
Modular Formal Analysis of the Central

Guardian in the Time-Triggered Architecture 1

Holger Pfeifer ∗, Friedrich W. von Henke

Abtl. Künstliche Intelligenz
Fakultät für Informatik

Universität Ulm
D–89069 Ulm

Abstract

The Time-Triggered Protocol TTP/C constitutes the core of the communication
level of the Time-Triggered Architecture for dependable real-time systems. TTP/C
ensures consistent data distribution, even in the presence of faults occurring to nodes
or the communication channel. However, the protocol mechanisms of TTP/C rely
on a rather optimistic fault hypothesis. Therefore, an independent component, the
central guardian, employs static knowledge about the system to transform arbitrary
node failures into failure modes that are covered by the fault hypothesis.

This paper presents a modular formal analysis of the communication properties
of TTP/C based on the guardian approach. Through a hierarchy of formal models,
we give a precise description of the arguments that support the desired correctness
properties of TTP/C. First, requirements for correct communication are expressed
on an abstract level. By stepwise refinement we show both that these abstract
requirements are met under the optimistic fault hypothesis, and how the guardian
model allows a broader class of node failures to be tolerated.

The models have been developed and mechanically checked using the specification
and verification system PVS.

Appears in: Reliability Engineering & System Safety 92 (2007) 1538–1550.
Special Issue on Safety, Reliability and Security of Industrial Computer Systems.
c© Elsevier Ltd, 2006.

∗ Corresponding author.
Email addresses: Holger.Pfeifer@uni-ulm.de (Holger Pfeifer),

friedrich.von-henke@uni-ulm.de (Friedrich W. von Henke).
1 This research was supported by the European Commission under the IST project
NEXT TTA (IST-2001-32111).

Preprint submitted to Elsevier Science 7 April 2006



1 Introduction

The Time-Triggered Architecture (TTA) [1–3] is a distributed computer ar-
chitecture for the implementation of highly dependable real-time systems. In
particular, it targets embedded control applications, such as by-wire systems
in the automotive or aerospace industry [4,5]. For these safety-critical systems
fault tolerance is of utmost importance. The Time-Triggered Protocol TTP/C
constitutes the core of the communication level of the Time-Triggered Archi-
tecture. It furnishes a number of important services, such as atomic broadcast,
consistent membership and protection against faulty nodes, that facilitate the
development of these kinds of fault-tolerant real-time applications. However,
these protocol mechanisms rely on a rather optimistic fault hypothesis and as-
sume that a fault is either a reception fault or a consistent send fault of some
node [6]. In order to extend the class of faults that can be tolerated a special
hardware component, the so-called guardian, is introduced [7]. A guardian is
an autonomous unit that protects the shared communication network against
faulty behaviour of nodes by supervising their output. The original bus topol-
ogy of the communication network employed local bus guardians, which were
placed between the nodes and the bus. In the more recent star topology, cen-
tral guardians are used in the hub of each star. The guardian makes use of
static knowledge available in a TTA-based system to transform arbitrary node
failures into those that are covered by the optimistic fault hypothesis. For ex-
ample, the time interval during which a given node is allowed to access the
shared communication network is statically determined in a TTA system and
known a priori. The guardian can hence control the correct timing of message
transmissions by granting write access to the network only during a node’s
pre-defined time slot.

The goal of this work is to formally model TTP/C guardians and analyse
their fault tolerance properties. In particular, we aim at describing the ben-
efits of the guardians by giving a precise specification of the assumptions on
which the derivation of the properties is based. Formal analysis can provide
an additional source of confidence in correct behaviour of a system, which is
particularly important in the context of safety-critical systems. Several aspects
of TTP/C and related protocols have therefore been formally modelled and
analysed, including clock synchronisation [8], group membership [9–11], and
the startup procedure [12, 13]. A detailed overview of formal analysis work
for the Time-Triggered Architecture is given by Rushby [14]. While so far the
protocol algorithms of the time-triggered protocol have been the focus of the
formal analyses cited above, we concentrate in this paper on the communi-
cation properties of TTP/C, thereby complementing and extending previous
work.

To describe the behaviour and properties of the communication network and

2



the guardians we develop various formal models, which are organised in a hi-
erarchical fashion. We start by specifying the desired correctness properties of
the communication in an abstract form. Subsequently, in a process of stepwise
refinement, more detail is added to this initial abstract model. On the next
level of the hierarchy, we consider a TTP/C system without guardians. We
show that in this case the strong, optimistic fault hypothesis is necessary to
guarantee correct communication. Another model then introduces guardians
and specifies their behaviour. At this level we demonstrate that the optimistic
assumptions can be relaxed, which leads to a fault hypothesis that covers a
broader class of faults.

The development of the models is in the spirit of, and builds on the work
on modelling TTP-related aspects that has been carried out previously [8,10,
15]. Specifically, it continues the use of the PVS specification and verification
system [16] to both specify the model and the properties to be verified, and
develop formal proofs that the model satisfies the stated properties. Previous
work has demonstrated the suitability of PVS for this type of tasks. The formal
models that are presented in this paper have been developed, and the proofs
of their properties have been mechanically checked, with the PVS system.

The paper is organised as follows. In Section 2 we give a brief overview of
the main aspects of the Time-Triggered Architecture. Section 3 describes the
structure of the models and motivates their organisation. Details of the com-
ponents of the formal models are elaborated in Section 4. Finally, we conclude
in Section 5.

2 Brief Overview of the Time-Triggered Architecture

In this section we only briefly describe the main aspects of the Time-Triggered
Architecture to the extent that is required for this paper. For more detailed
presentations we refer to [3, 17, 18].

In a Time-Triggered Architecture system a set of nodes are interconnected
by a real-time communication system. A node consists of the host computer,
which runs the application software, and the communication controller, which
accomplishes the time-triggered communication between different nodes. The
nodes communicate via replicated shared media, the communication channels.
There are two common physical interconnection topologies for TTA. Origi-
nally, the channels were replicated, passive buses, while in the more recent
star topology the nodes are connected to replicated central star couplers, one
for each of the two communication channels.

The distinguishing characteristic of time-triggered systems is that all system

3



activities are initiated by the passage of time [19]. The autonomous TTA
communication system periodically executes a time-division multiple access
(TDMA) schedule. Thus, access to the communication medium is divided into
a series of intervals, called slots. Every node exclusively owns certain slots in
which it is allowed to send messages via the communication network. The
times of the periodic message sending actions are determined a priori, that
is, at design time of the system. The send and receive instants are contained
in a message schedule, the so-called message descriptor list (MEDL). This
scheduling table is static and stored at each communication controller. It thus
provides common knowledge about message timing to all nodes. A complete
cycle during which every node has access to the network exactly once is called
a TDMA round.

Messages are used as a life-sign of the respective sender, and whenever a
node receives a correct frame on at least one of the channels it considers the
sender correct. Correctness of a frame is determined by each receiving node
according to a set of criteria. A node considers a frame correct if it is well-
timed, i. e. arrives within the boundaries of the TDMA slot, the physical signal
obeys the line encoding rules, the frame passes a CRC check, and the sender
and receiver agree on the distributed protocol state, the so-called C-state. One
of the desired correctness properties of TTP/C is that all correct nodes always
agree on whether or not a message is considered correct.

