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Abstract

Conjunctive queries play an important role as an ex-
pressive query language in Description Logics (DLs).
Decision procedures for expressive Description Logics
are, however, only recently emerging and it is still an
open question whether conjunctive queries are decid-
able for the DL SHOIQ that underlies the OWL DL
standard. In fact, no decision procedure was known
for expressive DLs that contain nominals. In this pa-
per, we close this gap by providing a decision proce-
dure for entailment of unions of conjunctive queries
in SHOQ. Our algorithm runs in deterministic time
single exponential in the size of the knowledge base
and double exponential in the size of the query, which
is the same as for SHIQ. Our procedure also shows
that SHOQ knowledge base consistency is indeed Ex-

pTime-complete, which was, to the best of our knowl-
edge, always conjectured but never proved.

Introduction

Description Logics (Baader et al. 2003) are a well-
established family of logic-based knowledge represen-
tation formalisms that have gained increased atten-
tion due to their usage as the logical underpinning
of ontology languages such as OWL (Horrocks, Patel-
Schneider, and van Harmelen 2003). A DL knowledge
base consists of a TBox, which contains intensional
knowledge such as concept definitions and general back-
ground knowledge, and an ABox, which contains exten-
sional knowledge and is used to describe individuals.
Using a database metaphor, the TBox corresponds to
the schema, and the ABox corresponds to the data.
Contrary to a typical database setting, the open world
assumption is usually made in (Description) Logics,
which means we have only incomplete knowledge about
the modeled domain and models can be infinite.

In data-intensive applications, querying knowledge
bases plays a central role. Instance retrieval is a ba-
sic reasoning task that supports querying—it allows for
the retrieval of all certain instances of a given (possibly
complex) concept C, i.e., it returns all individuals from
the ABox that are an instance of C in every model of
the knowledge base. Technically, instance retrieval is
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well-understood. For the prominent DL SHIQ, which
underlies OWL Lite, it is ExpTime-complete (Tobies
2001) and for SHOIQ, which underlies OWL DL, it
is NExpTime-complete (Tobies 2001). Despite this
high worst-case complexity, efficient implementations
are available. Instance retrieval supports only limited
forms of querying: concepts (roles) are used as queries,
and thus we can only query for (pairs of) individual
names and for tree-like structures that are invariant
under (guarded) bisimulations. For this reason, many
applications require conjunctive query answering as a
stronger form of querying, i.e., computing the certain
answers to a conjunctive query over a knowledge base.

Recently, it has been shown that conjunctive query
answering is decidable in SHIQ and, thus, in OWL
Lite (Glimm et al. 2008; 2007; Calvanese, Eiter, and
Ortiz 2007). To the best of our knowledge, it is, how-
ever, still an open problem whether this is also the case
for SHOIQ and, thus, OWL DL. In this paper, we
make an important step in this direction by present-
ing an algorithm for unions of conjunctive queries in
SHOQ, i.e., SHOIQ without inverse roles. More pre-
cisely, we devise a decision procedure for entailment of
unions of conjunctive queries by a SHOQ knowledge
base, where conjunctive query entailment is the deci-
sion problem corresponding to conjunctive query an-
swering. It is well-known that decidability and com-
plexity results carry over from entailment to answering
(Calvanese, Eiter, and Ortiz 2007; Glimm et al. 2007;
Glimm 2007). Our decision procedure is inspired by
the query rewriting algorithm for SHIQ (Glimm et
al. 2008), but is adapted to handle the more compli-
cated relational structures that nominals can express.
In the query rewriting process, we reduce a conjunc-
tive query to (possibly several) SHOQu-concepts, i.e.,
SHOQ-concepts with role conjunctions. Conjunctive
query entailment is then reduced to consistency check-
ing of SHOQu knowledge bases. For this task, we de-
vise an automata-based algorithm that runs in deter-
ministic double exponential time in the size of the query
and single exponential time in the size of the knowledge
base. This result concerns the combined complexity,
i.e., it is measured in the size of the knowledge base and
the query. For SHIQ, the same upper bound holds and



it is known to be tight (Lutz 2007).
For full proofs and more detailed definitions of the

presented results we refer to (Glimm 2007).

Preliminaries

A signature (NC ,NR,NI ) consists of a set of concept
names NC , role names NR, and individual names NI .
The set of role names contains a subset NtR ⊆ NR of
transitive role names. A role inclusion is of the form
r v s with r, s ∈ NR. A role hierarchy R is a finite set of
role inclusions. A role r is simple w.r.t. a role hierarchy
R if there is no transitive role s ∈ NtR such that s v
r ∈ R. We define v*R as the reflexive transitive closure
of v w.r.t. R.

An interpretation I = (∆I ,·I) consists of a non-
empty set ∆I , the domain of I, and a function ·I ,
which maps every concept name A ∈ NC to a subset
AI ⊆ ∆I , every role name r ∈ NR to a binary relation
rI ⊆ ∆I ×∆I , and every individual name a ∈ NI to an
element aI ∈ ∆I . An interpretation I satisfies a role
inclusion r v s if rI ⊆ sI , and a role hierarchy R if it
satisfies all role inclusions in R.
SHOQ-concepts (or concepts for short) are built in-

ductively using the following grammar, where o ∈ NI ,
A ∈ NC , n ∈ IN, r ∈ NR, and s ∈ NR is a simple role:

C ::= A | {o} | ¬C | C1 u C2 | ∀r.C |> n s.C.

We use the following standard abbreviations: C1tC2 ≡
¬(¬C1u¬C2), ∃r.C ≡ ¬(∀r.(¬C)), and 6 n s.C ≡ ¬(>
(n + 1) s.C). The restriction to simple roles in number
restrictions is necessary to ensure decidability of the
standard reasoning tasks.

The semantics of SHOQ-concepts is defined as usual:

{o}I = {oI}, (C u D)I = CI ∩ DI , (¬C)I = ∆I \ CI ,

(∀r.C)
I

= {d ∈ ∆I | if (d, d′) ∈ rI , then d′ ∈ CI},

(> n s.C)
I

= {d ∈ ∆I | ](sI(d, C)) > n}

where ](M) denotes the cardinality of the set M and
sI(d, C) = {d′ ∈ ∆I | (d, d′) ∈ sI and d′ ∈ CI}.

The presented algorithm reduces a conjunctive query
to concepts that may also contain role conjunctions in
the place of role names. A role conjunction is an ex-
pression r1 u . . . u rn, where r1, . . . , rn are role names.
The interpretation function is extended to role conjunc-

tions as follows: (r1 u . . . u rn)
I

= r1
I ∩ . . . ∩ rn

I . A
role conjunction is simple, if each role occurring in it is
simple. We can then build complex SHOQu-concepts
with the same grammar as above, just with r (s) being
a (simple) role conjunction.

