
Explaining Entailments and Patching
Modelling Flaws for Ontology Authoring

Thorsten Liebig, Stephan Scheele
Ontology authoring is a sophisticated task and requires domain as well as some amount of background knowledge in formal
logic. In fact, it is not only novice users that are commonly faced with comprehension problems with respect to the influence
of complex or nested ontological axioms on reasoning. This work is driven by the question whether inference illustration
techniques are suitable to support ontology engineers in understanding inferences as well as in identifying and patching certain
modelling flaws. We provide practical insights into the development of tableau-based methods for explaining the key inference
services, namely unsatisfiability, subsumption, and non-subsumption as well as techniques for patching ontologies by suggesting
modelling changes in order to establish a user desired entailment.

1 Introduction and Approach

Ontologies are key to semantic technologies which are widely
seen as a new paradigm of intelligent information processing.
Therefore, the availability of high quality ontologies will play an
important role in a market which is expected to grow at the rate
of 40 % per year up to $52 billion in 2010 [5]. However, creating
consistent ontologies which actually express what the knowledge
engineer intended to model has shown to be a non-trivial task.
For example, implicit modeling conflicts or a misunderstand-
ing of the inference algorithm were responsible for a significant
amount of system failures in an analysis of different efforts of for-
malizing knowledge by KR experts [9]. Inexperienced users may
even mistrust certain inference results because of unintended
outcomes. In fact, many consequences are not easily traceable
or counterintuitive mainly because they often depend on logical
interrelations with other definitions or nested definitions, which
themselves may depend on other consequences. In order to avoid
those modeling problems the authors of the mentioned analysis
suggest to put more effort into the development of interactive
tools for building, maintaining and evaluating ontologies.

Consequently, an appropriate ontology authoring tool not
only has to provide an effective browsing interface or intuitive
editing capabilities, but also has to support the user in grasp-
ing the logical consequences of the axioms. Furthermore, an
important but largely neglected kind of service is to explain
why an unexpected entailment holds or a desired conclusion
is missing. In the latter case the service should provide con-
crete hints which help to improve the users modeling decisions
so that they logically define what she/he originally intended to
express. These two tasks, namely explaining as well as patching,
are non-standard reasoning services which are beyond the scope
of typical reasoning systems. Whereas explaining has become
an active research area in ontology reasoning recently, patching
still hasn’t been seriously addressed yet.

This paper provides an overview about the conceptual ap-
proach as well as implementation issues of our explanation and
patching component. These services are especially useful during
ontology building or maintenance and have been integrated into
our ontology authoring tool OntoTrack [15].

Our work implements the idea of generating human compre-
hensible explanations for certain entailments by compiling para-

metrised text patterns that are triggered by a proof algorithm.
This results in on-demand quasi-natural language explanations
for the key inference services for ontology authoring, namely
unsatisfiability, subsumption, and non-subsumption. Hereby we
use a two-phase approach, which first builds the proof and col-
lects information about those axioms and proof steps responsible
for the entailment, and then traverses the collected proof struc-
tures in order to generate quasi-natural language explanation
steps on a level which is traceable for the end user. The sys-
tem we implemented is based on an extended tableau algorithm
for explaining as originally suggested in [3]. It is capable of ex-
plaining ontologies with an expressivity of the Description Logic
(DL) SHN [1] whereas our approach theoretically could handle
SHIN . SHN covers a significant fraction of the Web Ontol-
ogy Language and most of the ontologies found on the Web or
in semantic applications today.

2 Preliminaries

2.1 OWL – Syntax and Semantics

The Web Ontology Language (OWL) is the W3C recommended
formal language for the representation and interchange of onto-
logical knowledge on the Web. It is based on Description Logics
and layered on top of Web standards such as the Resource De-
scription Framework (RDF – an abstract data model) and RDF
Schema (RDF incl. a schema extension). OWL comes in three
increasingly expressive languages known as OWL Lite, OWL DL
and OWL Full which differ in logical expressivity [2].