The Time-Triggered Protocol is designed to provide fault tolerance. In par-
ticular, the protocol has to ensure that non-faulty nodes receive consistent
data despite the presence of possibly faulty nodes or a faulty communication
channel. The provision of fault tolerance is based on a number of assumptions
about the types, number, and frequency of faults. Altogether, these assump-
tions constitute the so-called fault hypothesis. The main assumption for the
algorithms implemented in TTP/C is that a fault manifests itself as either a
reception fault or a consistent send fault of some node [6]. In particular, the
TTP/C services rely on transmission faults being consistent. That is, messages
must be received correctly by either all non-faulty nodes or none. Moreover,
nodes are assumed not to send messages outside their assigned slots. With re-
spect to faults of the communication network, it is assumed that the channels
cannot spontaneously create correct messages, and that messages are deliv-
ered either with some known bounded delay or never. With regard to the
frequency and number of faults, TTP/C assumes that only one node becomes
faulty during a TDMA round, and that there is at most one faulty node or
one faulty channel at a time.

However, the Time-Triggered Architecture can tolerate a broader class of faults
by intensively using the static knowledge that is present in the TDMA sched-
ule. This allows to transform arbitrary failure modes of nodes into either send
or receive faults that can be tolerated by the protocol. The guardians, which

4



are dedicated components of the communication system, monitor the temporal
behaviour of the nodes. As the right to access the communication channels is
statically determined, the guardians can bar a faulty node from sending a mes-
sage outside its designated slots. Thus, timing failures of nodes are effectively
transformed into send faults.

Moreover, guardians can protect against a particular class of Byzantine faults,
the so-called slightly-off-specification (SOS) faults. A component is called SOS-
faulty if it exhibits only marginally faulty behaviour that appears correct to
some components, but faulty to others. A slightly-off-specification timing fault
could occur if the transmission of a node terminates very close to the end of its
scheduled transmission interval; thus, some receivers might accept the message
while others might consider it mistimed. Because the duration of a particular
transmission is known beforehand, the guardian can prevent such a cut-off sce-
nario. A node must begin its transmission during a pre-defined period of time
after the start of its slot, otherwise the guardian would terminate the right
to access the communication network. Thus, the guardian can effectively pre-
vent cut-off SOS faults, provided that the transmission interval is chosen long
enough to ensure that a transmission fits the interval whenever it is started in
time. Specifically, TTP/C guardians protect against SOS faults in the line en-
coding of frames at the physical layer, SOS timing faults, transmission of data
outside the designated sending slots, masquerading of nodes, and transmission
of non-agreed critical state information [7].

3 Bird’s Eye View of the Formal Models

The overall goal of modelling the communication network is to provide a
concise description of the arguments that support the following three main
correctness properties of the TTP/C communication:

• Validity:
If a correct node transmits a correct frame, then all correct receivers accept
the frame.

• Agreement:
If any correct node accepts a frame, then all correct receivers do.

• Authenticity:
A correct node accepts a frame only if it has been sent by the scheduled
sending node of the given slot.

Once these properties are established, they can be exploited in subsequent
analyses of protocol algorithms. This is preferable, since it is generally more
feasible to base an analysis on properties of a supporting model or theory,
rather than on the mere definitions of the model itself.

5



In order to facilitate the deduction, the formal proofs of these properties are
decomposed into a series of smaller steps, and a hierarchy of corresponding
models has been developed. Each of the single models focuses on a particular
aspect of the communication. Altogether, we have identified the following four
suitable model layers:

• General specification of the reception of frames.
• Channels without guardians, requiring a strong fault hypothesis.
• Channels with guardians, requiring only a weaker fault hypothesis.
• Different network topologies: local bus guardians and central guardians.

Each of the models contributes a small step towards proving the desired
correctness properties. The steps themselves are each based on a set of as-
sumptions or preconditions. Put in an abstract, and maybe also slightly over-
simplified way, in each model layer i one establishes a theorem of the form

assumptions i ⇒ propertiesi

The idea is to design the different models in such a way that the properties
on one level establish the assumptions on the next. Ultimately, the models are
integrated and the reasoning is combined, yielding a chain of implications of
roughly the following kind:

assumptions
0
⇒ properties

0

= or ⇒

assumptions
1
⇒ properties

1

= or ⇒

assumptions
2
⇒ . . . ⇒ propertiesf

The final properties, propertiesf , correspond to the desired main correctness
properties of the TTP/C communication as specified above, while the initial
assumptions, assumptions

0
, describe what constitutes the basic fault hypoth-

esis.

We are going to briefly summarise the main aspects of the four model layers. At
the bottom, the model describes the reception of frames by the nodes. Here, the
various actions that nodes take in order to judge the correctness of the received
frame are formalised. This amounts to considering the transmission time and
the signal encoding of the frame, and the outcomes of the CRC check and the
C-state agreement check, respectively [18]. The main correctness properties of
the communication network are then expressed in terms of these notions. The
assumptions of this model layer concern requirements about the functionality
of the communication channels. In particular, they describe properties of the

6



frames that a channel transmits, such as signal encoding or delivery times, and
reflect the hypothesis about possible faults of the communication network. In
essence, this model establishes a proposition that informally reads as follows:

general channel properties ⇒ Validity ∧ Agreement ∧ Authenticity (1)

On the next level, we model the transmission of frames through channels that
are not equipped with guardians. The goal is then to derive the assumptions
of the basic model, as covered by the expression general channel properties.
However, in order to do so, a strong hypothesis on the types of possible faults
of nodes is necessary. This strong fault hypothesis requires, for instance, that
even a faulty node does not send data outside its sending slot, and nodes never
send correct frames when they are not scheduled to do so. Using our informal
notation, we can sketch the reasoning at this level as follows:

strong fault hypothesis ⇒ general channel properties (2)

Guardians are employed to transform arbitrary node faults into faults that are
covered by the strong fault model. Thus, the strong fault hypothesis can be re-
placed with weaker assumptions about the correct behaviour of the guardians.
The functionality and the properties of the guardians are formally specified in
the third model of the hierarchy, where the following fact is established:

weaker fault hyp. ∧ generic guardian ⇒ general channel properties (3)

Ideally, we would have liked to demonstrate directly that – together with the
guardian properties – the weak form of the fault hypothesis implies the strong
one. However, it turned out to be rather challenging to accomplish a formal
proof for this fact and hence we had to revert to reasoning according to (3).

The model of the guardians is generic, as it does not, for instance, stipulate the
type of guardian to be used in the communication network. The final level of
our hierarchy models each of the two typical topologies of a TTP/C network:
the bus topology and the star topology. In the former, each node of the network
is equipped with its own local bus guardian, one for each channel, while in
the latter the guardians are placed into the central star-coupling device of the
channels. In this model layer we show that the properties of the guardians
are independent from the choice of a particular topology, given that both the
local bus guardians and the central guardians implement the same algorithms.
Hence, we establish the following facts:

local bus guardian ⇒ generic guardian (4)

central star guardian ⇒ generic guardian (5)

7



The hierarchic arrangement of the models for the communication network al-
lows for a concise description of the dependencies of the three main correctness
properties. At the basic level the fundamental prerequisites are described that
are necessary for the desired correctness properties to hold, while the subse-
quent levels express what must be assumed from the nodes and guardians,
respectively, to satisfy these prerequisites. In particular, the treatment pre-
cisely explains the benefits of introducing guardians into the communication
network.

