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Abstract

Description Logics (DLs) are a family of logic based knowledge representation formalisms. Although they
have a range of applications, they are perhaps best known as the basis for widely used ontology languages
such as OIL, DAML+OIL and OWL, the last of which is now a World Wide Web Consortium (W3C)
recommendation. SHOIN , the DL underlying OWL DL (the most widely used “species” of OWL), includes
familiar features from hybrid logic. In particular, in order to support extensionally defined classes, SHOIN
includes nominals: classes whose extension is a singleton set. This is an important feature for a logic that is
designed for use in ontology language applications, because extensionally defined classes are very common
in ontologies. Binders and state variables are another feature from Hybrid Logic that would clearly be useful
in an ontology language, but it is well known that adding this feature to even a relatively weak language
would lead to undecidability. However, recent work has shown that this feature could play a very useful role
in query answering, where the syntactic structure of queries means that the occurrence of state variables is
restricted in a way that allows for decidable reasoning.
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1 Introduction

Description Logics (DLs) are a family of logic based knowledge representation for-

malisms. Although they have a range of applications (e.g., configuration [23], and

information integration [6]), they are perhaps best known as the basis for widely

used ontology languages such as OIL, DAML+OIL and OWL [14], the last of which

is now a World Wide Web Consortium (W3C) recommendation [3].

The OWL specification describes three language “species”, OWL Lite, OWL DL

and OWL Full, two of which (OWL Lite and OWL DL) are based on expressive

description logics. 4 The decision to base these languages on DLs was motivated

by a requirement that key inference problems (such as ontology consistency) be

1 Email: horrocks@cs.man.ac.uk
2 Email: glimm@cs.man.ac.uk
3 Email: sattler@cs.man.ac.uk
4 OWL Full uses the same language vocabulary as OWL DL, but does not restrict its use to “well formed
formulae”.
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decidable, and hence that it should be possible to provide reasoning services to

support ontology design and deployment [14].

OWL Lite and OWL DL are based on the DLs SHIF and SHOIN
respectively—in fact, OWL Lite is just a syntactic subset of OWL DL [14]. 5

SHOIN , the DL underlying OWL DL, includes familiar features from hybrid logic.

In particular, in order to support extensionally defined classes, SHOIN includes

nominals: classes whose extension is a singleton set. This is an important fea-

ture for a logic that is designed for use in ontology language applications, because

extensionally defined classes are very common in ontologies. For example, OWL

provides a oneOf class constructor that allows users to define classes by enumerat-

ing their members, e.g., when describing a class such as EUCountries by enumerating

its members, i.e., {Austria, . . . ,UnitedKingdom} (such an enumeration is equivalent

to a disjunction of nominals). This allows applications to infer, e.g., that persons

who only visit EUCountries can visit at most 25 countries. Singleton classes are

also widely used in ontologies, e.g., in the well known OWL Wine ontology (see

http://www.w3.org/TR/owl-guide/wine.rdf), where they are used for colours,

grape types, wine producing regions, etc.

Binders (in particular the ↓ binder) and state variables are another feature from

Hybrid Logic that would clearly be useful in an ontology language, but it is well

known that adding this feature to even a relatively weak language would lead to

undecidability [4]. Recent work has shown, however, that this feature could play a

very useful role in query answering, where the syntactic structure of queries means

that the occurrence of state variables is restricted in a way that allows for decidable

reasoning.

2 Preliminaries

The correspondence between modal and description logics has long been understood

[29]. The basic propositionally closed DL ALC is equivalent to the propositional

modal logic K(m). The logic S extends ALC with transitive roles, and so can be

thought of as the union of K(m) and K4(m). SHOIQ extends S with a hierarchy

of roles (H), i.e., the ability to assert implications w.r.t. modalities, nominals (O),

inverse roles (I), i.e., converse modalities, and qualified cardinality constraints (Q),

i.e., graded modalities. The DL SHOIN is a restricted version of SHOIQ, which is

obtained by allowing only unqualified cardinality constraints, i.e., graded modalities

can range over the concept � only.

We will now briefly introduce the syntax, semantics, and inference problems of

the DL SHOIQ; full details can be found in [16].