A general concept inclusion (GCI) is an expression
C v D, where both C and D are concepts. A finite set
of GCIs is called a TBox. An assertion is an expression
of the form A(a),¬A(a), r(a, b), ¬r(a, b), or a 6

.
= b with

A ∈ NC , r ∈ NR, and a, b ∈ NI . An ABox is a finite
set of assertions. Since, in the presence of nominals,
the ABox can be internalized (e.g., A(a) is equivalent
to the GCI {a} v A, r(a, b) to {a} v ∃r.{b}, etc.), we
assume w.l.o.g. that a SHOQu knowledge base K is a

pair (T ,R) where T is a TBox and R is a role hierarchy.
We use rol(K) for the set of role names used in K and
nom(K) for the set of individual names (nominals) that
occur in K. We assume that nom(K) is non-empty. This
is w.l.o.g. since we can always add an axiom {o} v >
to T for a fresh nominal o ∈ NI .

An interpretation I satisfies a GCI C v D if CI ⊆
DI and it satisfies a TBox if it satisfies each GCI in it.
An interpretation I is a model of a knowledge base K
= (T , R), denoted as I |= K, if it satisfies T and R. A
knowledge base is consistent if it has a model.

For a concept C, we use nnf(C) to denote the nega-
tion normal form of C. We define the closure cl(K)
of K as the smallest set containing nnf(¬C t D) if
C v D ∈ T ; D if D is a sub-concept of C and C ∈ cl(K);
and nnf(¬C) if C ∈ cl(K).

Let NV be a countably infinite set of variables with
v, v′ ∈ NV and let (NC , NR, NI ) be a signature with
A ∈ NC , r ∈ NR. A Boolean conjunctive query q is a
non-empty set of atoms, where an atom is an expression
A(v), r(v, v′), or v ≈ v′. We refer to these three types of
atoms as concept, role, and equality atoms respectively.
We use Vars(q) to denote the set of variables occurring
in q. A sub-query of q is simply a subset of q (including
q itself). A union of Boolean conjunctive queries is
an expression q1 ∨ . . . ∨ q`, where each disjunct qi is a
Boolean conjunctive query.

Please note that we do not allow for constants (in-
dividual names) to occur in the position of variables.
This is w.l.o.g. since our DL contains nominals: for each
constant a in q, we introduce a new variable xa, replace
each occurrence of a with xa, and add a concept atom
({a})(xa).

Since equality is reflexive, symmetric and transitive,
we define the equivalence relation ≈* as the transitive,
reflexive, and symmetric closure of ≈ over the variables
in q. We define the relation ∈̄ over atoms in q as follows:
A(v) ∈̄ q if there is a variable v′ ∈ Vars(q) such that
v ≈* v′ and A(v′) ∈ q and similarly for role atoms.

Let I = (∆I ,·I) be an interpretation. For a total
function π : Vars(q) → ∆I , we write (i) I |=π A(v) if
π(v) ∈ AI ; (ii) I |=π r(v, v′) if (π(v), π(v′)) ∈ rI ; and
(iii) I |=π v ≈ v′ if π(v) = π(v′). If I |=π at for
all atoms at ∈ q, we write I |=π q. We say that I
satisfies q and write I |= q if there exists a π such that
I |=π q. We call such a π a match for q in I. Let K
be a SHOQ knowledge base and q a conjunctive query.
If, for every interpretation I, I |= K implies I |= q,
we say that K entails q and write K |= q. K entails
a union of conjunctive queries q1 ∨ . . . ∨ q`, written as
K |= q1 ∨ . . . ∨ q`, if, for each model I of K, there is
some i with 1 ≤ i ≤ ` such that I |= qi.

The size of a knowledge base K (a query q), denoted
|K| (|q|), is simply the number of symbols needed to
write it over the alphabet of constructors, concept, role,
individual, and variable names that occur in K (q). We
assume unary coding of numbers in number restrictions.



Canonical Models

We first show that we can restrict our attention to in-
terpretations that have a kind of forest shape. Since
SHOQ allows for nominals, the forest structure is not
directly obvious, but we can use a domain that consists
of a set of trees. We also introduce forest bases, which
are forest-shaped interpretations that interpret transi-
tive roles in an unrestricted way, i.e., not necessarily in
a transitive way. In a forest base, the elements within a
tree can be related to their direct successor nodes and to
some root/nominal nodes. Due to the allowed relations
from any element to nominal nodes, even forest bases
are strictly speaking not forests. For simplicity and
w.l.o.g., we make the unique name assumption, i.e., for
each a, b ∈ NI such that a 6= b and each interpretation
I, we assume that aI 6= bI .

Definition 1. Let IN∗ be the set of all (finite) words
over the alphabet IN. A tree T is a non-empty, prefix-
closed subset of IN∗. The empty word ε is called the
root of T . For w, w′ ∈ T , we call w′ a successor of
w if w′ = w · c for some c ∈ IN, where “·” denotes
concatenation. The branching degree d(w) of a node
w ∈ T is the number of its successors. If there is a
k such that d(w) ≤ k for each w ∈ T , we say that T
has branching degree k. Given a set of elements ρ =
{o1, . . . , on}, a forest F w.r.t. ρ is a subset of ρ × IN∗

such that, for each oi ∈ ρ, (oi, ε) ∈ F and the set {w |
(oi, w) ∈ F} is a tree.

Let K be a SHOQ knowledge base. A forest base
for K is an interpretation J = (∆J ,·J ) that interprets
transitive roles in an unrestricted (i.e., not necessarily
transitive) way and, additionally, satisfies the following
conditions:

F1 ∆J is a forest w.r.t. nom(K);

F2 if ((o, w), (o′, w′)) ∈ rJ , then either w′ = ε or
o = o′ and w′ is a successor of w;

F3 for each o ∈ nom(K), oJ = (o, ε).

An interpretation I is canonical for K if there exists a
forest base J for K such that I is identical to J except
that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*R
r, s∈NtR

(sJ )+,

where + denotes the transitive closure operator. In this
case, we say that J is a forest base for I and, if I |=
K, we say that I is a canonical model for K. If, for
each o ∈ nom(K), the branching degree of the tree {w |
(o, w) ∈ ∆I} is bounded by some k, we say that I has
branching degree k.

We use the following running example throughout
this paper.

Example 2. Let K = (T ,R) be a SHOQ knowledge
base with t, t′ ∈ NtR

T = { {o} v ∃t.(C u ∃r.(∃r.(D u ∃t.({o}))))
{o′} v ∃s.> u ∃s.({o})}

R = { r v t′}

and q = {C(x), D(z), t′(x, z), t(z, x), r(x, y), r(y, z)}
with Vars(q) = {x, y, z}.

