan.

Algorithm 1 : The generic planning algorithm
plan(P, T, M):
F ← ∅
for all fdet

x do
F ← F ∪ fdet

x (P)
if F = ∅ then

return P
M ← ∅
for all Fx = F ∩ Fx with Fx 6= ∅ do

answered← false
for all fmod

y withMy ⊆ α(Fx) do
M ′ ← fmod

y (P, Fx)
if M ′ 6= ∅ then

M ←M ∪M ′

answered← true
if answered= false then

return fail
return plan(apply(P, fstrat

z (P, F, M)), T, M)

The framework allows for a formal definition of vari-
ous planning strategies, ranging from existing strategies
of the literature to novelflexible strategies (Schattenberg,
Weigl, & Biundo 2005). The latter exploit the explicit flaw
and modification information to perform an opportunistic
search. E.g., aleast commitmentstrategy selects modific-
ations from the smallest answer set of the detected flaws,
i.e., anyclassof modification may be chosen in each cycle.

423

Architecture Overview
The basic architecture of our system is a multiagent black-
board system. The agent societies correspond to the presen-
ted module structure, with the agent metaphor providing
maximal flexibility for the implementation.Inspectorsare
implementations of flaw detection modules,Constructors
that of plan modification generating modules.Assistants
perform inferences that are required by other agents. They
propagate implications of temporal information transpar-
ently into the ordering constraints, canonize constraints, etc.
Strategiesimplement planning strategy modules; they syn-
chronize the execution of the other agents, select modifica-
tions, initiate backtracking, etc. The planning process breaks
down in 4 phases (cf. Fig. 1):

Strategy

Inspector

Constructor

Assistant

Phase 1: make expertises

Modification cycle

Assistant cycle

Phase 2: detect flaws

Phase 3: compute modifications

Phase 4:
modify

blackboard

Figure 1: The reference planning process model

Phase 1: Assistants repeatedly derive additional informa-
tion and post it on the blackboard until no member of that
community adds information anymore.

Phase 2: Inspectors analyse the current plan on the black-
board and post the detected flaws to the strategy and to the
constructors that are assigned to them viaα.

Phase 3: Constructors compute all modifications solving
the received flaws and send them to the strategy.

Phase 4: The strategy compares the received results and se-
lects one of the modifications for execution.

Phase transitions are performed by the strategy when all
participating agents have finished their parallel execution.
Thus, the phase transitions can be viewed as synchronization
points within the planning process. The strategy modifies
the plan until no more flaws are detected or an inspector pub-
lished a flaw for which no resolving modification is issued,
i.e., if the current plan consitutes a solution to the given plan-
ning problem, or the planning process has reached a dead
end and the system has to backtrack.

An Ontology-based Middleware
A naive implementation of the reference process model
would run on a single computational resource. This stands in
contrast to the requirements that complex and dynamic ap-
plication domains demand. For crisis management support,
e.g., information must be gathered from distributed sources,
the planning process requires a lot of computational power,
etc. Scalability and distribution play therefore key roles in

the proposed architecture, while maintaining the (simple but
effective) reference process.

The main aspect in middleware systems like application
servers is to keep distribution issuestransparentto the pro-
grammer by providing an abstract interface. This includes
location and scalability transparency; the latter means that
it is completely transparent to the programmer how a mid-
dleware system scales in response to a growing load. In or-
der to benefit from application server technology, our system
builds upon an open-source implementation (Stark 2003).

Regarding agent life-cycle management and communica-
tion mechanisms, BlueJADE (Cowan & Griss 2002) integ-
rates a FIPA-compliant1, standardized agent platform with
the application server and provides all agent specifics. It puts
the agent system life cycle under full control of the applic-
ation server, therefore all its distribution capabilities apply
to the agent societies. The reference process (Fig. 1) omits
the actual means forcalling agents; in a distributed imple-
mentation, these remote calls are typically message-based.
Our messages are encoded in the agent communication lan-
guageFIPA-ACL that is based on speech-act theory. Every
message describes an action that is intended to be carried
out with that message simultanously, aperformative, e.g. a
request “compute detections”.

Agents can be spread and migrated transparently over sev-
eral BlueJade agent containers running on different nodes in
a network, even on mobile devices such as Java capable cel-
lular phones and PDAs. This distribution management is “on
top” of the middleware facilities: agent migration typically
anticipates pro-actively computation or communication re-
quirements in a relative abstract manner, while middleware
migration reacts on load changes based on low-level operat-
ing system specific metrics. It makes sense to provide both
mechanisms in parallel, e.g. to migrate agents, which are
known to require much computational resources onto dedic-
ated compute servers.

The last component is the knowledge representation and
reasoning facilities which are used throughout the system.
Not only planning related concepts, i.e. flaw and modific-
ation classes, are explicitly represented, but also the system
configuration and the plan generation process itself. This en-
ables us to effectively configure parts of the system without
interfering with its implementation; given that it is repres-
ented in a formalism that is expressive enough to capture
all modelling aspects on one side and that allows efficient
reasoning on the other side. Since special regard is spent on
standards compliance, theDarpa Agent Markup Language –
DAML (Horrocks, Harmelen, & Patel-Schneider 2001) has
been chosen as the grounding representation formalism; it
combines the key features of description logics with inter-
net standards such as XML or RDF. By using DAML as the
content language for the BlueJADE agent communication
(Schalket al. 2002) and also as the language for describ-
ing system configurations and communication means, we
achieve a homogenous representation of knowledge in the
system. To this end we developed a respective content lan-
guage ontology that provides the necessaray concepts like

1Foundation for Intelligent Physical Agents

424

flaws, modifications, system actions (computation and back-
tracking procedures), respective performatives, etc., and that
describes the appropriate message structures. All knowledge
is stored and reasoned about by the description logic system
RACER (Haarslev & M̈oller 2001).