Definition 2.1 Let R be a countable set of role names with both transitive and

normal role names R+∪RP = R, where RP∩R+ = ∅. The set of SHOIQ-roles (or

5 OWL also includes datatypes, a simple form of concrete domain [1]. These can, however, be treated
exactly as in SHOQ(D)/SHOQ(Dn) [15,11,27], so we will not complicate matters by considering them
here.
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roles for short) is R ∪ {R− | R ∈ R}. A role inclusion axiom is of the form R � S,

for two roles R and S. A role hierarchy is a finite set of role inclusion axioms.

An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI , the domain of

I, and a function ·I which maps every role to a subset of ΔI × ΔI such that, for

P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I
,

and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

An interpretation I satisfies a role hierarchy R if RI ⊆ SI for each R � S ∈ R;

such an interpretation is called a model of R.

Definition 2.2 Let NC be a countable set of concept names with a subset NI ⊆ NC

of nominals. The set of SHOIQ-concepts (or concepts for short) is the smallest set

such that

1. every concept name C ∈ NC is a concept,

2. if C and D are concepts and R is a role, then (C � D), (C  D), (¬C), (∀R.C),

and (∃R.C) are also concepts (the last two are called universal and existential

restrictions, resp.), and

3. if C is a concept, R is a simple role 6 and n ∈ IN, then (�nR.C) and (�nR.C)

are also concepts (called atmost and atleast number restrictions).

The interpretation function ·I of an interpretation I = (ΔI , ·I) maps, additionally,

every concept to a subset of ΔI such that

(C � D)I = CI ∩ DI , (C  D)I = CI ∪ DI ,

¬CI = ΔI \ CI , �oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ΔI | RI(x,C) �= ∅},

(∀R.C)I = {x ∈ ΔI | RI(x,¬C) = ∅},

(�nR.C)I = {x ∈ ΔI | �RI(x,C) � n}, and

(�nR.C)I = {x ∈ ΔI | �RI(x,C) � n},

where �M is the cardinality of a set M and RI(x,C) is defined as {y | 〈x, y〉 ∈
RI and y ∈ CI}. We sometimes use (=nR.C) as an abbreviation for (�nR.C) �
(�nR.C).

For C and D (possibly complex) concepts, C �̇ D is called a general concept

inclusion (GCI), and a finite set of GCIs is called a TBox. Let NA be a countable

set of individual names. For a, b ∈ NA, C a (possibly complex) concept, and R

a role, an individual assertion is of the form C(a) or R(a, b), and a finite set of

individual assertions is called an ABox. For T a TBox and A and ABox, a pair

6 A simple role is a role that is neither transitive nor has a transitive sub-role; restricting number restrictions
to simple roles is required in order to yield a decidable logic [17].
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〈T ,A〉 is called a Knowledge Base (KB). Individual names can also be seen as a

weak form of nominals, and it is well known that, in the presence of nominals, an

ABox can be expressed in terms of TBox axioms [28]. For a DL with nominals,

we can therefore assume that each individual assertion C(a) is an abbreviation for

a �̇ C with a ∈ NI and each assertion R(a, b) is an abbreviation for a �̇ ∃R.b with

a, b ∈ NI . Given a nominal o with oI = {x} for some individual x ∈ ΔI , we will

sometimes abuse our notation by treating o as an individual name such that oI = x.

Please note that we do not make a unique name assumption: two nominals (resp.

individual names) might have the same interpretation.

An interpretation I satisfies a GCI C �̇ D if CI ⊆ DI , it satisfies an individual

assertion C(a) if aI ∈ CI , and it satisfies an individual assertion R(a, b) if 〈aI , bI〉 ∈
RI . An interpretation I satisfies a TBox T (resp. ABox A) if I satisfies each GCI

in T (resp. each individual assertion in A), and I satisfies a KB K = 〈T ,A〉 if I
satisfies both T and A; such an interpretation is called a model of T (resp. A, K).