Figure 1 shows a graphical representation of a canon-
ical model for K. Without the dashed lines, the figure
would show the forest base for this canonical model.
In what follows, we sometimes informally use the term
shortcut, which, more precisely, means the following: let
K be a SHOQ knowledge base and K′ the ALCHOQu

knowledge base obtained from K by treating all roles
as non-transitive. Now, let I ′ be a model K′ that is
minimal w.r.t. the interpretation of roles, i.e., there is
no role r and pair (a, b) ∈ rI

′

such that the interpreta-
tion obtained from I ′ by excluding this pair from the
interpretation of r is a model of K′. If we have that
(a, b), (b, c) ∈ tI

′

and (a, c) /∈ tI
′

for a role t that is
transitive in K, then a model I for K obtained from
I ′ by transitively closing the interpretation of the roles
that are transitive in K contains the pair (a, c) in the
interpretation of t and we would call this a “shortcut”.

(o′, 1)(o, 1)

t′
t

r, t′

(o, 111) D

(o, 11)

r, t′

C

t

t

(o, ε) o

s

(o′, ε) o′

s

Figure 1: A representation of a canonical interpretation
I for K. The transitive shortcuts are shown as dashed
lines; without them, the figure would show a represen-
tation of a forest base for I.

Figure 2 shows a representation of the query from our
running example together with a match for the canoni-
cal model. We have that I |=π q for π : {x 7→ (o, 1), y 7→
(o, 11), z 7→ (o, 111)} and that also K |= q.

The following lemma justifies our focus on canonical
models. The bound on the branching degree is impor-
tant for our automata based decision procedure.

Lemma 3. Let q be a union of Boolean conjunctive
queries, K be a SHOQ knowledge base with |K| =
m, nmax the maximal number occurring in number re-
strictions, and k = m · nmax. K 6|= q iff there is some
canonical model I of K such that I 6|= q and I has
branching degree k.

Informally, for the only if direction, we can take an
arbitrary counter-model for the query, which exists by
assumption, and “unravel” all non-tree structures. Dur-
ing the unravelling process, we use a non-deterministic
function that chooses, for each existential and each
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Figure 2: A graphical representation of the query q
with a match in the canonical model (shown in grey,
and without labels).

at-least number restriction occurring in the closure of
K, the required successors. This guarantees that the
branching degree is indeed k. Since, during the unrav-
eling process, we only replace cycles in the model by
infinite paths and leave the interpretation of concepts
from the closure unchanged, the query is still not satis-
fied in the unravelled canonical model. The if direction
of the proof is trivial.

Query Rewriting

In order to decide whether a union of conjunctive
queries q is entailed by a SHOQ knowledge base K,
we transform each disjunct of q in a four stage process
into a set of SHOQu-concepts. We then show that we
can use these concepts to build extensions of K in such
a way that K entails q iff all the extensions are incon-
sistent.

In the first rewriting step, called collapsing, we can
identify variables. Consider, for example, the cyclic
query q = {r(x, y), r(x, y′), s(y, z), s(y′, z)}, which can
be transformed into a tree-shaped one by adding the
equality atom y ≈ y′. The collapsing step is not new
and already required for simpler logics (see, e.g., (Hor-
rocks et al. 2000)). With co(q) we denote the set of all
collapsings that can be obtained from q.

A common property of the next two rewriting steps
is that they allow for substituting (implicit) shortcut
edges with (explicit) paths that imply the shortcut. The
steps aim at different cases in which these shortcuts
can occur. The second step is called nominal rewrit-
ing and we can replace role atoms of the form r(v, v′)
for which r is non-simple with two role atoms by possi-
bly introducing a fresh variable. This allows for expli-
cating all (transitive relations) that bypass a nominal.
In this step, we also “guess”, for each of the rewrit-
ten queries, which variables correspond to nominals.
In the third step, called shortcut rewriting, we expli-
cate shortcuts within a tree by replacing a role atom
with a non-simple role with up to ](q) role atoms that

use a transitive sub-role. In the fourth step, we fil-
ter out those queries that still cannot be expressed as
SHOQu concepts. These queries are trivially false since
their structure cannot be mapped to the canonical mod-
els of the knowledge base. The remaining queries are
transformed into concepts by applying the rolling-up
technique (Calvanese, De Giacomo, and Lenzerini 1998;
Tessaris 2001). Finally, we use the obtained concepts to
reduce conjunctive query entailment to knowledge base
consistency checking.

Since the first query rewriting step, collapsing, is not
new our running example focuses on the other rewriting
steps. For the nominal rewriting step, we can choose to
replace the conjunct t(z, x), which bypasses the nominal
node (o, ε) for the given mapping π and canonical model
I, with t(z, xr), t(xr , x) for xr ∈ NV a fresh variable.
We call this nominal rewriting qnr (see Figure 3).

z D

y

r

C

t

t

xr

x

t′

r

Figure 3: A graphical representation of the nominal re-
writing qnr for q. The canonical model I is shown in
grey (without labels).

Since t is transitive, I |=πnr qnr where πnr is the
extension of π that maps xr to (o, ε). It is not hard
to check that K |= qnr implies K |= q since the role
used in the rewriting must be transitive. At the end
of the nominal rewriting step, we also “guess”, for each
of the rewritten queries, which variables correspond to
nominals. With nrK(q), we denote the set of all pairs
(qnr, ρ) such that qnr is a nominal rewriting of some
collapsing qco ∈ co(q) and ρ ⊆ Vars(qnr). The pair
(qnr, {xr}) would, for example, belong to the set nrK(q).

In the shortcut rewriting step, we explicate shortcuts
within a tree, such as t′(x, z) in our running example,
by replacing role atoms with a non-simple role with
up to ](q) role atoms that use a transitive sub-role.
In our running example, we can replace t′(x, z) with
t′(x, y), t′(y, z) and we refer to the resulting query as
qsr. The mapping πsr = πnr for qsr no longer uses any
shortcuts in I (see Figure 4) and we consider this query
as forest-shaped w.r.t. the root choice {xr}.

In the forth and last step, we transform the ob-
tained forest-shaped queries into concepts by apply-
ing the rolling-up technique. For example, the tuple
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Figure 4: A graphical representation of the shortcut
rewriting qsr for qnr. The canonical model I is shown
in grey (without labels).

(qsr, {xr}, τ) with a grounding τ that maps xr to o re-
sults in the concept:

{o} u ∃t.(C u ∃(r u t′).(∃(r u t′).(D u ∃t.{o})))

Finally, we use the concepts from all possible rewrit-
ings and reduce the task of deciding query entailment
to the task of deciding knowledge base consistency by
augmenting K with an axiom of the form > v ¬Cq for
each obtained concept Cq. If this extended knowledge
base is satisfiable, then K 6|= q because any model I of
the extended knowledge base cannot satisfy q. If the ex-
tended knowledge base is unsatisfiable, then K |= q be-
cause every model I of K satisfies q and, thus, violates
one of the axioms > v ¬Cq in the extended knowledge
base.