The most expressive as well as decidable OWL language frag-
ment is OWL DL. It roughly corresponds to the Description
Logic SHOIN which is based on the following denumerable
sets: the set of role names NR, the set of concept names NC

and the set NI of individual names. Concept descriptions in
SHOIN are formed according to the following rules:

C, D → A | > | ⊥ | ¬C | {o} | C uD
| C tD | ∃R.C | ∀R.C | ({≤,≥, =}n R)

where A ∈ NC (A denoting the atomic concept), R ∈ NR, o ∈
NI and n ∈ N0. An interpretation I of SHOIN is a structure
(∆I , ·I) consisting of a non-empty set ∆I of individuals (the

Page 1

domain) and an interpretation function ·I mapping each concept
A to a subset AI ⊆ ∆I and every property to a binary relation
RI ⊆ ∆I × ∆I . The interpretation function is extended to
concept descriptions by the following inductive definition:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

{o}I = {oI}
(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃R.C)I =
˘
a ∈ ∆I | ∃b. (a, b) ∈ RI and b ∈ CI

¯
(∀R.C)I =

˘
a ∈ ∆I | ∀b. (a, b) ∈ RI ⇒ b ∈ CI

¯
(≥ n R)I =

n
a ∈ ∆I

˛̨
|
˘
b | (a, b) ∈ RI

¯
| ≥ n

o
(≤ n R)I =

n
a ∈ ∆I

˛̨
|
˘
b | (a, b) ∈ RI

¯
| ≤ n

o
In OWL DL properties can be declared as symmetric, transitive,
functional, or as inverse of another property. Furthermore the
domain and range of a property can be globally restricted.

The key inference service of ontological reasoners is sub-
sumption. A class C is said to subsume a class D (written
D v C), iff the set-theoretic interpretation of D is a subset
of CI (DI ⊆ CI), or logically speaking iff the left hand side
(lhs) implies the right hand side (rhs). With respect to class
centered formalisms the subsumption relationship corresponds
to the sub-class relation, i.e. if D v C then D is a subclass
of C. Furthermore, the inference services unsatisfiability and
non-subsumption are reducible to the subsumption problem [1].

2.2 Tableau Algorithms

Our approach relies on a modified tableau proof algorithm. Due
to the lack of space we will only sketch the procedure of DL-
tableau algorithms, for a detailed explanation see [1]. Tableau
algorithms are based on the refutation principle, whose objective
is to prove a formula by showing that its negation cannot be
satisfied. This is done in a constructive manner which tries
to create a model of the negated formula by applying tableau
expansion rules until a contradiction or model is found. The
initial expressions build the root node of a so-called completion
graph. Each node x in the graph represents an individual, labeled
with the set of concepts L(x) it has to satisfy, i.e. if L(x) = {A}
then x ∈ AI . Each edge (x, y) in the graph represents a pair
occurring in the interpretation of the property, i.e. if L(x, y) =
{R} then (x, y) ∈ RI , and is labeled with the corresponding set
of property names. The tree is composed starting from the root
node by applying specific expansion rules which are extending the
label of existing nodes, adding new nodes or merging existing
nodes in the graph. For instance, the application of the → ∃
rule (see [1]) to the expression ∃R.C in a node x leads to a
new node y with a new edge xRy and the extension of the
label of y to L(y) = L(y) ∪ {C}. In case of non-determinism
(e. g. disjunction or node merging) the algorithm will process the
possible alternative expansions. The algorithm stops processing
a node if no more rules are applicable or if a contradiction (so-
called clash) has been found in the node.

Definition (clash) A completion graph G is said to contain
a clash for some node x in G with respect to a Tbox T if:
• for some A, {A,¬A} ⊆ L(x);

• {(≥ m S), (≤ n R)} ⊆ L(x) with an arbitrary sub-
property S of R (S v R) in T ; n, m ∈ N; m > n;

• {(≤ n S)} ⊆ L(x) and if x has ≥ n + 1 distinct S-
neighbours, where a node y is called a S-neighbour of x
if y is a S-successor of x or x is a S−-successor of y;

• for some o ∈ NI , there are x 6 .= y with o ∈ L(x) ∩ L(y).
The algorithm terminates if all alternative branches either lead
to a clash or cannot be further expanded. In the case of a
closed tableau where all branches do clash, the unsatisfiability
of the root-node has been proven. DL-style tableau algorithms
for SHOIN are proven to be sound and complete [11].