4 Modular Formal Analysis of TTP/C Communication

In this section we present the main details of the formal models for the com-
munication network according to the hierarchy that has been set out in the
previous section. Although the formal models have been developed as a set of
PVS modules (i.e., theories), the presentation is in the style of a mathemati-
cal transcription of these PVS modules. Similarly, we will explain the essential
steps of the major proofs in an informal way; nevertheless, all proofs presented
in this section have been developed and mechanically checked using the PVS
theorem prover.

4.1 Modelling the Reception of Frames

We start the presentation of our hierarchy of models at the bottom level.
This model provides a formalisation of how the communication of TTP/C
essentially works. In particular, the actions taken by the nodes when sending or
receiving frames are described. In addition, the desired correctness properties
of TTP/C communication are stated at this level. The reference points of this
formalisation are the TTP/C specification document [18] and the protocol
developer’s discussion of the fault assumptions in TTP/C [7]. In the sequel,
we will refer to this model layer as the ground model.

In our model we consider a network with an undetermined but fixed number of
communication channels. This is a generalisation of the TTA, which typically
involves only two channels. In the formal model, we divide communication
between nodes into three phases: the sending of frames by a sending node,
the transmission of the frame on a channel, and the reception of the frame at
the receiving nodes. To model the reception of frames we introduce a function
rcvd(n, c, r) to denote the frame a receiving node r receives in slot n on
channel c. Similarly, sent(n, c, p) denotes the frame that a node p has sent in
slot n on channel c, while transmit(n, c) models the frame that is transmitted
on channel c in slot n. The ultimate goal of the ground model of our hierarchy

8



is to precisely state the relationship between these entities and to prove the
correctness properties Validity, Agreement, and Authenticity explained in the
previous section.

To this end, we first need to introduce notions expressing the checks a receiver
carries out to determine the correctness of the frame received, and stating
the conditions under which these checks are assumed, or required, to succeed.
First of all, we formalise the notion of frame status. In TTP/C, frames can
be null frames, valid frames, or correct frames. Frames that are neither null
frames not valid, are called invalid frames, while valid frames that are not
correct are called incorrect. TTP/C furthermore distinguishes tentative frames
and frames that have other errors; the former relates to situations in the
implicit acknowledgement process of nodes, while the latter refers to illegal
mode change requests. These types of frames are, however, not considered in
our model. The status of the frame received by node r on channel c in slot n
will be denoted by frame status(n, c, r).

Frames are considered (syntactically) valid if the frame is transmitted during
the receive window of the receiving node, no code violations are observed
during the reception, and no other transmission was active within the receive
window before the start of the frame. For a frame to be considered correct, it
has to pass both the CRC check and the C-state agreement check [6].

Now we can formally state the desired correctness properties introduced in the
previous section. The node scheduled to send in slot n is denoted sender(n),
while we use the (overloaded) notation NF n to denote both the set of non-
faulty nodes and the non-faulty channels in slot n; consequently, r ∈ NFn and
c ∈ NFn indicate that node r and channel c are non-faulty in slot n.

Property 1 (Validity) For all slots n, there exists a channel c such that if
the sender of slot n sends a correct frame on c then all non-faulty nodes will
receive this frame and assign the status correct to it:

∃c : sender(n) ∈ NFn ∧ sends correct(n, c, sender(n))⇒

∀r ∈ NFn : rcvd(n, c, r) = sent(n, c, sender(n))∧

frame status(n, c, r) = correct

Here, the predicate sends correct(n, c, sender(n)) subsumes what is consid-
ered a correct sending action of a node: the sending node sends a non-null
frame, does so at the specified time, the frame carries the correct C-state
information and the physical signal obeys the line encoding rules.

Property 2 (Agreement) All non-faulty nodes consistently assign the sta-

9



tus correct to a frame received on a non-faulty channel c:

p ∈ NFn ∧ q ∈ NFn ∧ c ∈ NFn ⇒

frame status(n, c, p) = correct ⇔ frame status(n, c, q) = correct

Property 3 (Authenticity) A non-faulty node r assigns the frame status
correct to a frame received on a non-faulty channel c only if it was sent by the
scheduled sender of the slot:

r ∈ NFn ∧ c ∈ NFn ∧ frame status(n, c, r) = correct ⇒

rcvd(n, c, r) = sent(n, c, sender(n))

In order to prove that these desired correctness properties hold for our model,
several preconditions must be satisfied. These conditions concern the relation-
ship between the frames sent by a sending node, transmitted through the chan-
nel, and received by the receivers, as expressed by the functions sent(n, c, p),
transmit(n, c), and rcvd(n, c, r), respectively. Therefore, we have to axioma-
tise the intended meaning of these functions. First of all, we formalise what is
expected from a correct receiver. If a node r is non-faulty, we assume that it
receives the frame that is transmitted on a given channel c:

r ∈ NFn ⇒ rcvd(n, c, r) = transmit(n, c) (6)

However, even faulty nodes cannot receive other messages than those trans-
mitted. Hence, nodes either receive whatever is transmitted on a channel, or
nothing in the case of a reception fault:

rcvd(n, c, r) = transmit(n, c) ∨ rcvd(n, c, p) = null (7)

As for the sending nodes, we would like to model that non-faulty nodes send
frames in their own sending slots, and remain silent otherwise. In some sit-
uations however, e. g. during the start-up of a TTP/C system or during the
re-integration process of a node, the scheduled sender might not be fully inte-
grated in the system and therefore, although being non-faulty, will not send
at all in its sending slot. To also cope with these situations, we assume that in
their sending slots non-faulty nodes either send a correct frame on all channels,
or do not send any frame on any channel:

p = sender(n)∧ p ∈ NFn ⇒

(∀c : sends correct(n, c, p))∨ (∀c : sent(n, c, p) = null)
(8)

10



Next we need to constrain the behaviour of the channels. As we intend to
examine both channels with and without guardians, we now state certain re-
quirements that must be satisfied by either configuration in order to maintain
the correctness properties.

First, we like to express that non-faulty channels deliver the frame sent by
some node. However, a faulty node might try to send a frame on a channel
outside its assigned sending slot, which could then interfere with the frame
sent by the scheduled sending node. For our ground model, we do not want
to constrain the behaviour of the channel in this case, but allow the channel
to either transmit one of the frames sent by the interfering nodes, or block all
transmissions, or transmit a corrupted frame.

Requirement 1 A non-faulty channel either transmits the frame sent by
some node p, or nothing, or a corrupted frame.

c ∈ NFn ⇒ (∃p : transmit(n, c) = sent(n, c, p))

∨ transmit(n, c) = null ∨ corrupted(transmit(n, c))

However, this requirement is not sufficient, as it allows trivial, and rather
useless, solutions such as channels that never transmit anything. In order
to exclude these unwanted cases, we require that a non-faulty channel must
transmit the frame of the scheduled sending node in situations where no other
node interferes. We use the predicate single access(n, c) to express that there is
at most one node sending on channel c in slot n. Technically, this expression is
an abstract parameter of our model; its interpretation depends on the concrete
implementation of the channels, and it will be defined later in the subsequent
refining model layers.

Requirement 2 If the scheduled sender exclusively accesses the channel and
sends a correct frame, then this frame is transmitted by the channel.

c ∈ NFn ∧ single access(n, c)∧ sends correct(n, c, sender(n))⇒

transmit(n, c) = sent(n, c, sender(n))

The last of the basic requirements for non-faulty channels accounts for the fact
that channels are passive entities and thus cannot generate frames by them-
selves. Here, the expression sends(n, c, p) is an abbreviation for sent(n, c, p) 6=
null.