We now give a precise definition of the rewriting
steps. Please note that we assume that q is a conjunc-
tive query and not a union of conjunctive queries since
we apply the rewriting steps to each disjunct separately.

Definition 4. Let K be a SHOQ knowledge base and
q a Boolean conjunctive query. A collapsing qco of q is
obtained by adding zero or more equality atoms of the
form v ≈ v′ for v, v′ ∈ Vars(q) to q. We use co(q) to
denote the set of all queries that are a collapsing of q.

A nominal rewriting qnr of q and K is obtained by
choosing, for each role atom r(v, v′) ∈ q such that there
is a role s ∈ NtR and s v*Rr to either do nothing or to
replace r(v, v′) with s(v, v′′) and s(v′′, v′) for v′′ ∈ NV

a possibly fresh variable. We use nrK(q) to denote the
set of pairs (qnr, ρ) such that qnr is a nominal rewriting
of a query qco ∈ co(q) and ρ is a subset of Vars(qnr).
We call ρ a root choice for qnr.

A shortcut rewriting of q and K is obtained from q by
replacing each role atom t(v1, vn) from q for which there
is a sequence r1(v1, v2), . . . , rn−1(vn−1, vn) ∈̄ q and a
role s ∈ NtR such that s v*Rt with n − 1 role atoms
s(v1, v2), . . . , s(vn−1, vn). We use srK(q) to denote the
set of all pairs (qsr , ρ) such that there is a pair (qnr, ρ) ∈
nrK(q) and qsr is a shortcut rewriting of qnr.

We assume that nrK(q) contains no isomorphic
queries, which are queries that differ only in newly in-
troduced variable names.

A conjunctive query q is tree-shaped if there is a total
function f from Vars(q) to a tree such that f is bijective
modulo ≈* and r(x, y) ∈̄ q implies that f(y) is a succes-
sor of f(x). A conjunctive query q is forest-shaped w.r.t.
a root choice ρ if there is a total function f from Vars(q)
to a forest F w.r.t. ρ s.t. f is bijective modulo ≈* and,
for each r(x, y) ∈ q with f(x) = (xr , w), either f(y) =
(yr, ε) with yr ∈ ρ or f(y) = (xr , w·c) for c ∈ IN. We set
frK(q) = {(qfr, ρ) | (qfr, ρ) ∈ srK(q) and either ρ = ∅
and qfr is tree-shaped or qfr is forest-shaped w.r.t. ρ}.

We now build a query that consists only of concept
atoms for queries in frK(q) by replacing the variables
from the root choice ρ with nominals from nom(K) and
applying the rolling-up technique. Please note that al-
though we say concept atoms, we actually allow queries
in this intermediate step that contain complex concepts.

Definition 5. Let (qfr, ρ) ∈ frK(q). A grounding for
qfr w.r.t. ρ is a total function τ : ρ → nom(K) such

that, for all v, v′ ∈ ρ, τ(v) = τ(v′) implies v ≈* v′. We
build con(qfr, ρ, τ) as follows:

1. For each r(v, vr) ∈̄ qfr with vr ∈ ρ, replace r(v, vr)
with (∃r.{τ(vr)})(v).

2. For each vr ∈ ρ, add a concept atom ({τ(vr)})(vr) to
qfr.

3. Call the result of 1 and 2 q.

4. We now inductively assign, to each v ∈ Vars(q) a
concept con(v) as follows:

• if there is no role atom r(v, v′) ∈̄ q, then con(v) =d
C(v)∈̄q C,

• if there are role atoms r(v, v1), . . . , r(v, vk) ∈̄ q,
then

con(v) =
l

C(v)∈̄q

C u
l

1≤i≤k

∃
(

l

r(v,vi)∈̄q

r
)

.con(vi).

5. Finally, con(qfr, ρ, τ) = {(con(v))(v) | v ∈ Vars(q)
and there is no role atom r(v′, v) ∈̄ q}.

We use conK(q) for the set {con(qfr, ρ, τ) | (qfr, ρ) ∈
frK(q) and τ is a grounding w.r.t. ρ}.

Please note that, after the first step, the resulting
query consists of a set of unconnected components such
that each component is a tree-shaped query with a dis-
tinguished root variable. This root variable need not
necessarily belong to the root choice ρ. In Step 4, we
collect all query concepts for these root variables in the
set con(qfr, ρ, τ). Hence con(qfr, ρ, τ) is a conjunctive
query of the form {C1(v1), . . . , Cn(vn)} with vi 6= vj

for 1 ≤ i < j ≤ n and each Ci is a SHOQu-concept.
For a union of conjunctive queries q = q1 ∨ . . . ∨ q`, we
define conK(q) as conK(q1) ∪ . . . ∪ conK(q`). The fol-
lowing theorem shows that the queries in conK(q) can
be used to decide entailment of q and that there is a
bound on the cardinality of this set. We can then use



the standard methods for deciding entailment of tree-
shaped conjunctive queries in order to decide entailment
of arbitrary conjunctive queries in SHOQ.

Theorem 6. Let q be a Boolean union of conjunctive
queries, K = (T , R) a SHOQ knowledge base, and
conK(q) = {q1, . . . , q`}. Then (1) K |= q iff K |= q1 ∨
. . . ∨ q`.

Due to space limitations, we just give a sketch of the
proof for the above theorem. For the if direction: for
the collapsing step, it is clear that if a model I of K
entails the collapsing, then it entails the query. Apart
from the collapsing step, we replace only role atoms
with non-simple roles with a sequence of role atoms
that use one of the transitive sub-roles. It is, therefore,
not hard to see that if a model I of K satisfies a rewrit-
ten query, then it satisfies the original query. In the
rolling-up step, the use of nominal concepts enforces
the required co-references. The remaining tree-shaped
parts can then straightforwardly be expressed as con-
cepts. As for SHIQ, we can then show that a model of
the knowledge base that satisfies such a rolled-up query
concept, also satisfies the query. For the only if direc-
tion: we can, by Lemma 3, restrict our attention to the
canonical models of the knowledge base. We can then
use any of the canonical models as a “guide” for the
rewriting process as we used the given canonical model
in our running example. If the canonical model satisfies
the query, the rewriting steps can be applied in such a
way that we obtain a forest-shaped query as required.

By carefully analysing the definition of the rewriting
steps, we get the following bounds on the size of the
rewritten queries and the number of rewritings.

Lemma 7. Let q be a Boolean union of conjunc-
tive queries, K = (T , R) a SHOQ knowledge base,
and conK(q) = {q1, . . . , q`}. Then the size of each
qi ∈ conK(q) is polynomial in |q| and the cardinality
of conK(q) is at most polynomial in |K| and exponential
in |q|.