3 Tableau Inference Illustration

The tableau calculus is based on the refutation principle, whose
objective is to prove a formula by showing that its negation
cannot be satisfied. For example, the query A v C will be
proven by deriving the unsatisfiability of its complement, namely
A u ¬C. We assume that humans typically do not conclude
this way. In addition the tableau algorithms used in well-known
reasoning systems such as Pellet [20] or RacerPro [10] make use
of elaborated optimization procedures which require syntactical
transformations obscuring the structure of the original query.
For instance, the standard tableaux algorithm does not need
to distinguish between the following two subsumption queries:
A v BtC and Au¬B v C. From a logical point of view both
expressions reduce to the negation normal form A u ¬B u ¬C.
For the purpose of explaining they need to be treated as different
queries in order to be able to generate customized explanations.

3.1 Tagging

We address this problem by omitting structure-destroying trans-
formations and by applying a so-called tagging [3] technique
which labels the subsumer of a subsumption query with a spe-
cial flag († in the following). This allows to distinguish between
terms from the subsumee (lhs) and subsumer (rhs) in order to
reconstruct the original inference problem out of the correspond-
ing refutation problem at any stage during tableaux processing.

For a subsumption query A v C the right-hand side is
tagged in the corresponding refutation problem, i. e. A u ¬C†.
To generate a user-consumable explanation, all tagged expres-
sions have to be negated again to receive the original query. For
instance, the tagged expression AuC u¬A† corresponds to the
original query A u C v A. The latter can be explained by the
statement:“A and something is subsumed by A”.

3.2 Drill-down Explanations

Our approach assumes that humans usually drill down into a
problem by reducing it into smaller and more tractable pieces by
trying to keep the overall structure of the original problem at the
same time. To meet this style of deduction we explain a sub-
sumption relationship by breaking it down into sub-subsumption
queries until they reach a level of triviality. This is in compliance
with the well known tableau-technique of lazy unfolding, which
delays the unfolding of a complex concept definitions until it is
required within the proof procedure. When unfolding the defini-
tion of a concept its name is replaced by the concept definition.

Page 2

This process of de-referencing has to be explained to the user, of
course. All necessary unfolding steps within one tableau-node
are collected in order to explain them in one single step. For
example, consider the subsumption query

Father v ∃hasChild.Human

and the following concept definition:

Father ≡Man u ∃hasChild.Human

Then the definition of Father can be expanded to

Man u ∃hasChild.Human v ∃hasChild.Human

which leads to the explanation statement:

We have to check whether
Father v ∃hasChild.Human holds.
This is equivalent to
Man u ∃hasChild.Human v ∃hasChild.Human
• by unfolding Father to Man u ∃hasChild.Human

3.3 Explanation tableaux

We use a modified tableau algorithm specifically designed to
support explaining. Therefore we do not use sophisticated opti-
mization techniques (other than lazy unfolding and simple nor-
malization) because they typically “destroy” the structure of
the original query by applying elaborated syntactical transfor-
mations.

Furthermore, our algorithm does not abort processing a branch
when the first clash is found. This has the background that a
subsumption query can possibly be explained in multiple ways
which are represented in the tableau proof by alternative closed
branches. For this reason we process the tableau exhaustively by
collecting all possible contradictions. Each of them corresponds
to an alternative explanation of one and the same inference,
which we call an explanation tableau. A qualitative evaluation
function is then used to rate these options with respect to their
adequacy for generating an explanation. In our implementation
we use a simple metric which evaluates an explanation tableau
ET with the metric c(ET) =| nodes(ET) | ∗ bf where bf is
the branching factor of non-deterministic expansions within an
explanation tableau. More sophisticated evaluation metrics are
conceivable, of course. In the ideal case alternative explanation
tableaux are rated by considering the sum of expected hypothet-
ical intellectual costs of each of its explanation steps.

In case of multiple clashes within one node we rank differ-
ent types of clashes with respect to their comprehensibleness.
For instance, a simple atomic clash such as {A,¬A} ⊆ L(x)
is assumed to be easier to explain than a cardinality conflict
{(≥ m R), (≤ n R)} ⊆ L(x), with m > n. In this ordering
we also consider which sides (subsumer and/or subsumee) are
involved in the clash. For example, {C,¬C} ⊆ L(x) results in
a different explanation than {C,¬C†} ⊆ L(x). For a detailed
description of clash types see [18]. This metric is embedded into
the tableau algorithm. Therefore, when testing for a contradic-
tion we search according to the order of clash types so that we
can abort processing a node after the first clash.