Requirement 3 Channels can only transmit what has been sent by some

11



node.

transmit(n, c) 6= null ⇒ ∃p : sends(n, c, p)

We are now going to derive the proofs of the three main correctness properties
for the TTP/C communication. However, as we will see, the assumptions and
requirements listed so far are not sufficient to allow such a derivation. Conse-
quently, we need to further constrain the behaviour of both the channels and
the sending nodes in order to achieve correct communication. We will intro-
duce the additional requirements as they become necessary in the derivation
of the proofs.

4.1.1 Proof of Validity

The proposition Validity states two aspects of the reception of a correct frame
sent by the scheduled sender in a given slot: first, all non-faulty receivers must
receive the frame sent by the sender, and, second, all of them must accept this
frame. With respect to the first part, we can derive from (6) that all non-faulty
receivers receive the frame that is transmitted by the channel c. Furthermore,
Req. 2 states that a non-faulty channel transmits the frame sent by the sender,
provided that there is no other node accessing the channel. This latter clause
gives rise to another requirement on the communication network:

Requirement 4 In every slot, there is at least one non-faulty channel that
is accessed by at most one node.

∃c ∈ NFn : single access(n, c)

Note that this is a rather strong requirement, and one that is impossible to
satisfy for a channel without further measures, because it requires a certain
behaviour of faulty nodes, which is outside the control of a channel. As we
will see in the subsequent sections, the treatment of this requirement is one
that distinguishes the communication model with guardians from one without.
With this requirement we can prove the first part of Validity, i.e., that all
correct nodes receive the frame sent by the sender.

As for the second part, we need to demonstrate that all correct receivers assign
the status correct to the frame, that is, that they see a non-null, valid frame
that passes both the CRC check the C-state agreement check. Non-emptiness
of the frame can be proved from the fact that a correct sender sends a correct,
and thus non-null, frame. A correct frame will always be transmitted by a non-
faulty channel due to Req. 2, and Req. 4 ensures that such a non-faulty channel
does indeed exist. Concerning the validity of the frame we have to consider
the transmission timing of the frame and its signal encoding on the physical

12



layer. The latter is given by the same line of arguments as we demonstrated
that the frame is not a null -frame: a correct sender sends a correct frame,
which includes a correct signal encoding, and a correct channel will transmit
this frame.

Next, we focus on the transmission timing of the frame. In order for the frame
to be received by a non-faulty receiver within its receive window, the sending
node and the receiver must be synchronised. Moreover, the values defining the
nominal sending time of a frame and the start and end of the receive window,
respectively, must be chosen such that the possible slight differences among
the readings of the nodes’ local clocks allow for the receivers to open their
receive windows at “the right time”. If we presuppose that non-faultiness of
nodes encompasses that they are synchronised and that the window timing
parameters are set correctly, it suffices to show that the sender sends its frame
in time, and that the channel has a transmission delay that is bounded by some
given bound ̂d. The first is given by the fact that the sender sends a correct
frame, and therefore the transmission time is correct. The second, however,
must be stated as another requirement on the correct behaviour of a channel:

Requirement 5 The transmission time of a correct frame on a non-faulty
channel does not deviate from the sending time by more than some bounded
delay d.

c ∈ NFn ∧ sends correct(n, c, p)∧ single access(n, c)⇒

∃d : d ≤ ̂d ∧ transmission time(f ′) = send time(f) + d

where p = sender(n), f = sent(n, c, p), f ′ = transmit(n, c)

The last characteristic of a valid frame is unique transmission, which is ensured
by Req. 4.

So far we have shown that the received frame is considered valid by non-
faulty receivers. We are thus left to examine the CRC check and the C-state
agreement check. As for the first, an incorrect CRC checksum is used to signal
transmission faults. As the channel c under consideration is a non-faulty one,
it is reasonable to assume that this includes the fact that no transmission fault
occurs on c. Therefore we can conclude that a frame received by a non-faulty
receiver on a non-faulty channel will pass the CRC check.

Finally, we consider the C-state agreement check. For the frame to pass the
check, the C-state encoded in the frame has to correspond to the receiver’s
C-state. For this to be the case, two things must be ensured: first, the sender
and the receiver must have equal C-states, and, second, the sender provides
a correct encoding of its C-state in the frame. The first part corresponds
to the functionality of the clique avoidance mechanism of the TTP/C group

13



membership algorithm, which is responsible for maintaining a single clique
of nodes during system operation, that is, a single group of nodes that has
equal C-states. We abstract from this protocol property by assuming that our
notion of non-faultiness of nodes includes that two non-faulty nodes belong to
the same (single) clique and thus have common C-states.

The second part, however, gives rise to another requirement on the behaviour
of a correct channel.

Requirement 6 A non-faulty channel transmits a frame with a correct signal
encoding only if the frame sent provides a correct encoding of the sender’s C-
state.

c ∈ NFn ∧ transmit(n, c) = sent(n, c, p)∧ sends(n, c, p)∧

signal encoding OK (transmit(n, c))⇒

cstate encoding OK (n, sent(n, c, p), p)

We can summarise that with the requirements introduced above the Validity
property can be derived.

4.1.2 Proof of Agreement

To prove Agreement, we have to demonstrate that if some non-faulty receiver
considers a received frame correct, then all non-faulty receivers do so. To
establish this property we have to prove the same six characteristics of the
received frame as for Validity, that is, reception of a non-null frame, the three
properties of valid frames, and the two correctness checks. Each of these six
cases can be proved using the same requirements as the proof of Validity. The
structure of the proof of the agreement property is very similar to that of the
Validity property; we therefore omit a detailed description.

4.1.3 Proof of Authenticity

For Authenticity we are required to show that if a frame is considered correct
by a correct receiver then this node has in fact received the frame sent by the
scheduled sender of the slot. In order to derive this fact we note that since
the receiver considers the frame correct, we know that the six characteristics
that define correct frames hold. This implies, for instance, that the receiver
has detected a non-null frame. As channels only broadcast frames that have
actually been sent by some node, cf. Req. 3, we know that there is an originator
of the frame and that the receivers have received the frame sent by this sending
node, say p. Hence, we only need to prove that this node p is in fact the

14



scheduled sender of the current slot. However, the facts established so far are
not sufficient to do so, and hence we need to introduce one final requirement
on the behaviour of channels.

Requirement 7 A non-faulty channel transmits a correctly sent frame only
if it originates from the scheduled sender of the given slot.

c ∈ NFn ∧ sends correct(n, c, p)∧ transmit(n, c) = sent(n, c, p)⇒

p = sender(n)

This requirement, together with the precondition that the received frame is
considered correct by the receiving node, enables us to prove that the origi-
nator of the frame is indeed the scheduled sender of the given slot.

This concludes the derivation of the three desired correctness properties for
the communication of TTP/C and the requirements they are based on. In
the following two sections we will describe under which fault hypotheses these
requirements can be met, both for a scenario with and without bus guardians.

4.2 Strong TTP/C Fault Hypothesis

In the previous section we have described a formalisation of the reception of
frames by a node and have stated seven requirements that must be satisfied
by the sending nodes and the channels in order to establish the desired cor-
rectness properties. In this section we are now going to give a formal model for
sending nodes and channels and examine how the requirements stated above
can be met. First, we consider the scenario where the channels are simple
passive entities that broadcast the frames sent by a sender without further
mechanisms, before, in the next section, we analyse a refinement of this model
that incorporates bus guardians.