Please note that each query qi ∈ conK(q) is a set
of concept atoms of the form {C1

i (x1), . . . , C
n
i (xn)},

i.e., each qi contains n unconnected components. By
transforming the disjunction q1 ∨ . . . ∨ q` of queries
in conK(q) into conjunctive normal form (cf. (Tes-
saris 2001, 7.3.2)), we can reduce the problem of de-
ciding whether K |= q1 ∨ . . . ∨ q` to deciding whether
K entails each union of connected conjunctive queries
{at1}∨. . .∨{at`} where each ati is a concept atom from
qi. Let conK(q) = {q1, . . . , q`}. We use cnf(conK(q))
for the conjunctive normal form of q1 ∨ . . . ∨ q`. We
now show how we can decide entailment of unions of
conjunctive queries, where each atom consists of one
concept atom only. This suffices to decide conjunctive
query entailment for SHOQ.

Definition 8. Let K = (T , R) be a SHOQ knowl-
edge base, q a union of Boolean conjunctive queries,
and C1(v1) ∨ . . . ∨ C`(v`) a query from cnf(conK(q)).
An extended knowledge base w.r.t. K and q is a pair
(T ∪ Tq,R) such that Tq = {> v ¬Ci} with 1 ≤ i ≤ `.

We can now use the extended knowledge bases in
order to decide conjunctive query entailment:

Theorem 9. Let K be a SHOQ knowledge base and q
a union of Boolean conjunctive queries. Then K |= q
iff each extended knowledge base Kq w.r.t. K and q is
inconsistent.

By again carefully analysing the definition of the ex-
tended knowledge bases and by using the results from
Lemma 7, we get the following bounds on the size of
and the number of extended knowledge bases.

Lemma 10. Let K be a SHOQ knowledge base and
q a union of Boolean conjunctive queries. The size of
each extended knowledge base is at most polynomial in
|K| and exponential in |q| and the number of extended
knowledge bases w.r.t. K and q is at most exponential
in |K| and double exponential in |q|.

SHOQu Knowledge Base Consistency

We now present our automata based decision proce-
dure for SHOQu knowledge base consistency. By The-
orem 9 this gives us a decision procedure for entailment
of unions of conjunctive queries in SHOQ.

Eliminating Transitivity

Since automata cannot directly handle transitive roles,
we first transform a SHOQu knowledge base K into
an equisatisfiable ALCHOQu knowledge base et(K).
In the presence of role conjunctions and nominals, it
does not suffice to extend the standard encoding of
transitivity (see, e.g., (Kazakov and Motik 2006)) in
a trivial way. Such a naive extension would result in
an ALCHOQu knowledge base et(K) that is obtained
from K by treating all transitive roles as non-transitive
and by adding an axiom

∀(r1 u . . . u rn).C v ∀(t1 u . . . u tn).(∀(t1 u . . . u tn).C)

for each concept ∀(r1 u . . . u rn).C ∈ cl(K) and roles
t1, . . . , tn ∈ NtR such that ti v*Rri for 1 ≤ i ≤ n. The
following example shows that such an encoding does not
yield an equisatisfiable knowledge base. Let K = (T ,R)
be a SHOQ knowledge base with

T = {{o} v ∃t.(∃t.(∃t.({o′}))),
{o} v ∃r.({o′})},

R = ∅, and t a transitive role. Figure 5 shows a repre-
sentation of a model for K, where the grey edge repre-
sents the role r and the black edges represent the role t.
The dashed black lines represent implicit (due to transi-
tivity) instances of t. It is not hard to check that adding
the axiom {o} v ∀(r u t).(¬{o′}) makes the knowledge
base inconsistent.

The trivial encoding et(K) of K contains (among oth-
ers) the additional axiom ∀t.(¬{o′}) v ∀t.(∀t.(¬{o′}))
since ∃t.({o′}) ∈ cl(K) and, thus, ∀t.(¬{o′}) ∈ cl(K).
Adding the axiom {o} v ∀(r u t).(¬{o′}) to K does not
yield any further axioms in et(K) since r is a simple
role. Since none of the added axioms explicates the
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Figure 5: A representation of a model for K.

implicit t relation between the nominals o and o′, ex-
tending K with the axiom {o} v ∀(r u t).(¬{o′}) yields
a consistent knowledge base after applying the trans-
lation, contradicting our assumption that a knowledge
base K is consistent iff et(K) is consistent.

Intuitively, this problem arises since we can have ar-
bitrary relations between nominals. This can lead to
situations where, as in the above example, we have an
explicit relationship between two nominals, but only to-
gether with the implicit transitive shortcut can the uni-
versal quantifier over the role conjunction be applied.
Hence, the above described encoding does not suffice.
We propose, therefore, a more involved encoding that
explicates all transitive shortcuts between nominals.

Definition 11. Let K = (T , R) be a SHOQu knowl-
edge base. The function et(K) yields the ALCHOQu

knowledge base obtained from K as follows:

1. for each transitive role t and nominal o ∈ nom(K),
add an axiom ∃t.(∃t.({o})) v ∃t.({o}),

2. for each concept ∀R.C ∈ cl(K) with R = r1 u . . .u rn

and transitive roles t1, . . . , tn such that ti v*Rri for
each 1 ≤ i ≤ n, add an axiom ∀R.C v ∀T.(∀T.C),
where T = t1 u . . . u tn, and

3. all roles in et(K) are non-transitive.

With the above definition, et(K) contains, addition-
ally, the axiom ∃t.(∃t.({o})) v ∃t.({o}), which ensures
that the implicit t-edges to nominals (the dashed lines in
Figure 5) are made explicit. As a consequence, adding
the axiom {o} v ∀(r u t).(¬{o′}) indeed results in an
inconsistent knowledge base.

Due to role conjunctions over non-simple roles, the
encoding from Definition 11 yields not necessarily a
knowledge base whose size is polynomial in the size of
the input knowledge base. The number of transitive
sub-roles for a role ri that occurs in a role conjunction
is bounded by m. Hence, we can use up to m transitive
sub-roles for each of the at most n role conjuncts in the
second step of the encoding, which results in at most
mn additional axioms in et(K). Since, in general, the
length of the longest role conjunction can also only be
bound by m, the encoding is exponential in m. To the
best of our knowledge, it is unknown if this blow-up can
be avoided.

Lemma 12. Let K be a SHOQu knowledge base with
|K| = m and where the length of the longest role con-
junction occurring in K is n. Then K is consistent iff
et(K) is consistent and the size of et(K) is polynomial
in m and exponential in n.

In the remainder we assume w.l.o.g. that K = (T ,
R) is an ALCHOQu knowledge base and that existen-
tial and universal restrictions in K are expressed using
number restrictions.

Alternating Automata

In this section, we show how we can use (one-way) al-
ternating automata (Muller and Schupp 1987) to de-
cide the consistency of an ALCHOQu knowledge base.
Alternating automata have the power of making both
universal and existential choices. Informally, this means
that in the transition function, we can create copies of
the automaton, send them to successor nodes, and re-
quire that either some (existential) or all (universal) of
them are accepting. We use, as usual, positive Boolean
formulae as defined below in the specification of the
transition function.