While building up the tableau proof tree we make use of an-
notated terms to label concepts whenever they contribute to a
clash. We also keep book of dependencies between nodes and ex-
pressions to save the information by which rule a node/expression

has been introduced. Once a tableau has been selected for ex-
plaining we extract the relevant nodes and expressions out of
the tableaux and annotated terms. This allows to hide irrel-
evant expressions in the explanation of an entailment as well
as to reduce the length of an arbitrary explanation. For this
we introduce for an explanation tableau the mutually dependent
notion of relevance of nodes and of expressions.

Definition (relevant node, expression) A node n of an explana-
tion tableau ET is relevant iff it contains a relevant expression.
An expression t of a node x of ET is relevant iff
• t is part of a clash, e.g. t ∈ {A,¬A} ⊆ L(x);

• t ∈ {∃R.C, (≤ 1 R)} and x has a successor node y arising
from the application of one of the rules → ∃, →≤ to t and
y is relevant;

• a subexpression t′ of t is introduced at an arbitrary successor
node y of x by the rule → ∀ or → ∀+ and t′ is relevant in y.

• unfolding of an expression t introduces a subexpression t′

which is relevant in x.

• t = C t D and the explanation tableau has two successor
nodes generated by applying rule → t to t and both C and
D are relevant in the respective successor node.

Figure 1 illustrates a tableau containing two explanation
tableaux for the following subsumption of

∃R.C u ∃R.D v (∃R.A) t ∃R.C

given the TBox-axiom D v A, where × flags clashing concepts.

L(x) = {∃R.C, ∃R.D, (∀R.¬A)†, (∀R.¬C)†}

L(y) = {C×, (¬A)†, (¬C)†×} L(z) = {D, (¬A)†, (¬C)†}

L(z′) = {D, A×, (¬A)†×, (¬C)†}

unfolding D

R R

Figure 1: Tableau with two possible explanations

The tableau in figure 1 contains the explanation tableaux
< x, y > and < x, z >. When selecting the first option for
explaining we identify the relevant expressions within < x, y >,
which are marked by ×r in figure 2. The subsumption can

L(x) = {∃R.C×r , ∃R.D, (∀R.¬A)†, (∀R.¬C)†×r
}

L(y) = {C×r , (¬A)†, (¬C)†×r
}

R

Figure 2: Identifying relevant expressions

be explained by the following statement, where all irrelevant
expressions are hidden:

We have to check whether
∃R.C u ∃R.D v (∃R.A) t ∃R.C holds.
For the property R we have to check whether
C v . . . u C holds.
The subsumption holds since C is subsumed by C and some-
thing.

Page 3

4 Explaining and Patching

4.1 Explaining tableau rule applications

The explanation is generated by traversing an explanation tableau,
whereas each application of a tableau rule results in one or more
explanation steps which are represented using canned text pat-
terns. We distinguish between explanations of nodes and ex-
planations of edges of an explanation tableau. In the following
we will shortly introduce a selection of explanation steps, for a
detailed description we refer to [18, 14].

Existential Requirements. First we examine the explanation
of edges in an explanation tableau, which are introduced by an
existential restriction such as ∃R.A or (≥ 1 R). Consider the
existential quantification ∃R.C over a property R, which results
in a R-successor node containing the expression C. The R-
successor node will be introduced by an explanation step with
help of a text fragment like “For the property R we have to check
whether C . . . v . . . holds”. The new node then may contain ad-
ditional expressions other than C due to other restrictions (e. g.
∀R.D). If a tagged expression is involved we need to generate an
explanation with respect to the original inference problem, e. g.
for some node x with L(x) = {∃R.C, A, ∀R.¬D†, A†} we regain
the original inference problem ∃R.C, A, ∃R.D t A by negating
all tagged concepts.

To give an example consider the following subsumption query:
∀hasChild.Male u (≥ 1 hasChild) v ∃hasChild.Male. The
approach we described up to now is able to produce the following
explanation:

We have to check whether
∀hasChild.Maleu (≥ 1hasChild) v ∃hasCild.Male holds.
The subsumption holds because we can show for the property
hasChild that . . . uMale vMale holds.
This because it holds that Male and something is subsumed
by Male.