The ground model presented in the previous section expresses certain required
properties of the entities sent(n, c, p) and transmit(n, c), which model the be-
haviour of the sending nodes and the channel, respectively. In a technical sense,
these entities are parameters of the model. We now give an interpretation to
these parameters for a network without guardians and show that the general
requirements are satisfied for these interpretations.

First, we give a definition of the predicate single access(n, c). This predicate
is intended to model the case where only the scheduled sender sends a frame,
and no other node interferes. Hence, we define it as true if there are no two

15



different nodes that send a non-null frame on the channel in the same slot:

single access(n, c) := ∀p, q : sends(n, c, p)∧ sends(n, c, q)⇒ p = q (9)

The interpretation of sent(n, c, p) and transmit(n, c) is given in an axiomatic
style, and the set of axioms essentially constitutes the fault hypothesis of the
guardian-free setting. In this setting, we cannot say anything about the frame
transmitted by a channel other than that it depends on what is sent by the
sending nodes. This is in contrast to the scenario with guardians, where we
can, for instance, express that a guardian will not broadcast a frame if it does
not originate from the scheduled sender.

Hypothesis 1 A non-faulty channel without a guardian will transmit a frame
sent by a node p if no other node accesses the channel in the given slot n.

c ∈ NFn ∧ sends(n, c, p) ∧ (¬∃q : q 6= p∧ sends(n, c, q)) ⇒

transmit(n, c) = sent(n, c, p)

This hypothesis is sufficient to prove Req. 2 of the ground model; to see this,
note that with the definition of single access, the premise of Req. 2 implies
that of Hyp. 1.

In order to prove Req. 1, we must assume that a channel can only transmit a
non-null frame if it has been sent by some node:

Hypothesis 2 If a channel broadcasts a non-null frame, then there is a cor-
responding node that has sent this frame.

transmit(n, c) 6= null ⇒ ∃p : sends(n, c, p)

With this assumption we can now prove Req. 1 of the ground model: either
the frame transmitted on a channel is a null frame, or if it is not, then by
Hyp. 2 there is a sending node p, and the channel transmits the frame sent by
p according to Hyp. 1.

Note that Hyp. 2 is actually identical to Req. 3 of the ground model. At
this level, we cannot further constrain the behaviour of the channels more
than what is expressed by Hyp. 1; consequently, some of the requirements of
the ground model have to be restated as hypotheses on the channels for the
guardian-free case. This is also true for Req. 5, which constrains the possible
delay in the delivery of a frame on a non-faulty channel:

Hypothesis 3 The delivery time of a frame on a non-faulty channel does not

16



deviate from the transmission time by more than some bounded delay d.

c ∈ NFn ∧ sends(n, c, p)∧ f ′ 6= null∧ ¬ corrupted(f ′) ⇒

∃d : d ≤ ̂d∧ transmission time(f ′) = sending time(f) + d

where f = sent(n, c, p), f ′ = transmit(n, c)

Thus, Req. 3 and Req. 5 are trivially satisfied by our model. Note, however,
that the corresponding assumptions are by no means just inadmissible simpli-
fications of the matter. On the contrary, these hypotheses are direct formali-
sations of the strong fault hypothesis of the “raw” TTP/C protocol [7].

We proceed by extending our model in order to also derive the remaining three
requirements of the ground model.

Considering Req. 6, we need to ensure that a non-faulty channel only transmits
frames that contain a correct encoding of the sender’s C-state. Since in the
guardian-free setting, the channels will transmit whatever is sent by the send-
ing node, the responsibility for providing a correct C-state encoding is with
the sender. Note that this must be true not only for the scheduled sender, but
extends to all nodes, even faulty ones, and hence is a rather strong assumption.

Hypothesis 4 Frames sent must contain a correct encoding of the sender’s
C-state.

sends(n, c, p)⇒ cstate encoding OK (n, sent(n, c, p), p)

Requirement 7 states that correct frames must only be sent by the scheduled
sender of a given slot. However, for the guardian-free case a channel cannot
prevent other nodes from sending. Hence, in order to prove this property for
this model, we need to introduce a corresponding hypothesis and assume that
the behaviour of the sending nodes is in compliance with the sending schedule.

Hypothesis 5 Correct frames must only be sent by the scheduled sender of a
given slot.

sends correct(n, c, p) ⇒ p = sender(n)

We are left to prove Req. 4, which states that in every slot there exists at least
one non-faulty channel that is not accessed by more than one sending node.
To prove this fact we have to make a series of assumptions about the number
and behaviour of faulty nodes and channels. First of all, we need to assume
that a non-faulty channel exists at all times.

17



Hypothesis 6 In every slot, there is at least one non-faulty channel.

∃c ∈ NFn

TTP/C is based on a single fault assumption, i. e. at any given time there is
at most one faulty component in the network. Consequently, there cannot be
more than one faulty node present in any given slot.

Hypothesis 7 There is at most one faulty node in every slot.

p /∈ NFn ∧ q /∈ NFn ⇒ p = q

In deriving Req. 4, we first consider the case where there is no faulty node. By
Hyp. 6 we know that there exists a non-faulty channel c. To establish Req. 4
we must therefore show that at most one node sends a frame on c. Since the
scheduled sender of the given slot is allowed to send a frame, we must ensure
that no other node can send. We can establish this fact if we assume that a
non-faulty node does not send anything outside its designated sending slots,
which is a reasonable assumption to make.

p 6= sender(n)∧ p ∈ NFn ⇒ ¬ sends(n, c, p) (10)

Now suppose that there is a faulty node, p say. If p is the scheduled sender
of the given slot we are done, because then all other nodes are non-faulty,
by Hyp. 7, and do not send a frame, see Hyp. 10. Therefore consider the case
where the faulty node p is not the current sender. In order to prevent a collision
on the channel we must require that p, even if it is faulty, does not send.

Hypothesis 8 Nodes other than the sender of a slot, including faulty ones,
will not send data on every non-faulty channel outside their assigned sending
slots.

p 6= sender(n) ⇒ ¬∀c ∈ NFn : sends(n, c, p)

Note that the hypothesis as stated only requires that p does not send on at
least one of the non-faulty channels. Again, this is a strong hypothesis, as it
constrains the behaviour even of faulty nodes.

This completes our derivation of the seven requirements of the ground model
for a communication network without guardians. In order to establish the
requirements we have stated a series of hypotheses. Besides describing the in-
tended behaviour of correct nodes and channels, these assumptions directly
reflect the strong fault hypothesis of the “raw” TTP/C protocol [7]. We have
shown that this fault model is sufficient to prove the requirements of the

18



ground model, and thus established the desired correctness properties for
the communication in a TTP/C network. What makes this set of hypothe-
ses strong or optimistic is the fact that assumptions are not restricted to
non-faulty nodes, but also encompass faulty ones, cf. Hyp. 4, 5, and 8. In the
following section, these hypotheses will be replaced with weaker ones about
the behaviour of non-faulty guardians.