Definition 13. A labeled tree over an alphabet Σ is a
pair (T,L), where T is a tree and L : T → Σ maps each
node in T to an element of Σ.

Let X be a set of atoms. The set B+(X) of positive
Boolean formulae is built over atoms from X, true, and
false using only the connectives ∧ and ∨. Let X> be
a subset of X. We say that X> satisfies a formula
φ ∈ B+(X) if assigning true to all atoms in X> and
false to all atoms in X \ X> makes φ true.

Let [k] = {0, 1, . . . , k}. An alternating looping tree
automaton on k-ary Σ-labeled trees is a tuple A =
(Σ, Q, δ, q0), where Q is a finite set of states, q0 ∈ Q
is the initial state, and δ : Q × Σ → B+([k] × Q) is the
transition function.

A run of A on a Σ-labeled k-ary tree (T,L) is a
(T ×Q)-labeled tree (Tr,Lr) that satisfies the following
conditions:

• Lr(ε) = (ε, q0),

• if y ∈ Tr with Lr(y) = (x, q) and δ(q,L(x)) = φ,
then there is a (possibly empty) set S ⊆ [k] × Q that
satisfies φ such that, for each (c, q′) ∈ S, y has a
successor y·i in Tr with i ∈ IN and Lr(y·i) = (x·c, q′).

An automaton A accepts an input tree T if there exists
a run of A on T . The language accepted by A, lang(A),
is the set of all trees accepted by A.

For alternating automata, the non-emptiness problem
is the following: given an alternating automaton A, is
there a tree (T,L) such that A has an accepting run on
(T,L)?

Please note that, since we use looping automata, we
do not impose any acceptance conditions and each run
is accepting, i.e., we require only that the conditions
imposed on a run are satisfied.

Tree Relaxations

In this section, we show how we can obtain labeled k-ary
trees from a canonical model for an ALCHOQu knowl-
edge base that can be used as input for our automaton.
Since the labeled trees that an automaton takes as in-
put cannot have labeled edges, we additionally store,



in the label of a node, with which roles it is related
to its predecessor. Unfortunately, this does not work
for the nominal nodes since a nominal node can be the
successor of arbitrary elements and does not necessar-
ily have a unique predecessor. In a first step, we build,
therefore, a relaxation for a canonical model where, for
each relationship between a node and a nominal node,
we create a dummy node that is a representative of the
nominal node. The label of the representative node is
the extension of the label for the nominal node with rep
and the role names with which the node is related to
the nominal.

In this section, we use the equisatisfiable ALCHOQu

version et(K) of the running example, which also
contains the axioms ∃t.(∃t.({o})) v ∃t.({o}) and
∃t′.(∃t′.({o})) v ∃t′.({o}). Without the dashed lines
Figure 1 would represent a canonical model for et(K)
and Figure 6 shows a relaxation for et(K).

s

(o, ε) o (o′, ε) o′

(o, 11) r, t′

r, t′, D(o, 111)

(o, 111)↑(o, ε)

t, C(o, 1)

t, rep, o

(o′, ε)↑(o, ε) (o′, 1)
s, rep, o

Figure 6: A graphical representation of a relaxation for
K.

Definition 14. A set H ⊆ cl(K) is called a Hintikka
set for K if the following conditions are satisfied:

1. For each C v D ∈ T , nnf(¬C t D) ∈ H.

2. If C u D ∈ H, then {C, D} ⊆ H.

3. If C t D ∈ H, then {C, D} ∩ H 6= ∅.

4. For all C ∈ cl(K), either C ∈ H or nnf(¬C) ∈ H.

We use H(K) to denote the set of all Hintikka sets for
K. A relaxation R = (∆I ,L) for K with L : ∆I →
2cl(K)∪rol(K)∪{rep} satisfies the following properties:

(R1) Let D = nom(K) × IN∗ and B = {d↑d′ | d ∈
D and d′ ∈ nom(K) × {ε}}, then ∆I ⊆ D ∪ B.

(R2) For each o ∈ nom(K), (o, ε) ∈ ∆I .

(R3) Each set {w | (o, w) ∈ ∆I ∩ D is a tree}.

(R4) If d↑d′ ∈ ∆I ∩ B, then {d, d′} ⊆ ∆I ,L(d↑d′) ∩
cl(K) = L(d′) ∩ cl(K), and rep ∈ L(d↑d′).

(R5) For each d ∈ ∆I ,L(d) ∩ cl(K) ∈ H(K).

(R6) For each d ∈ ∆I , if r v s ∈ R and r ∈ L(d),
then s ∈ L(d).

(R7) For each (o, ε) ∈ ∆I ,L(o, ε) ∩ rol(K) = ∅.

(R8) If d = (o, w) ∈ ∆I and (> n (r1 u . . . u
rk).C) ∈ L(d), then there are n distinct elements
d1, . . . , dn ∈ ∆I such that, for each i with 1 ≤ i ≤
n, {r1, . . . , rk, C} ⊆ L(di) and either di = (o, w · c)
with c ∈ IN or di = d↑d′ ∈ ∆I ∩ B.

(R9) If d = (o, w) ∈ ∆I and (6 n (r1 u . . . u rk).C) ∈
L(d), then ]({d′ ∈ ∆I | d′ = (o, w · c) for some c ∈
IN or d′ = d ↑ do ∈ ∆I ∩ B and {r1, . . . , rk, C} ⊆
L(d′)}) ≤ n.

Given the above properties of relaxations and the re-
sults from Lemma 3, we can show the following:

Lemma 15. K has a relaxation iff K is consistent.

In a second step, we build a tree relaxation, which is
a labeled tree, from the relaxation. For this, we addi-
tionally add a dummy root node labeled with root that
has all nominal nodes as successors, and we require that
the domain is a tree.

s
t, C

r, t′111

1111 r, t′, D

11111

22

o′2o1

ε root

t, rep, o

s, rep, o
11 21

Figure 7: A tree relaxation for the relaxation from Fig-
ure 6.

Figure 7 shows a representation of a tree relaxation
built from the relaxation for our running example. The
tree relaxation can, additionally, have dummy nodes
labelled with #, but we do not show any dummy nodes
in the figure. For ease of presentation, we assume in the
remainder that all tree relaxations are full trees, i.e., all
non-leaf nodes have the same number of successors, and
we add dummy nodes labelled with # where necessary.

Definition 16. A tree relaxation for K is a labeled tree
(T,L) with L : T → 2cl(K)∪rol(K)∪{rep,#,root} that satisfies
the following conditions:



(T1) L(ε) = {root} and, for each w ∈ IN+,L(w) ∩
{root} = ∅.

(T2) For each o ∈ nom(K), there is a unique c ∈ IN∩T
with o ∈ L(c) and {rep, #, rol(K)} ∩ L(c) = ∅.