A concept C is satisfiable w.r.t. a role hierarchy R and a KB K if there is a

model I of R and K with CI �= ∅. Such an interpretation is called a model of

C w.r.t. R and K. A concept D subsumes a concept C w.r.t. R and K (written

C �R,K D) if CI ⊆ DI holds in every model I of R and K. Two concepts C,D

are equivalent w.r.t. R and K (written C ≡R,K D) if they are mutually subsuming

w.r.t. R and K.

For an individual name a, we say that a is an instance of a concept C w.r.t. a

role hierarchy R and a KB K if aI ∈ CI for every model I of R and K, and, for

a, b ∈ INA, the pair (a, b) is an instance of a role R if 〈aI , bI〉 ∈ RI for every model

I of R and K.

3 Reasoning with Nominals

A key motivation for basing OWL DL on Description Logics was in order to ex-

ploit both theoretical results and implemented DL reasoning systems. Interestingly,

though, at the time of the standardisation of OWL there was no known “practical”

algorithm for deciding the satisfiability of a SHOIQ KB (where by practical, we

mean a goal directed procedure that is likely to behave well on typical ontology de-

rived problems [33,15]). As a consequence, no implemented systems were available

either. Although, via correspondences with other logics, SHOIQ was known to be

decidable [33,26], it proved difficult to extend existing tableaux decision procedures

to deal with SHOIQ. The problem is not caused by nominals alone—decision pro-

cedures for SHOQ (i.e., SHOIQ minus inverse roles) and SHOI (i.e., SHOIQ
minus number restrictions) were already known—but by the combination of nomi-

nals with inverse roles and number restrictions.

In order to see why this is problematical, it is useful to first consider some of

the features of SHIQ (i.e., SHOIQ minus nominals), and of the tableaux decision

procedure for SHIQ. One reason why DLs (and propositional modal and dynamic

logics) enjoy good computational properties, such as being robustly decidable, is

that they have some form of tree model property [35,10], i.e., if an ontology is
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consistent, then it has a model with a tree-like relational structure. This feature

is crucial in the design of tableaux algorithms, allowing them to search only for

tree-like models.

More precisely, DL tableaux algorithms decide consistency of an ontology by

trying to construct an abstraction of a model for it, a so-called “completion graph”.

In a completion graph, each node x represents one or more individuals, and is la-

belled with a set of concepts which the individuals represented by x are instances

of; each edge 〈x, y〉 represents one or more pairs of individuals, and is labelled with

a set of roles which the pairs of individuals represented by 〈x, y〉 are instances of.

The algorithm works by initialising the graph with one node for each individual

name/nominal in the input KB, and using a set of expansion rules to syntactically

decompose concepts in node labels; each such rule application can add new con-

cepts to node labels and/or new nodes and edges to the completion graph, thereby

explicating the structure of a model. The rules are repeatedly applied until either

the graph is fully expanded (no more rules are applicable), in which case the graph

can be used to construct a model that is a witness to the satisfiability of the input

KB, or an obvious contradiction (called a clash) is discovered (e.g., both C and ¬C

in a node label), proving that the completion graph does not correspond to a model.

The input KB is consistent iff the rules (some of which are nondeterministic) can

be applied in such a way as to produce a fully expanded and clash free completion

graph.

For logics with the tree model property, we can restrict our search/construction

to tree-shaped completion graphs. For expressive DLs, this restriction is crucial,

since tableaux algorithms for them employ a cycle detection technique called block-

ing in order to guarantee termination. This is of special interest for SHIQ, where

the interaction between inverse roles and number restrictions results in the loss of

the finite model property, i.e., there are consistent ontologies that only admit infinite

models. On such an input, the SHIQ tableaux algorithm generates a finite, tree-

shaped completion graph that can be unravelled into an infinite tree model, and

where a node in the completion graph may stand for infinitely many elements of the

model. Even when the language includes nominals, but excludes one of number re-

strictions or inverse roles [15,13], or if only individual names instead of nominals are

allowed [18], we can work on forest-shaped completion graphs, with each nominal

(individual) being the root of a tree-like section; this causes no inherent difficulty as

the size of the non-tree part of the graph is restricted by the number of individual

names/nominals in the input.