4.3 Guardians

In the scenario described in the previous section, where a channel transmits a
frame whenever there is no concurrent access to it, strong assumptions about
the behaviour of the sending nodes have to be made in order to satisfy the re-
quirements stated in the ground model. In particular, some of the assumptions
even concern the behaviour of faulty nodes, such as that sending nodes always
provide a correct C-state in the frame, or that correct frames are sent only by
the scheduled sender of a slot. Whenever one relies on a certain benignity of
faults one has to examine how well the fault assumptions are covered by the
system. If such an analysis is difficult, or leads to the result that the probabil-
ity of a fault being outside of the scope of the assumed fault hypothesis is not
negligible, it is advisable to aim to eliminate, or at least weaken, assumptions
about the behaviour of faulty components. To this end, guardians are used in
the Time-Triggered Architecture to avoid certain fault scenarios, such as, for
instance, faulty nodes accessing the bus outside their assigned slots.

In this section we describe the formalisation of abstract guardian components.
The formalisation is abstract in the sense that it does not restrict the kind of
the guardian and the topology of the communication network; we will show in
the subsequent section how this abstract model can be refined either to a bus
topology, where each node has its own local guardians, or to a star topology
with central bus guardians.

We state a number of hypotheses on the expected behaviour of a non-faulty
guardian and show that they are sufficient to prove the requirements of the
ground model. Thus, the desired correctness properties for the communication
of TTP/C are satisfied for a communication network with guardians.

In our model, we use g(c) to denote the guardian of channel c. We think of a
guardian as having incoming links from each of the nodes of the network, and
corresponding outgoing links. The task of a guardian is to receive the frames
sent by the nodes, analyse them and relay them to the other nodes according
to certain rules. Obviously, these rules would prescribe, among other things,
that only the frame of the scheduled sender of a slot is relayed. To describe
the functionality of a guardian we use a function relay(n, g(c), p) that denotes

19



the frame the guardian g(c) relays from node p in slot n.

By the following hypotheses we describe what is expected from a non-faulty
guardian. To distinguish the guardian hypotheses from the ones presented in
the previous section, they are labelled with capital letters instead of numbers.
First, if the scheduled sender of a slot sends a correct frame, then the guardian
should relay this frame:

Hypothesis A If the scheduled sender of a slot sends a correct frame, then
a correct guardian relays this frame.

p = sender(n) ∧ g(c) ∈ NFn ∧ sends correct(n, c, p)⇒

relay(n, g(c), p) = sent(n, c, p)

Conversely, frames of nodes other than the scheduled sender must not be
relayed:

Hypothesis B A non-faulty guardian must not relay frames of nodes other
than the scheduled sender.

p 6= sender(n)∧ g(c) ∈ NFn ⇒ relay(n, g(c), p) = null

In addition to this basic functionality of supervising the correct message sched-
ule, the guardian performs several other analyses in order to prevent fault
propagation and possible SOS faults. First, if a sending node does not start
to send its frame within the nominal sending window, the guardian closes the
window with the effect that a null frame is relayed.

Hypothesis C A non-faulty guardian will relay a frame only if it is being
sent in time.

p = sender(n)∧ g(c) ∈ NFn ∧ ¬ sending time OK (n, sent(n, c, p), p)⇒

relay(n, g(c), p) = null

Furthermore, if the signal encoding of the frame sent by a node violates the
coding rules such that the guardian cannot decode the signal, it will end the
broadcast of the frame prematurely, thus corrupting the frame.

Hypothesis D A non-faulty guardian will corrupt a frame if the signal en-
coding of the frame violates the coding rules.

p = sender(n)∧ g(c) ∈ NFn ∧ ¬ signal encoding OK (sent(n, c, p))⇒

corrupted(relay(n, g(c), p))

20



Finally, if the C-state encoded in a frame does not correspond to the guardian’s
own C-state, then the guardian aborts the transmission of the frame, and the
relayed frame will be corrupted. This serves, for example, to protect a node
that is about to integrate into the cluster against so-called masquerading nodes
that provide an incorrect MEDL position within the C-state.

Hypothesis E A non-faulty guardian will corrupt a frame if the C-state en-
coded in the frame does not correspond to the guardian’s own C-state.

g(c) ∈ NFn ∧ ¬ cstate encoding OK (n, sent(n, c, p), p)

⇒ corrupted(relay(n, g(c), p))

where p = sender(n)

These hypotheses describe the supervising functionality of a guardian. In
addition, a non-faulty guardian is expected to behave in a reasonable way.
First, guardians are assumed to be passive entities in the sense that they can
only relay frames that have actually been sent by some node. In other words,
guardians cannot generate valid frames by themselves.

Hypothesis F Guardians are passive and can only relay frames that have
actually been sent by some node.

relay(n, g(c), p) 6= null ⇒ sends(n, c, p)

The next assumption on the functionality of a guardian concerns the timing
behaviour. In order to fulfil Req. 5 of the ground model we must assume that
a guardian delivers a relayed frame with a bounded delay.

Hypothesis G A non-faulty guardian relays a frame with a bounded delay.

g(c) ∈ NFn ∧ sends(n, c, p)∧ f ′ 6= null⇒

∃d : d ≤ ̂d ∧ transmission time(f ′) = sending time(f) + d

where f = sent(n, c, p), f ′ = relay(n, g(c), p)

The final two assumptions concern the number and kinds of possible faults of
the guardians. First, we assume that for all slots the guardian of at least one
of the channels is non-faulty.

Hypothesis H For every slot n, there is at least one channel with a non-
faulty guardian.

∃c : g(c) ∈ NFn

21



A faulty guardian may fail only in such a way that it delays the delivery of a
frame for an arbitrary amount of time and thus effectively does not relay any
non-null frame in the given slot n.

Hypothesis I A faulty guardian fails silently and does not relay any frame.

g(c) /∈ NFn ⇒ relay(n, g(c), p) = null

Some of the requirements of the ground model involve the abstract predicate
single access(n, c) and we must hence give an interpretation to this predicate
for a communication network with guardians. Since the guardians are intended
to just prevent the simultaneous access of a channel by two different nodes,
we define this predicate to be always true:

single access(n, c) := true (11)

Finally, we say that a channel is non-faulty if its corresponding guardian is.

c ∈ NFn := g(c) ∈ NFn (12)

To complete the formalisation of the guardian model, we need to define what
is meant by the frame a channel broadcasts, i. e. we require a definition of
the function transmit(n, c). Obviously, this function definition must reflect the
frame that a guardian relays for some node p. On the other hand, there cannot
be frames from more than one node be transmitted per slot. Consequently,
we say that a frame is transmitted on a channel c if there is a node p such
that the guardian g(c) of channel c relays that frame for p, and does not relay
any frame for all nodes other than p. The technical definition of transmit(n, c)
proceeds in two steps. First, we define a predicate uniquen

c
(f ) to be true, if in

slot n the guardian of channel c relays frame f for some node, but relays no
frames for any other node:

uniquen
c (f) := ∃p : relay(n, g(c), p) = f ∧

∀q : q 6= p ⇒ relay(n, g(c), q) = null
(13)

For the definition of transmit(n, c) we use Hilbert’s choice operator ǫ, where
ǫ(S) denotes some arbitrarily chosen element from a given set S. Here, the
set S consists of those frames f for which the predicate uniquen

c
(f ) is true.

Obviously, this set can contain at most one frame; consequently, if the set is
non-empty, simply this unique frame is chosen. In the other case where the set
is empty, i. e. no frame satisfies the unique-predicate, the ǫ-operator returns

22



an arbitrary frame, for which no special properties can be deduced.

transmit(n, c) := ǫ(uniquen
c ) (14)

In the remainder of this section we present the arguments that show that
this definition of transmit(n, c) and the hypotheses stated for a guardian are
sufficient to satisfy the requirements of the ground model. To this end, we
state two properties of transmit(n, c). First note that a non-faulty guardian
either transmits the frame sent by the scheduled sender of a given slot, or a
corrupted frame, or a null-frame.