(T3) If c ∈ IN∩T and nom(K)∩L(c) = ∅, then L(c) =
{#}.

(T4) For each w ∈ IN+ ∩ T, ](L(w) ∩ nom(K)) ≤ 1.

(T5) For each w = w′ ·c ∈ T with w′ ∈ IN+ and c ∈ IN,
if L(w) ∩ nom(K) 6= ∅, then rep ∈ L(w).

(T6) For each w, w′ ∈ T and o ∈ nom(K), if o ∈
L(w) ∩ L(w′), then cl(K) ∩ L(w) = cl(K) ∩ L(w′).

(T7) For each w ∈ IN+ ∩ T , if {rep, #} ∩ L(w) 6= ∅,
then, for each successor w′ of w, # ∈ L(w′).

(T8) For each w ∈ T , if L(w) ∩ {#, root} = ∅, then
L(w) ∩ cl(K) ∈ H(K).

(T9) For each w ∈ T and r v s ∈ R, if r ∈ L(w),
then s ∈ L(w).

(T10) For each w ∈ T , if (> n (r1 u . . . u rm).C) ∈
L(w), then there are at least n distinct successors
w1, . . . , wn of w with {r1, . . . , rm, C} ⊆ L(wi), for
each i with 1 ≤ i ≤ n.

(T11) For each w ∈ T , if (6 n (r1 u . . . u rm).C) ∈
L(w), then there are at most n distinct successors
w1, . . . , wn of w with {r1, . . . , rm, C} ⊆ L(wi), for
each i with 1 ≤ i ≤ n.

If T has branching degree k, then we say that (T,L) is
a k-ary tree relaxation for K .

By using the above defined properties of tree relax-
ations and the results about the bounded branching de-
gree of canonical models from Lemma 3, we get the
following:

Lemma 17. Let nmax be the maximal number occur-
ring in a number restriction in K, and k = nmax · |K|+
](nom(K)). K has a k-ary tree relaxation iff K is con-
sistent.

The Decision Procedure

It remains to devise a procedure that decides whether
K has a tree relaxation. For this, we define an alternat-
ing automaton that accepts exactly the tree relaxations
of K. Our automaton combines and extends ideas
from (Sattler and Vardi 2001) and (Calvanese, Eiter,
and Ortiz 2007), where (two-way) alternating automata
have been used for the hybrid µ-calculus (Sattler and
Vardi 2001) and for answering regular path queries in
ALCQIbreg . We first define two alternating automata
ĀK and AK, and then define an automaton BK as their
intersection. Informally, the automaton ĀK just checks
that the input tree has a structure as required whereas
the automaton AK checks that the input is indeed a
tree relaxation for K. For alternating automata, inter-
section is simple: we introduce a new initial state q0 and
set the transition function for q0 and each letter σ from
the input alphabet Σ to δ(q0, σ) = (0, q(0,1))∧(0, q(0,2)),

where q(0,1) and q(0,2) are the initial states of ĀK and

AK respectively. The size of the resulting automaton is
the sum of the sizes of ĀK and AK.

The automaton ĀK is relatively straightforward and
helps to keep the definition of the automaton AK, where
we do the real work, transparent. Informally, it guar-
antees the following:

• We distinguish root (state qr), nominal (state qo),
nominal representative (state qrep), dummy (state
q#), and normal nodes (state qn).

• The label root is only found in the root node.

• The level one nodes are either “real” nominal nodes
(i.e., they are not marked as representatives with rep)
with exactly one nominal and no roles in their label,
or they are dummy nodes labelled with # only.

• The level one nominal nodes have either normal,
nominal representative, or dummy nodes as succes-
sors.

• Nominal representative nodes are marked with rep,
and have exactly one nominal in their label.

• Dummy nodes have only dummy nodes as successors.

More precisely, let nmax be the maximal number oc-
curring in number restrictions in K, and k = nmax ·
|cl(K)|+](nom(K)). The alphabet Σ for both automata
ĀK and AK is

2{rep,#,root}∪cl(K)∪rol(K)∪nom(K).

We define ĀK as (Σ, {qr, qo, qn, qrep, q#}, δ̄, qr). The
transition function δ̄ for each σ ∈ Σ is as follows:

δ̄(qr, σ) =

k
∧

i=1

(i, qo) ∨ (i, q#)

if σ = {root} and it is false otherwise.

δ̄(qo, σ) =

k
∧

i=1

((i, qn) ∨ (i, qrep) ∨ (i, q#))

if ](nom(K) ∩ σ) = 1 and {root, rep, #, rol(K)} ∩ σ = ∅
and it is false otherwise.

δ̄(qn, σ) =

k
∧

i=1

((i, qn) ∨ (i, qrep) ∨ (i, q#))

if {root, rep, #, nom(K)}∩σ = ∅ and it is false otherwise.

δ̄(qrep, σ) =

k
∧

i=1

(i, q#)

if ](nom(K) ∩ σ) = 1, rep ∈ σ, and {root, #} ∩ σ = ∅
and it is false otherwise.

δ̄(q#, σ) =
k

∧

i=1

(i, q#)

if {#} = σ and it is false otherwise.
The automaton AK mainly checks the formulae oc-

curring in the labels of the input. Hence, most of the



states correspond to formulae in cl(K) and the tran-
sition function is more or less determined by the se-
mantics and we only sketch its realization. For number
restrictions, we use the same technique as (Calvanese,
Eiter, and Ortiz 2007) that involves states that count
how many successors have been checked and how many
of the checked ones fulfill the requirements of the num-
ber restriction. In the root node, we additionally make
a non-deterministic choice, for each nominal and each
atomic concept, whether the concept or its negation
holds at the nominal node. This choice is propagated
downwards in the tree in order to ensure that the nom-
inal representatives agree with their corresponding real
nominal nodes on all atomic concepts. This also enables
us to simply count over the successors of a node for the
qualified number restrictions. We propagate the con-
cepts via a kind of universal role and we assume that u
is a symbol that does not occur in cl(K) or rol(K). We
define, therefore, the following set of auxiliary states

Qrep ={¬{o} t A | o ∈ nom(K) and A ∈ NC ∩ cl(K)}∪
{¬{o} t ¬A | o ∈ nom(K) and A ∈ NC ∩ cl(K)}.

We then define AK as (Σ, Q, δ, q0), where q0 is the
initial state and the set Q of states is

{q0} ∪ cl(K) ∪ rol(K) ∪ {¬r | r ∈ rol(K)} ∪ {qT , qR}∪
{〈./ nR.C, i, j〉 |./∈ {6, >}, ./ nR.C ∈ cl(K), and
0 ≤ i, j ≤ k} ∪ Qrep ∪ {∀u.C | C ∈ Qrep},

where states of the form 〈./ n R.C, i, j〉 are used to
check that the number restrictions are satisfied.