Cardinality Restrictions and Merging. A feature of SHOIN
is the ability to express cardinality restrictions, i.e. to constrain
the number of possible fillers for an arbitrary property. We will
shortly introduce the explanation of two contradictory cardinality
restrictions. Hereby we have to take the origin of the expressions
into account (lhs vs. rhs) and therefore have to distinguish four
types of cardinality clashes. Each of them results in a different
explanation statement:

• (≤ n R) u (≥ m R) v . . ., where m > n
“The expression (≤ mR)u (≥ nR) is equivalent to ⊥, since
there can’t be at-least m and at-most n fillers for the property
R. The concept ⊥ is subsumed by everything.”

• . . . v (≤ n R) t (≥ m R), where m ≥ n + 1
“The expression (≤ m R) t (≥ n R) is equivalent to >,
since there are allways less or equal than m, or more or equal
than n fillers for the property R. The concept > subsumes
everything.”

• (≤ n R) v (≤ m R), where m ≥ n
“At most n fillers for the property R is subsumed by at most
m fillers for the property R.”

• (≥ m R) v (≥ n R), where m ≥ n
“At least m fillers for the property R is subsumed by at least
n fillers for the property n.”

Furthermore, merging results from a combination of m ex-
istential quantifications over a property R and a (≤ n R) re-
striction with m > n. This forces a property R to have at-most
n fillers over R and requires the non-deterministic merging of
all existing successor nodes to at-most n nodes. As an example
consider the expression ∃R.Au∃R.B u (≤ 1 R) v ∃R.(AuB).
The result of the at-most restriction leads to the explanation:
“Since there has to be one filler for for each of the classes A and
B and the property R is restricted to at-most 1 filler on the lhs,
we have to check for the property R whether A u B v A u B
holds.”

Property Hierarchies and Property Restrictions. Properties
can be arranged in a so-called property hierarchy. Each property
filler within a property hierarchy is also a filler of all its super
properties. E. g. if the property son is a sub-property of child,
then each filler of son is also a filler of child. Consider a sub-
property S of R (S v R) and an expression ∀R.A u (≥ 1 S).
Each relevant S-successor node will be introduced by the addi-
tional explanation statement that “All fillers of R are restricted
to be of the class A. Since S is a sub-property of R this restric-
tion also applies to S.” In case of a clash between cardinality
restrictions involving a sub-property the explanation is analogous
to the explanation of cardinality restrictions above. As example
consider the expression (≤ n R) v (≤ m S) with m ≥ n and
S v R, which leads to the following explanation: “At most n
fillers for the property R is subsumed by at most m fillers for
the property S, which is a sub-property of R.”

OWL allows to restrict properties in their global domain and
range or to declare a property to be functional or transitive. In
addition, properties can be defined as sub-properties of other
properties. Due to the lack of space we will only consider an
example of domain/range restrictions here. Consider a given
domain or range restriction of a property which will be added to
the successor resp. predecessor node by the tableau algorithm.
The restriction can consist of any valid SHOIN expression. In
case of relevance of the introduced expression in the successor
resp. predecessor node, the range resp. domain restriction has to
be explained by an additional statement. As example consider
the expression (≥ 1 R) v ∃R.B with a range restriction C on
R. The explanation for the edge to the successor node is then
as follows: “For the property R exists the range restriction C
that has to be considered on the left hand side. We have to
show for the property R whether C v B holds.”

Optimizations It is important to generate explanations as sim-
ple to understand as possible. Therefore we have implemented
several optimizations which condense the explanation in specific
situations called filtering, mode-switching and aggregating.

Filtering is a simple method to prevent non-deterministic
expansions within the tableau with the help of structural com-
parison. E.g. the standard tableau algorithm would split the
disjunction within the subsumption A u B u C v A u C which
is represented in the tableau as {A, B, C,¬A† t ¬B†}. This
is not necessary and the subsumption trivially holds, since the
subsumer is a specialization of the subsumee. Therefore our
algorithm does a structural comparison for each node in the

Page 4

tableau. An obvious subsumption is found if the subsumer is a
syntactical subset of the subsumee.

Mode-switching is used in situations where the subsumer or
subsumee of a tableau node is unsatisfiable by its own. In this
case either the subsumer is equivalent to > or the subsumee
is equivalent to ⊥. In this case our explainer will switch to
unsatisfiability respectively tautology explaining while omitting
the irrelevant side.