Proposition 1 A non-faulty guardian either transmits the frame of the sched-
uled sender, or a corrupted frame, or a null-frame.

c ∈ NFn ⇒ transmit(n, c) = sent(n, c, sender(n)) ∨

corrupted(transmit(n, c)) ∨ transmit(n, c) = null

If in addition we know that the scheduled sender of a slot sends a correct
frame, then the guardian indeed broadcasts this frame.

Proposition 2 A non-faulty guardian transmits a correct frame if it is sent
by the scheduled sender of slot n.

c ∈ NFn ∧ sends correct(n, c, sender(n)) ⇒

transmit(n, c) = sent(n, c, sender(n))

We briefly sketch the proofs of these properties. First note that, according to
Hyp. B, a non-faulty guardian does not relay a frame for nodes other than the
scheduled sender of the given slot. Moreover, since guardians will not produce
frames by themselves, see Hyp. F, the only frame that is relayed by a non-
faulty guardian is the one sent by the scheduled sender of the slot. Hence, this
frame satisfies the unique-predicate, and therefore transmit(n, c) equals the
frame that is relayed by the guardian for the scheduled sender of the current
slot. Proposition 1 holds because, depending on whether or not the scheduled
sender sends a correct frame, the guardian either relays this frame according
to Hyp. A, or blocks or corrupts the frame following Hyp. C, D, or E.

The second proposition is a specialisation of the first, where we know that the
scheduled sender sends a correct frame. In this case, the guardian relays this
frame and by the same reasoning as above this frame is tranmitted on the
channel.

23



These two propositions provide the connection between the requirements of the
ground model, which are stated in terms of the expression transmit, and the
hypotheses of the guardian model, which are very similar, but involve the relay
forms. To derive the general requirements, we see that Req. 1 of the ground
model directly follows from the first of the propositions above, while the sec-
ond proposition implies Req. 2. Requirement 3 can be proved from the similar
assumption that guardians do not send frames by themselves, see Hyp. F. Re-
quirement 4 follows from the assumption that there always exists a non-faulty
guardian, see Hyp. H, and observing that the predicate single access(n, c)
is always true. Requirement 5 on the bounded delay of transmissions follows
from Hyp. G, while the assumption concerning the encoded C-state of a frame,
Hyp. E, is used to prove Req. 6. Finally, Req. 7 follows from the combination
of the two propositions above.

Having shown that all of the requirements of the ground model are satisfied
in the guardian model, we can deduce that the three correctness properties
Validity, Agreement and Authenticity hold for the guardian model. In com-
parison to the model without guardians, weaker hypotheses are sufficient to
prove the requirements. In particular, we do no longer need to make any as-
sumptions about the behaviour of faulty nodes, thus a broader class of node
faults can be tolerated by a TTP/C network using guardians.

4.4 Local vs. Central Guardians

In this section we briefly discuss how the guardian model described above
can be applied to both an interconnection network with a star topology and
one with a bus topology. In the former, central guardians are used, which
are usually located at the centre of each communication channel, i.e. at the
star coupler. Thus, the above guardian model can be directly matched to this
setup, since the denotation g(c) appropriately models the central guardian
device at the star coupler of channel c.

In a connection network that uses the bus topology every node is equipped
with its own local guardian, typically one for each channel. Therefore, one
would rather use a function lbg to denote particular guardian devices, such
that lbg(p, c) is the local bus guardian of node p for channel c. Nevertheless,
the functionality of the bus guardians can be described in the same way as in
the star-topology model by formalising assumptions about the frames relayed
by the local bus guardians, as expressed by the function relay(n, lbg(p, c), p).
In order to use the abstract guardian model of the previous section we only
need to combine the local bus guardians of all nodes that supervise a partic-
ular channel c to one logical entity. Thus, the expression g(c) would denote
a function that yields for a given node its local bus guardian that controls

24



channel c. Formally:

g(c) := λp : lbg(p, c) (15)

Consequently, the system of local bus guardians at channel c is considered
non-faulty, if for all nodes p the local bus guardian g(c)(p) is non-faulty:

g(c) ∈ NFn :⇔ ∀p : lbg(p, c) ∈ NFn (16)

To summarise, the abstract guardian model can be arranged in a way that the
formalisations of guardians for both a star-based topology and a bus topology
can be derived as an instance of this model. The details are, however, mainly of
a technical nature and do not provide any further conceptual insight; therefore,
they are omitted here. At the bottom line we can state that, as long as the same
algorithms and supervising functions are implemented in either guardian type,
both the local bus guardians and the central guardians of a star coupler provide
the functionality to satisfy the requirements stated in the ground model and
thus ensure that the main correctness properties for the communication of
TTP/C hold.

5 Conclusions

The goal of formally analysing aspects of the Time-Triggered Architecture is
to provide mathematically substantiated arguments that architecture and al-
gorithms provide certain services and satisfy certain critical properties. This is
to support the claims that the architecture meets the high reliability require-
ments of safety-critical applications in the automotive or aerospace domain.

In this regard we have presented a formal analysis of the guardian-based com-
munication of TTP/C. We have developed a series of formal models of the
interconnection network that are hierarchically structured and formalise dif-
ferent aspects of the communication of TTP/C nodes at various levels. The
ground level provides a precise specification of the desired correctness proper-
ties of the TTP/C communication. It states several requirements that must be
satisfied for the channels in order to guarantee that the correctness properties
hold. These requirements serve as an interface of the model. In a process of
stepwise refinement we have proved the validity of these properties for TTP/C
by showing that the interface requirements hold for the refined model layers.
The organisation of the model hierarchy not only facilitates the formal proof
by dividing it into manageable steps. It also reflects the structure of what
constitutes the Time-Triggered Protocol, viz. the communication controllers
of the nodes, and the guardians. The former provide the fault-tolerant protocol

25



services on the basis of strong fault assumptions, which, in turn, are guaran-
teed by the guardians. Thus, one of the benefits of our formal analysis is that
the formal models yield a concise formal description of the respective purposes
and dependencies of these components, and precisely state the assumptions
about the behaviour of a guardian, which previously had been stated only
informally [7].

One of the characteristics of the formal models is their abstract nature. Ab-
straction is a fundamental prerequisite for the feasibility of formal analysis,
as it allows for both structuring the models by providing abstract interfaces
and hiding details unnecessary or irrelevant for the formal analysis and the
demonstration of critical properties. An adequate structure of formal models
allows one to concentrate on particular aspects of a TTA system, such as the
behaviour of the guardians in the communication network. Different items
can then be analysed separately from each other, assuming certain properties
of other models where necessary. Moreover, abstract interfaces of the models
also provide a certain degree of genericity, which enables one to express the
commonalities of a range of designs in a coherent way. For instance, one of
the model layers provides a generic treatment of the guardians. The model
can then be refined to either a central guardian-based view, or to a model for
local bus guardians, thereby covering the two typical network topologies of a
TTA system.