The difficulty in extending the SHOQ or SHIQ algorithms to SHOIQ is due to

the interaction between nominals, number restrictions, and inverse roles, which leads

to the almost complete loss of the tree model property, and causes the complexity of

the ontology consistency problem to jump from ExpTime to NExpTime [32]. To see

this interaction, consider an ontology containing the following two axioms involving
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a nominal o and a non-negative integer n:

F �̇ ∃U−.o

o �̇ (�n U.F )

The first statement requires that, in a model of this ontology, every instance of F

has an incoming U -edge from o, while the second statement restricts the number of

U -edges going from o to instances of F to at most n. The nominal o thus acts as a

so-called “spy point” for instances of the concept F (o can “see” every instance of

F ), and the number restriction on the inverse of U imposes an upper bound of n on

the number of instances of F . If we add further axioms, we might need to consider

arbitrarily complex relational structures amongst instances of F . For example, if

we add the following axiom, then there must be exactly n instances of F , and each

instance of F is necessarily R-related to every instance of F (including itself):

F �̇ (=nR.F ).

Similarly, the following axiom would enforce S-cycles over instances of F :

F �̇ (=1S.F ) � (=1S−.F ).

Hence a tableaux algorithm for SHOIQ needs to be able to handle arbitrarily com-

plex relational structures, and thus we cannot restrict our attention to completion

trees or forests.

To complicate matters even more, recall that there are even SHIQ axioms that

enforce the existence of an infinite number of instances of a concept. For example,

the concept ¬N �∃T.N is satisfiable w.r.t. the following axiom, but only in models

with infinitely many instances of N :

N �̇ (�1T−.(A  ¬A)) � ∃T.N.

Now consider an ontology that contains, amongst others, all the above mentioned

axioms. The consistency of this ontology then crucially depends on the relations

enforced between instances of F and N . For example, the additional axioms

N �̇ ∃V.F and

F �̇ (�kV −.N)

yield an inconsistent ontology since our at most n instances of F cannot play the

rôle of V -fillers for infinitely many instances of F when each of them can be the

V -filler of at most k instances of N .

Summing up, a tableaux algorithm for SHOIQ needs to be able to handle both

arbitrarily complex relational structures and finite tree structures representing in-

finite trees, and to make sure that all constraints are satisfied—especially number
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restrictions on relations between these two parts—while still guaranteeing termina-

tion.

Two key intuitions have allowed us to devise a tableaux algorithm that meets

all of these requirements. The first intuition is that, when extending a SHOIQ
completion graph, we can distinguish those nodes that may be arbitrarily intercon-

nected (so-called nominal nodes) from those nodes that still form a tree structure

(so-called blockable nodes). Moreover, restrictions on the ways in which nominal

nodes can be created allow us to fix a (double exponential) upper bound on the

number of nominal nodes that can occur in a completion graph. This allows us to

restrict blocking, and hence unravelling, to blockable nodes, i.e., blockable nodes

may represent an infinite number of individuals, whereas a nominal node represents

exactly one individual in the model. This allows us to fix an upper bound on the

size of a completion graph, but it is still not enough to guarantee termination, as

we may repeatedly create and merge nodes.

For example, given the axiom:

C � (∃R.C) � (∀R−.o),

where o is a nominal, constructing a completion graph for C could lead to a se-

quence of three nodes, say x0, x1 and x2, with {r} labelled edges connecting

x0 with x1 and x1 with x2, and with the nodes labelled {C, (∃R.C), (∀R−.o), o},
{C, (∃R.C), (∀R−.o), o} and {C, (∃R.C), (∀R−.o)} respectively. The tableaux rule

dealing with nominals might then be applied in order to merge x1 into x0 (reflecting

the semantics of nominals), but applying the rule dealing with existential restric-

tions to (∃R.C) in the label of x2 would lead to the creation of a new {R} labelled

edge connecting x2 to a new node, say x3, which, after some additional expansion,

would have the same label as x2. Applying the rule dealing with value restrictions

to (∀R−.o) in the label of x3 would cause o to be added to the label of x2, and allow

the above process to be repeated w.r.t. x0, x2 and x3. This (particular version of

the) problem was identified by Baader, and called, for obvious reasons, a “yo-yo”

[1,2].