Aggregating is a method to summarize similar consecutive
explanation steps into one summary statement. The user is free,
however, to expand the aggregated step into its single pieces on
demand. As an example consider the expression ∃R.∃R.∃R.C v
∃R.C with property R as transitive relation. This would lead to
a chain of similar explanation statements for the R-successors.
After aggregating the explanation for the successor nodes is as
follows: “For a sequence of successors over the property R we
have to check whether C v C holds.” Optionally the user can
expand the aggregating explanation step to see all details , for
the example this yields to:

For a sequence of successors over the property R we have to
check whether C v C holds. Because property R is transitive
we have to consider C on the rhs.
• Check for the property R if ∃R.∃R.C v ∃R.C holds.
• Check for the property R if ∃R.C v ∃R.C holds.
• Check for the property R if C v C holds.

4.2 Explaining & Patching Non-Subsumption

When applying the techniques from above a non-subsumption
between A and C (written A 6v C) results in at least one model
for the corresponding negated subsumption query (i.e. Au¬C).
Technically, each of these models is caused by an unclosed (non-
clashing) subgraph in the tableau and can be interpreted as a
counter example with respect to the subsumption query.

The idea of explaining non-subsumption is quite similar to
the approach of explaining subsumption. All explanations of
unclosed paths of the tableau build up the explanation for the
non-subsumption. Hereby an explanation ends when there are
no more successors which were generated and constrained by the
rhs and lhs of a node. An exception is trivial non-subsumption
(lhs ≡ ⊥ or rhs ≡ >).

To patch a non-subsumption we have to fill a logical gap
to establish a desired subsumption. The problem with patch-
ing a non-subsumption is the infinite search space caused by
the infinite many ways of closing at least one of the potentially
many unclosed tableau subgraphs. Consider the (worst) case
of two arbitrary and unrelated concepts. Obviously there are
uncountably many options in order to establish a subsumption
relationship between them. Even if not all are sensible at all or
trivial (e. g. adding the subsumer to the subsumee) patching non-
subsumption apparently is difficult. Therefore, our method is to
constrain the search space by concentrating on a set of common
errors of inexperienced users which were studied in [17]. The er-
rors from [17] considered in this approach are: all-quantification
instead of existential quantification (∀ for ∃), wrong use of nega-
tion in combination with a quantor (¬∀r.(. . .) vs. ∀r.(¬ . . .) and
¬∃r.(. . .) vs. ∃r.(¬ . . .)) and use of a partial instead of a com-
plete definition. In addition we consider the possibility of a
missing term in a definition.

Our algorithm searches for symptoms of the described errors
in every node of an unclosed path of an explanation tableau. For
instance, nodes with an expression containing a common (sub-
)relation from both sides might be introduced by one of the
quantor-related errors, e. g. in ∃son.Father 6v ∀child.Father,
the all-quantifier matches a common user error as described in
[17]. When observing such an expression in a node, we investi-
gate all involved concept definitions in order to identify one of
the quantor-related errors.

Although, concentrating on the mentioned errors reduces
the search space significantly, this approach still leads to many
patch suggestions. To further reduce the search space we filter
the remaining suggestions. At first we drop those suggestions
which lead to a trivial (partial) subsumption similar to the ap-
proach mentioned in [12]. Our approach, furthermore, assumes
that the user wants to patch the non-subsumption but does not
want the class hierarchy to change elsewhere (compare with [8]).
As a metric we identify the graph edit costs by computing the
edit distance between the ontology hierarchy before and after
applying the suggested patch. The cost of a suggestion are
computed by counting the amount of modifications a sugges-
tion would cause within the direct sub- and super-concepts for
all concepts of the ontology. For every possible suggestion the
effect of the modification is calculated by finding out whether it
would patch the non-subsumption and by computing the metric.
A suggestion patching the non-subsumption is rated better than
one which does not patch it (but might be one right step for
patching it). Secondly, a suggestion with little impact on the
hierarchy is rated better than one with a high impact.

5 Implementation

Explaining an inference can significantly improve the authoring
process of an ontology. Consequently, explanations are most
powerful when combined with an ontology editing tool. There-
fore, both non-standard inference services, namely explaining as
well as patching, have been implemented as described above and
added as plug-ins to our ontology authoring tool OntoTrack
[15].