DAML plays its second key role in the automated config-
uration of the agent container via a system ontology which
captures, among others, knowledge about the implemented
agent classes, which flaws or modification classes they gen-
erate, and the triggering function. The configuration process
is composed of two sub-processes. First, the agents that
are part of the planning process must be instantiated. The
RACER reasoner is used to derive the leaf concepts of the
abstract agents classesInspector, etc., and to determine the
implementation assignments, basically references to the cor-
responding software artefacts. After their creation, agents
insert their descriptions into the ABox of RACER, which
keeps track of the deployed agent instances. Second, the
communication links for implementing the triggering func-
tion α have to be established. This is done by using the
ontology to derive the dependencies between agents from
defined dependencies between the flaws and modifications:
The system ontology specifies which agent instance imple-
ments which type ofInspector, and it does the same for the
constructor agents. RACER derives from that, which flaw
and modification types will be generated by the agent in-
stances. If the model includes anα-relationship between the
latter, modelled by a respective property, the agents’ com-
munication channels are linked. Based upon the subsump-
tion capabilities that come with description logics, it is even
possible to exploit sub-class relationships. An example for a
hierarchy on modification classes are ordering relation ma-
nipulations with sub-classespromotionand demotion. Or
regarding flaws, the system ontology distinguishesprimitive
open preconditions and those involvingdecomposition ax-
ioms(Biundo & Schattenberg 2001).

A knowledge-based configuration offers even more be-
nefits: Uninformed configuration mechanisms can only be
based on type checking by, e.g., Java class loaders. The
presented architecture can check the specified system model
on startup for possible inconsistencies, e.g., constructors
with missing links to suitable inspectors, undefined imple-
mentations for flaws and modifications, etc.

Conclusions and Future Work

We have presented a novel agent-based architecture for plan-
ning systems. It relies on a formal account of hybrid plan-
ning, which allows to decouple flaw detection, modification
computation, and search control. Planning capabilities like
HTN and POCL can easily be combined by orchestrating re-
spective agents and an appropriate strategy. The implemen-
ted system can be employed as a platform to implement and
evaluate various planning methods and strategies. Extended
functionality, e.g. the integration of scheduling and probab-
ilistic reasoning, can easily be achieved without requiring
changes to the deployed agent implementations – in particu-
lar when using flexible strategies – and without jeopardizing
system consistency through interfering activity.

The exploitation of a semantics for system components
and configurations, by making use of description logics rep-
resentation and inference techniques, significantly extends
the capabilities of the system. High level configuration veri-
fication can be performed, and the system becomes more
flexible and configurable as previously implicitly encoded
knowledge is made explicit. With the use of application
server technology and standardized communication proto-
cols, we have laid the foundation for fielding our system in
real-world application scenarios; we plan to deploy it as a
central component in projects for assistance in telemedicine
applications as well as for personal assistance in ubiquitous
computing environments.

Future versions will extend the ontology representation,
including knowledge about communication (message struc-
tures, etc.) and interaction (protocols and the planning pro-
cess). Making the planning process model explicit and inter-
pretable allows for tailoring the planning system to applica-
tions without changing any code. Furthermore, the process
model itself can be verified by transforming it into a petri
net representation (Narayanan & McIlraith 2002).

References
Biundo, S., and Schattenberg, B. 2001. From abstract crisis to
concrete relief – A preliminary report on combining state abstrac-
tion and HTN planning. InProceedings of ECP-01.

Biundo, S.; Holzer, R.; and Schattenberg, B. 2005. Project plan-
ning under temporal uncertainty. InPlanning, Scheduling, and
Constraint Satisfaction: From Theory to Practice, volume 117.
IOS Press. 189–198.

Cowan, D., and Griss, M. 2002. Making software agent techno-
logy available to enterprise applications. Technical Report HPL-
2002-211, Software Technology Laboratory, HP Laboratories.

Haarslev, V., and M̈oller, R. 2001. Description of the racer system
and its applications. InWorking Notes of DL-2001.

Horrocks, I.; Harmelen, F.; and Patel-Schneider, P. 2001.
DAML+OIL Specification (March 2001).

Narayanan, S., and McIlraith, S. A. 2002. Simulation, verification
and automated composition of web services. InProceedings of
WWW ’02, 77–88. ACM Press.

Schalk, M.; Liebig, T.; Illmann, T.; and Kargl, F. 2002. Combin-
ing FIPA ACL with DAML+OIL - a case study. InProc. of the
2nd Int. Workshop on Ontologies in Agent Systems.

Schattenberg, B., and Biundo, S. 2002. On the identification
and use of hierarchical resources in planning and scheduling. In
Proceedings of AIPS-02, 263–272. AAAI.

Schattenberg, B.; Weigl, A.; and Biundo, S. 2005. Hybrid plan-
ning using flexible strategies. InProc. of the 28th German Conf.
on AI, volume 3698 ofLNAI, 258–272. Springer.

Stark, S. 2003.JBoss Administration and Development. JBoss
Group, LLC, second edition. JBoss Version 3.0.5.

Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An architec-
ture for command, planning and control. InIntelligent Schedul-
ing. Morgan Kaufmann. 213–240.

Tate, A. 2000. Intelligible AI planning. InProceedings of ES-
2000, 3–16. Springer.

Wilkins, D., and Myers, K. 1998. A multiagent planning archi-
tecture. InProceedings of AIPS-98, 154–163. AAAI.

425