This problem is normally addressed by discarding sub-trees below a node when-

ever it is merged with another node. In the above case, for example, this would

result in x2 (and the edge from x1 to x2) being removed from the graph when x1 is

merged with x0; the resulting graph is fully expanded, and so the algorithm would

terminate. This only works, however, in tree-shaped parts of the completion graph,

as the notion of a sub-tree is otherwise not well defined. This can lead to problems

if nominal nodes are created and merged.

The second and crucial intuition is that this problem can be overcome by “guess-

ing” the exact number of new nominal nodes created as the result of interactions

between existing nominal nodes, inverse roles, and number restrictions. This guess-

ing is implemented by a new expansion rule, the NN -rule. When applied to a

relevant (�nR.C) concept in the label of a nominal node x, the NN -rule chooses

(non-deterministically) an integer m, such that 1 � m � n, adds (�mR.C) to the

I. Horrocks et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 3–14 9



label of x, and generates m new nominal nodes, all of which are pairwise disjoint,

and m new {R} labelled edges leading from x to the new nominal nodes. As they

are pairwise disjoint, none of these nodes can be merged, and adding (�mR.C)

means that no more nominal nodes can be added as a result of concepts of the form

(�nR.C) in the label of x. Termination is now guaranteed by the upper bound on

the number of nominal nodes and the use of standard blocking techniques for the

blockable nodes. The non-determinism introduced by this rule will clearly be prob-

lematical for large values of n, but large values in number restrictions are already

known to be problematical for SHIQ. Moreover, the rule has excellent “pay as

you go” characteristics: in case number restrictions are functional (i.e., where n is

1), 7 the new rule becomes deterministic; in case there are no interactions between

number restrictions, inverse roles, and nominals, the rule will never be applied; in

case there are no nominals, the new algorithm behaves like the algorithm for SHIQ;

and in case there are no inverse roles the new algorithm behaves like the algorithm

for SHOQ.

Indeed, recent implementations of this algorithm in Fact++ and Pellet [34,30]

show promising behaviour: for example, the Wine ontology 8 can now be classified,

and both reasoners only take a few seconds for its classification, despite the fact

that it is in SHOIF and contains 206 nominals. Recent work has also shown

how a similar technique can be used in order to extend resolution based reasoning

procedures to deal with SHOIQ [21].

4 Answering Conjunctive Queries

Existing DL reasoners (for example FaCT++ [34], KAON2 [20], Pellet [30] and

Racer Pro [12]) provide automated reasoning support for checking concepts for sat-

isfiability and subsumption, and also for answering queries that retrieve instances of

concepts and roles. In many applications, however, a more powerful query language

is required. An obvious approach would be to extend Datalog style conjunctive

queries to DLs, and this has led to studies of the problem of conjunctive query

answering for DLs [22,19]. As usual, we will restrict our attention to the problem of

answering Boolean conjunctive queries, i.e., queries where the answer is either true

or false; it is well known how to reduce non-Boolean queries (i.e., queries where the

answer is a set of tuples of individuals) to Boolean ones.

Definition 4.1 A Boolean conjunctive query q has the form 〈〉 ← conj1(�y;�c)∧ . . .∧
conjn(�y;�c), where �y is a vector of variables and �c is a vector of individual names. We

call T(q) = �y∪�c the set of terms in q, 9 and we call each conji(�y;�c) for 1 ≤ i ≤ n an

atom. Atoms are either concept or role atoms: a concept atom has the form C(t),

and a role atom the form R(t, t′), for {t, t′} ⊆ T(q), C a possibly complex concept,

7 The DL obtained from SHIQ by allowing only functional number restrictions is called
SHIF. There are many realistic SHIF ontologies; see, e.g., the DAML ontology library at
http://www.daml.org/ontologies/
8 Available at http://www.w3.org/2001/sw/WebOnt/guide-src/wine.rdf .
9 For readability, we sometimes abuse our notation and refer to �y as a set. When referring to a vector �y as
a set, we mean the set {yi | yi occurs in �y}.
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and R a role.

The semantics of Boolean conjunctive queries is defined in terms of assignments.