Explanation of (non-)subsumption in OntoTrack is avail-
able on user demand. The user can select two arbitrary concepts
within the graph hierarchy layout via context menue. The ex-
planation component then offers a tree-like expand list which
allows to drill down the explanation path. In case of a non-
subsumption all red colored explanation steps show those parts
of the explanation which end up in a non-subsumption. Those
parts also offer a patch suggestion via a “?” button. The patch
suggestions are sorted according to their rating and those which
completely patch the non-subsumptions are colored green.

Figure 3 shows the explanation of “V egetarianPizza is
not subsumed by MeatyP izza” within the well-known pizza
ontology [7]. The explainer has to show for each of the individual
parts on the rhs, that they are included in the lhs, which is
shown in the cases 1 – 5. The cases 1 – 4 explain valid partial
subsumption whereas the proof fails for case 5 and therefore the
subsumption does not hold. To establish the subsumtion the
user can ask for patch suggestions (by clicking the Button “?”),
which are shown in Figure 4 for our example.

Page 5

Figure 3: Example of explaining and patching in Ontotrack

6 Related Work

The very first approach for explaining DL inference services such
as subsumption relied on structural algorithms providing proof
fragments within DL systems like Classic [16] or (Power)Loom
[4]. A different approach [3] suggests to utilize a sequent cal-
culus to explain the trace of a tableaux proof for the DL ALC.
An implementation of the latter is given in [13] which also in-
troduced the so called dual-reasoner architecture which helps to
identify non-relevant parts of the tableaux tree by querying an
optimized external reasoner. A different approach tries to ex-
plain a subsumption by presenting an intermediate concept be-
tween subsumer and subsumee [19]. Closely related to the latter
is [12] which aims at explaining unsatisfiability by computing the
Minimal Unsatisfiability Preserving Sub-TBoxes (MUPS) to find
potential debugging clues. Another approach is based on resolu-
tion algorithms [6] where an explanation for an ABox entailment
is compiled from the deduction trace of a resolution prover.

7 Discussion and Outlook

We argue that tableau-based methods are valuable for explaining
well as providing clues for repairing an unwanted non-subsumption.
Concerning explanations we have extended previous work with
GCI’s and optimization techniques such as hiding irrelevant ex-
pressions and aggregating similar explanation steps. As a proof
of concept we implemented an explanation component suitable
to deal with the language SHF which has been integrated into

the ontology authoring tool Ontotrack. In comparison to ax-
iom pinpointing our method is currently restricted in language
expressivity but has the benefit of being applicable even to large
ontologies without necessarily running into computational com-
plexity problems. An extension to explaining Abox-entailments
also seems possible.

The task of generating suggestions for patching an unwanted
non-subsumption obviously is more difficult. Finding and select-
ing solutions for obtaining a subsumption relationship has many,
partially conflicting dimensions such as minimality or conserva-
tiveness [8]. Our approach to identify common user errors col-
lected by [17] allows to significantly reduce the search space but
is limited to certain types of errors and a combination of several
typical flaws might not be found. Rating different suggestions
is difficult and requires the development of more fine-grained
metrics. An interesting idea for future work is to distinguish be-
tween different types of axioms (e. g. to assume the definitions of
some base ontologies to be bug-free) [8]. A further idea is to rate
patches with respect to the change history of the definition they
refer to (a kind of “latest-first” conflict resolution strategy for
suggestions). Nevertheless, any debugging or patching service
can only considered as some proposal. These non-standard in-
ference services, therefore, should be considered as helpful hints
in the course of developing and maintaining high-quality ontolo-
gies.

Page 6

Figure 4: Patch suggestion for “V egetarianPizza is not subsumed by MeatyP izza”.

References
[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness,

Daniele Nardi, and Peter F. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web
Ontology Language reference, W3C recommendation. Technical
report, World Wide Web Consortium, Februar 2004.

[3] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. F.
Patel-Schneider. Explaining ALC subsumption. In Proc. of
the Int. Workshop on Description Logics (DL99), pages 37–40,
Linköping, Sweden, 1999.

[4] H. Chalupsky and T. Russ. WhyNot: Debugging Failed Queries
in Large Knowledge Bases. In Proc. of the Innovative Applica-
tions of Artificial Intelligence Conf. (IAAI-02), pages 870–877,
Edmonton, AL, Canada, 2002.