In the following, we give the definition of the transi-
tion function for each σ ∈ Σ together with an explana-
tion for each of the different types of states.

At the root node, we are in the initial state q0

which has the following tasks: (a) we make the non-
deterministic guesses for all atomic concepts, (b) we
check that there is exactly one nominal node for each
of the nominals in nom(K), and (c) we make sure that
the axioms in T and R are satisfied in all non-dummy
descendants. Let ` = ](nom(K)).

δ(q0, σ) =
∧

A∈σ∩NC

∧̀

i=1

((0, ∀u.(¬{oi} t A)) ∨ (0, ∀u.(¬{oi} t ¬A)))∧
∧̀

i=1

k
∨

j=1

(j, {oi}) ∧
∧

1≤i<j≤k

(
∧̀

i=1

(i,¬{o}) ∨ (j,¬{o}))

k
∧

i=1

(i, qT ) ∧ (i, qR)

Whenever we are in a state that is used to propagate
information downwards through the whole tree via the
“universal role” and we are not at a dummy node, we
check that the required concept holds at the current
node and also check all successors. More precisely, for
each C ∈ Qrep,

δ(∀u.C, σ) = (0, C) ∧
k

∧

i=1

(i, ∀u.C)

if #, root /∈ σ,

δ(∀u.C, σ) =

k
∧

i=1

(i, ∀u.C)

if root ∈ σ, and it is true otherwise.
All non-dummy descendants of the root nodes must

satisfy the TBox and RBox axioms.

δ(qT , σ) =
∧

CvD∈T

((0, nnf(¬C)) ∨ (0, D)) ∧
k

∧

i=1

(i, qT )

if # /∈ σ and it is true otherwise.

δ(qR, σ) =
∧

rvs∈R

((0,¬r) ∨ (0, s)) ∧
k
∧

i=1

(i, qR)

if # /∈ σ and it is true otherwise.
The concepts that are used as states are inductively

decomposed according to the semantics. We start by
defining the base cases. For each α ∈ (NC ∩ cl(K)) ∪
rol(K) ∪ nom(K): δ(α, σ) = true if α ∈ σ and it is
false otherwise; δ(¬α, σ) = true if α /∈ σ and it is false
otherwise. Since we use constructors for nominals, they
are not handled as atomic concepts and we set, for each
o ∈ nom(K), δ({o}, σ) = (0, o); δ(¬{o}, σ) = (0,¬o).

Conjunction and disjunction are handled in the
straightforward way. For each C1 u C2 ∈ cl(K),
δ(C1uC2, σ) = (0, C1)∧(0, C2); for each C1tC2 ∈ cl(K),
δ(C1 t C2, σ) = (0, C1) ∨ (0, C2).

For number restrictions, we have to use a more so-
phisticated technique that involves states that count
how many successors have been checked and how many
of the checked ones fulfill the requirements of the num-
ber restriction. This technique was introduced by Cal-
vanese, De Giacomo, and Lenzerini (2002). More pre-
cisely, for each concept of the form (> n R.C) ∈ cl(K)
with R = r1 u . . . u rm,

δ(> n R.C, σ) = (0, 〈> n R.C, 0, 0〉)

if rep /∈ σ and it is true otherwise. For 1 ≤ i ≤ k and
1 ≤ j ≤ n, δ(〈> n R.C, i, j〉, σ) =

(((i,¬r1) ∨ . . . ∨ (i,¬rm) ∨ (i, nnf(¬C)))∧
(0, 〈> n R.C, i + 1, j〉))∨
((i, r1) ∧ . . . ∧ (i, rm) ∧ (i, C)∧
(0, 〈> n R.C, i + 1, j + 1〉))

For 1 ≤ i ≤ k, δ(〈> n R.C, i, n〉, σ) = true. For 1 ≤ j <
n, δ(〈> n R.C, k, j〉, σ) = false.

Informally, we use the counter i to count how many
of the k successors have already been checked and j
is increased for each successor that fulfills the require-
ments of the number restriction. The atmost number
restrictions are handled similarly:

δ(6 n R.C, σ) = (0, 〈6 n R.C, 0, 0〉)

if rep /∈ σ and it is true otherwise. For 1 ≤ i ≤ k and
1 ≤ j ≤ n, δ(〈6 n R.C, i, j〉, σ) =

(((i,¬r1) ∨ . . . ∨ (i,¬rm) ∨ (i, nnf(¬C)))∧
(0, 〈6 n R.C, i + 1, j〉))∨
((i, r1) ∧ . . . ∧ (i, rm) ∧ (i, C)∧
(0, 〈6 n R.C, i + 1, j + 1〉))



For 1 ≤ i ≤ k, δ(〈6 n R.C, i, n + 1〉, σ) = false. For
1 ≤ j < n, δ(〈6 n R.C, k, j〉, σ) = true.

We can now check whether the language accepted by
the automaton BK is empty, which is enough to decide
consistency of K:

Theorem 18. Let BK an alternating automaton as de-
fined above. Then K is consistent iff the language ac-
cepted by BK is non-empty.

Since looping alternating tree automata are a special
case of alternating Büchi tree automata, we can use
the result that, for an alternating Büchi automaton A
with n states and input alphabet with ` elements, non-
emptiness of the language accepted by A is decidable in
time exponential in n and polynomial in ` (Vardi 1995).

For the states, we mainly use formulae from cl(K)
and the size of the closure is linear in |K| and, overall,
the number of states for our automaton is polynomial in
|K|. The input alphabet 2{rep,#,root}∪cl(K)∪rol(K)∪nom(K)

is exponential in |K|. Hence, we get the following result:

Theorem 19. Checking the consistency of an
ALCHOQu knowledge base K can be done in determin-
istic time single exponential in the size of K assuming
unary coding of numbers in number restrictions.

By Lemma 12, we obtain the following upper bound
on deciding consistency of SHOQu knowledge bases.

Theorem 20. Let K be a SHOQu knowledge base
where |K| = m and the length of the longest role con-
junction occurring in K is n. Deciding the consistency
of K can be done in deterministic time single exponen-
tial in m and double exponential in n assuming unary
coding of numbers in number restrictions.

The above result also shows that SHOQ, i.e., when
no role conjunctions are used, is indeed ExpTime-
complete. This was always conjectured but, to the best
of our knowledge, never proved.

Conclusions and Future Work

Although the presented upper bound for query entail-
ment in SHOQ agrees with the one for SHIQ (Lutz
2007) it is still an open whether this bound is tight. The
hardness proof for SHIQ very much relies on the abil-
ity to propagate information upwards via inverse roles,
which nominals can only simulate to some extend.

For SHOQu, our algorithm runs in deterministic
time double exponential in the size of the input knowl-
edge base and, as for SHIQu, it is still an open ques-
tion whether this blow-up due to role conjunctions over
non-simple roles can be avoided.
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