Let K be an knowledge base, I = (ΔI ,·I) a model for K, and q a Boolean conjunctive

query. An assignment in I is a mapping ·A : T(q) → ΔI . We say that q is true

in I and write I |= q if there exists an assignment ·A in I s.t. tA ∈ {tI} for every

individual name t ∈ �c, tA ∈ CI for every concept atom C(t) in q, and 〈tA, t′A〉 ∈ RI

for every role atom R(t, t′) in q. We call such an assignment a q-mapping w.r.t. I .

If I |= K implies I |= q for all models I of K, then we say that q is true in K , and

write K |= q; otherwise we say that q is false in K , and write K �|= q.

The development of a decision procedure for conjunctive query answering in

expressive DLs is still a partially open problem. Grounded conjunctive queries

for SHIQ and/or SHOIQ are supported by KAON2, Pellet, and Racer’s query

language nRQL [24,12]. However, the semantics of grounded queries is different

from the usually assumed open-world semantics in DLs since existentially quantified

variables are always bound to named individuals.

Various decision procedures [9,25,19] are known for restricted fragments of con-

junctive queries. The most common restriction used in order to obtain a decision

procedure is that each role that occurs in the query must be a simple role, i.e., a

role that is neither transitive nor has a transitive sub-role.

A commonly used technique is to reduce the problem of answering a Boolean

conjunctive query to the problem of deciding concept satisfiability w.r.t. a KB. The

idea is to view the query as a graph and, starting from leaf nodes, to “roll up” the

graph into a single atom of the form C(t) such that the query is true in a KB K iff

¬C is unsatisfiable w.r.t. K [9,5,19,31]. For example, the query

q = 〈〉 ← R(t, t′) ∧ S(t′, t′′) ∧ C(t′′)

could be rolled up into

〈〉 ← (∃R.(∃S.C))(t)

such that K |= q iff ¬(∃R.(∃S.C)) is unsatisfiable w.r.t. K.

Unfortunately, the above described technique is only able to deal with tree

shaped queries, i.e., those where the query graph does not contain a cycle, because

the above mentioned tree model property means that DL concepts cannot capture

cyclic relationships. Even nominals cannot express the arbitrary cyclic structures

that can occur in a query [31].

Recent work has, however, shown how an extension of DLs with a restricted

form of the ↓ binder operator and state variables can enable an extension of the

rolling-up technique to deal also with cyclic queries [9]. It is easy to see how these

features can be used to roll up an arbitrary query into a suitable concept. For

example, the query

q = 〈〉 ← R(t, t′) ∧ S(t′, t)

could be rolled up into the concept

〈〉 ← (↓t.(∃R.(∃S.t)))(t)
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Although the ↓ binder already makes the DL ALC undecidable, when used in

query answering the ↓ binder occurs only in a very restricted form, and the resulting

extension of SHOIQ is still decidable [8] if only simple roles are used in the query.

Moreover, it is relatively easy to extend a tableaux algorithm for SHOIQ to one

with this restricted form of the ↓ binder. However, although it is now known that

conjunctive query answering for SHIQ (without any restrictions) is decidable [7],

it is not clear how to extend the ↓ binder technique to queries in which non-simple

roles occur in a cycle. In this case, the binder interacts with blocking in a way that

makes termination problematical.

5 Discussion

As we have seen, description logics underlying state of the art ontology languages

include nominals, a well known feature of hybrid logic. Nominals are an important

feature of ontology languages, as extensionally defined and singleton classes are

common in ontologies. Recent advances in DL reasoning techniques have shown

how the tableaux algorithm for SHIQ, which is widely used in DL reasoners, can

be extended to deal with nominals, and implementations of the shown algorithm

have already exhibited promising results. Moreover, it has also been shown that a

similar technique can be applied to resolution based reasoning procedures.

The ↓ binder, another familiar feature of hybrid logics, has also been investi-

gated in the context of DL reasoning, in this case algorithms for conjunctive query

answering. It has been shown that an extension of SHOIQ to include a restricted

form of this feature is not only decidable, but is extremely useful in the context of

conjunctive query answering. Currently, the decision procedure is restricted to con-

junctive queries with only simple roles and extending the technique to unrestricted

conjunctive queries is still an open problem.
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