[5] Mills Davis. Semantic Wave 2006: Part-1. Technical report,
Project10X, Washington, DC, USA, 2006.

[6] X. Deng, V. Haarslev, and N. Shiri. Resolution Based Explana-
tions for Reasoning in the Description Logic ALC. In Canadian
SW Working Symposium (CSWWS06), volume 2, pages 189–
204, 2006.

[7] N. Drummond, M. Horridge, R. Stevens, C. Wroe, and S. Sam-
paio. Pizza Ontology, http://www.co-ode.org/ontologies/pizza,
2007.

[8] C. Elsenbroich, O. Kutz, and U. Sattler. A Case for Abductive
Reasoning over Ontologies. In Proc. of OWL: Experiences and
Directions WS, 2006.

[9] Noah S. Fiedland, Paul G. Allen, Michael Witbrock, Gavin
Matthews, Nancy Salay, Pierluigi Miraglia, Jürgen Angele, Stef-
fen Staab, David Israel, Vinay Chaudhri, Bruce Porter, Ken
Barker, and Peter Clark. Towards a Quantitative, Plattform-
Independent Analysis of Knowledge Systems. In Proceedings of
the Ninth International Conference on Principles of Knowledge
Representation and Reasoning, pages 507–514, Whistler, BC,
Canada, June 2004. AAAI Press.

[10] V. Haarslev and R. Möller. Racer: A core inference engine for the
semantic web. In Proceedings of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON2003), pages 27–
36, 2003.

[11] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
very expressive description logics. Logic Journal of the IGPL,
8(3):S. 239–264, 2000.

[12] A. Kalyanpur. Debugging and Repair of OWL Ontologies. PhD
thesis, University of Maryland College Park, 2006.

[13] F. Kwong. Practical approach to explaining ALC subsumtion.
Master’s thesis, University of Manchester, 2005.

[14] Julian Lambertz. Erklärung und Korrektur von Nicht-
Subsumtion in Ontologien. Master’s thesis, University of Ulm,
2007.

[15] Thorsten Liebig and Olaf Noppens. OntoTrack: A Semantic
Approach for Ontology Authoring. Journal of Web Semantics,
3(2):116–131, 2005.

[16] D. McGuinness and A. Borgida. Explaining Subsumption in De-
scription Logics. In Chris Mellish, editor, 14th International Joint
Conference on Artificial Intelligence, pages 816–821, 1995.

[17] A. L. Rector, N. Drummond, M. Horridge, J. Rogers,
H. Knublauch, R. Stevens, H. Wang, and C. Wroe. OWL Pizzas:
Practical Experience of Teaching OWL-DL: Common Errors &
Common Patterns. In EKAW, pages 63–81, 2004.

[18] Stephan Scheele. Tableaubasierte Ableitung und Erklärung von
Subsumtionsbeziehungen. Master’s thesis, University of Ulm,
2007.

[19] S. Schlobach and R. Cornet. Explanation of terminological rea-
soning: A preliminary report. In Description Logics, 2003.

[20] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz.
Pellet: A Practical OWL-DL Reasoner. Journal of Web Seman-
tics, 2006.

Kontakt

Dr. Thorsten Liebig
Institute of Artificial Intelligence
Ulm University, D-89069 Ulm
Email: Thorsten.Liebig(AT)uni-ulm.de

Stephan Scheele
University of Bamberg
Feldkirchenstr. 21, D-96045 Bamberg
Email: stephan.scheele(AT)uni-bamberg.de

Bild Thorsten Liebig is a scientific assistant at
Ulm University. In 2000 he received his
Dr.-Ing. from Otto-von-Guericke University,
Magdeburg. He has received scholarships
from the state of Sachsen-Anhalt as well
as the German Academic Exchange Service
(DAAD). In 1997 he was a visiting scien-
tist at the University of Southern California
in Load Angeles. His research interests are
in Description Logics, ontology authoring, as
well as reasoning techniques.

Bild Stephan Scheele studied computer science
at the University of Ulm. Since 2007 he
is a PhD student of the Informatics The-
ory Group at the University of Bamberg. His
current research is devoted to semantic tech-
nologies and formal methods in the field of
auditing.

Page 7