The formal models presented in this paper have been developed with the spec-
ification and verification system PVS, and all proofs have been mechanically
checked using PVS’s theorem prover. Although the individual proofs of most
of the properties and facts are relatively simple and straightforward, the use
of a mechanical proof assistant has been found very valuable. One of the dif-
ficulties in developing formal models and proofs is to keep track of all details
and the dependencies of the various properties. PVS is particularly useful for
such tasks, as it does not only check the proofs provided for the claimed prop-
erties, but also provides bookkeeping functions to ensure that there are no
gaps in the chain of arguments for a given fact. Moreover, if changes are made
to a formal model, PVS requires all proofs of properties that depend on the
changed model to be re-run. Thus, if changes cause proofs to be no longer
valid, these will not go undetected.

A mechanism that has been found particularly useful is PVS’s support of
theory assumptions. In a PVS theory one declares the relevant entities of a
formal model, and states – and then proves – the properties these entities
have. Theories can be parameterised, and one can state certain assumptions
about concrete interpretations of these parameters. The properties within such
a parameterised theory are then based on these assumptions. If such a the-
ory is instantiated, that is, the parameters are given concrete interpretations,
PVS automatically creates proof obligations that require to show that the

26



stated assumptions indeed hold for the given interpretations. We have em-
ployed this mechanism for specifying our ground model of the general recep-
tion of frames. This model is parameterised with the entities describing the
sending of frames by nodes, sent(n, c, p), or the transmission of frames by
a channel, transmit(n, c), among others. The general requirements described
in detail in Section 4.1 are expressed as PVS assumptions on these param-
eters. The desired correctness properties, such as Validity or Agreement, are
proved relative to these assumptions. The formal models on the higher hi-
erarchy levels that describe the strong fault model and the guardian model,
cf. Sections 4.2 and 4.3, respectively, instantiate the ground model. Thus,
PVS generates proof obligations that correspond to showing that the general
requirements of the ground model are valid for the provided interpretations of
sent(n, c, p) or transmit(n, c). This way, PVS provides support to ensure that
eventually all claimed facts are indeed proved.

The analysis of the properties of the communication network of TTA has sup-
ported the claim that the functionality of the guardians ensures that arbitrary
node failures are converted into fault modes the TTP/C protocol algorithms
can tolerate. Thus, the strong fault hypothesis of TTP/C can be replaced by
a weaker, minimal fault hypothesis on the correct behaviour of the guardians,
which has two direct advantages. First, applications of TTA can rely on the
architecture to tolerate a broad class of faults, and, second, protocol algo-
rithms of TTP/C can be designed for and analysed under the strong fault
model, which allows for simpler algorithms and significantly facilitates formal
analysis.

References

[1] H. Kopetz, The Time-Triggered Approach to Real-Time System Design,
in: B. Randell, J.-C. Laprie, H. Kopetz, B. Littlewood (Eds.), Predictably
Dependable Computing Systems, Springer-Verlag, 1995.

[2] H. Kopetz, The Time-Triggered Architecture, in: Proc. 1st Intl. Symp. on
Object-Oriented Real-Time Distributed Computing (ISORC), 1998, pp. 22–31.

[3] H. Kopetz, G. Bauer, The Time-Triggered Architecture, Proceedings of the
IEEE 91 (1) (2003) 112 – 126.

[4] G. Heiner, T. Thurner, Time-Triggered Architecture for Safety-Related
Distributed Real-Time Systems in Transportation Systems, in: Proc. 28th Intl.
Symp. on Fault-Tolerant Computing (FTCS), IEEE Computer Society, 1998.

[5] T. Ringler, J. Steiner, R. Belschner, B. Hedenetz, Increasing System Safety for
By-Wire Applications in Vehicles by Using a Time-Triggered Architecture, in:
W. Ehrenberger (Ed.), Proc. 17th Intl. Conf. on Computer Safety, Security and

27



Reliability (SAFECOMP), Vol. 1516 of Lecture Notes in Computer Science,
Springer-Verlag, 1998, pp. 243–253.

[6] G. Bauer, H. Kopetz, W. Steiner, Byzantine Fault Containment in TTP/C, in:
Proc. Intl. Workshop on Real-Time LANs in the Internet Age (RTLIA), 2002,
pp. 13–16.

[7] G. Bauer, H. Kopetz, W. Steiner, The Central Guardian Approach to Enforce
Fault Isolation in the Time-Triggered Architecture, in: Proc. 6th Intl. Symp.
on Autonomous Decentralized Systems (ISADS), 2003, pp. 37–44.

[8] H. Pfeifer, D. Schwier, F. von Henke, Formal Verification for Time-Triggered
Clock Synchronization, in: C. Weinstock, J. Rushby (Eds.), Dependable
Computing for Critical Applications (DCCA) 7, Vol. 12 of Dependable
Computing and Fault-Tolerant Systems, IEEE Computer Society, 1999, pp.
207–226.

[9] S. Katz, P. Lincoln, J. Rushby, Low-Overhead Time-Triggered Group
Membership, in: M. Mavronicolas, P. Tsigas (Eds.), Proc. 11th Intl. Workshop
on Distributed Algorithms (WDAG), Vol. 1320 of Lecture Notes in Computer
Science, Springer-Verlag, 1997, pp. 155–169.

[10] H. Pfeifer, Formal Verification of the TTP Group Membership Algorithm,
in: T. Bolognesi, D. Latella (Eds.), Formal Methods for Distributed System
Development – Proc. of FORTE XIII / PSTV XX, Kluwer Academic Publishers,
2000, pp. 3–18.

[11] A. Bouajjani, A. Merceron, Parametric Verification of a Group Membership
Algorithm, in: W. Damm, E.-R. Olderog (Eds.), Proc. 7th Intl. Symp. on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), Vol. 2469 of
Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 311–330.

[12] A. Merceron, M. Müllerburg, G. Pinna, Verifying a Time-Triggered Protocol
in a Multi-Language Environment, in: W. Ehrenberger (Ed.), Proc. 17th Intl.
Conf. on Computer Safety, Security and Reliability (SAFECOMP), Vol. 1516
of Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 185–195.

[13] W. Steiner, J. Rushby, M. Sorea, H. Pfeifer, Model Checking a Fault-Tolerant
Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation,
in: Proc. Intl. Conf. on Dependable Systems and Networks (DSN), IEEE
Computer Society, 2004.

[14] J. Rushby, An Overview of Formal Verification for the Time-Triggered
Architecture, in: W. Damm, E.-R. Olderog (Eds.), Proc. 7th Intl. Symp. on
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), Vol.
2469 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 83–105.

[15] J. Rushby, Systematic Formal Verification for Fault-Tolerant Time-Triggered
Algorithms, IEEE Trans. on Software Engineering 25 (5) (1999) 651–660.

[16] S. Owre, J. Rushby, N. Shankar, D. Stringer-Calvert, PVS: An Experience
Report, in: D. Hutter, W. Stephan, P. Traverso, M. Ullman (Eds.), Applied

28



Formal Methods (FM-Trends), Vol. 1641 of Lecture Notes in Computer Science,
Springer-Verlag, 1998, pp. 338–345.

[17] G. Bauer, H. Kopetz, P. Puschner, Assumption Coverage under Different Failure
Modes in the Time-Triggered Architecture, in: Proc. 8th IEEE Intl. Conf. on
Emerging Technologies and Factory Automation (ETFA), 2001, pp. 333–341.

[18] TTTech, Time-Triggered Protocol TTP/C High-Level Specification Document,
http://www.tttech.com/technology/specification.html (2003).

[19] H. Kopetz, The Time-Triggered (TT) Model of Computation, in: Proc. 19th
IEEE Real-Time Systems Symposium, 1998, pp. 168–177.

29


