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Abstract. Being able to extend an OWL ontology with some form of
rules is a feature that many ontology developers consider as very impor-
tant. Nevertheless, working with rules in practice can be difficult since
the tool support is not as good as for handling ontologies without rules.
Furthermore, the existing rule syntaxes are not very well aligned with the
new OWL 2 standard. We propose, therefore, an extension to OWL 2 for
representing rules, which is directly inspired by (DL Safe) SWRL rules,
but uses and extends the succinct and human-readable functional-style
syntax of OWL 2. We also propose an OWL/XML version of the syntax
to allow for easy XML serialization. Support for parsing such rules has
been added to the new OWL API 3.0 and reasoning over ontologies ex-
tended with these rules is possible with the two OWL 2 reasoners Pellet
and HermiT. In HermiT, these rules can also be used in conjunction with
Description Graphs.

1 Introduction

In previous OWLED workshops, many ontology developers mentioned rule sup-
port as a critical need.

Although OWL already has several sorts of conditionals, e.g.:

SubClassOf(:Person ObjectUnionOf(:Human :IntelligentComputer)) (1)

(if if you are a Person, then you are a Human or an IntelligentComputer) these
conditionals are, however, very constrained. For example, the SubClassOf condi-
tional can only have class expressions in the “if” or the “then” parts and even
in OWL 2 [7], it is not possible to mix classes and properties (directly) as in:

SubClassOf(:parentOf ObjectUnionOf(:Human :IntelligentComputer)) (2)

(assuming that parentOf is an object property). The specialized conditionals of
OWL have several advantages: they allow for variable-free syntax; they are more
intention revealing; and they help enforce restrictions which make OWL easier
to process (e.g., by making it decidable). However, this comes at the price of
expressivity.

Rules are much less restricted and one can easily express the intuition behind
axiom (2) with the following rule:

Rule( Body(ObjectPropertyAtom(:parentOf Variable(:x) Variable(:y)))
Head(ClassAtom(ObjectUnionOf(:Human :IntelligentComputer) Variable(:y))))



The rule axiom consists of a body (also called antecedent) and a head (also called
consequent), each of which consists of a possibly empty set of atoms. Informally,
the rule can be read as: if the body is true, then the head must be true. An
empty body is trivially true, whereas an empty head is trivially false. In case
the head contains several atoms, each atom must hold.

Readers might notice that the above used rule syntax is very close to the
functional-style syntax (FSS) of OWL 2 [7] and the resemblance to axioms (1)
and (2) is immediate. This is deliberate and the aim for this paper is to pro-
pose a rule extension for OWL that is well aligned with the OWL 2 specifica-
tion. For example, the ObjectPropertyAtom construct can be used similar to the
ObjectPropertyAssertion construct of the OWL 2 FSS apart from the fact that it
takes variables as well as individual IRIs as arguments.

Although rule support is clearly a desirable feature, there is no general com-
mitment of implementors of OWL reasoners to a particular syntax or semantics,
although SWRL rules [6] are the most commonly used ones. The new syntax
we propose is directly inspired by (DL Safe) SWRL rules, but uses and extends
the functional-style syntax of OWL 2. We also outline OWL/XML, RDF, and
Manchester versions of the rule syntax.

Our main reason for proposing this new syntax for rules is to allow rules
to be directly integrated into OWL 2 ontologies, permitting a closer integration
between rules and core OWL 2 ontologies. This has the added benefit of allowing
a better-integrated presentation of rules in ontology editors such as Protege.4

This new syntax would replace the SWRL syntax. It is, however, not intended
as a competitor to RIF [1], as RIF is designed for interchange of rules between
different rule systems.

To complete the definition of this rule extension to OWL 2, we provide a
semantics for these rules based on standard DL Safe rules. We also provide a
version of our rules that can effectively be used with Description Graphs [3], and
show how the semantics of these rules differ from the semantics of DL Safe rules.

Support for parsing such rules is being added to the new OWL API 3.0 and
reasoning over ontologies extended with DL Safe rules is even now possible with
the Pellet5 and HermiT6 OWL 2 reasoners. HermiT further provides integrated
support for Description Graphs and for both kinds of rules. The tightly coupled
syntax together with integration into the widely used OWL API will hopefully
lay the foundation for general support of rules in OWL implementations.

2 Preliminaries

We do not give a full introduction into OWL 2 due to space limitations. All
examples are assumed to be self-explanatory and further details about OWL 2
are available in the W3C specification [7].

4 http://protege.stanford.edu/
5 http://clarkparsia.com/pellet/
6 http://hermit-reasoner.com/



2.1 Rules and Safety Restrictions

Rules, such as SWRL rules and the rules we present in this paper, generalize
OWL conditionals in two ways (i) they allow for arbitrary patterns of variables
and (ii) they allow for mixing of property and class expressions in a fairly unre-
stricted way. Unlike many traditional rule languages such as Prolog or Datalog,
we adopt the open world assumption, which is used for OWL ontologies and also
in SWRL rules.

One problem with rules is that they can easily lead to undecidability if used
in an unrestricted way. Thus, we place some restriction on the rules. Firstly, we
make the usual “safety” condition that only variables that occur in the body of
a rule are allowed to occur in the head of the rule. The rules can still enforce the
existence of new individuals by using class atoms in the head with expressions
such as ObjectSomeValuesFrom.

We also employ the so-called DL Safe restriction, which requires that individ-
ual variables in a rule bind only to individuals named explicitly in the underlying
ontology. Without data variables this restriction makes the standard reasoning
tasks for ontologies extended with rules decidable. With data variables, one can
still have rules that generate infinitely many new inferences. As an example,
consider the following rule (for brevity in the also proposed Manchester syntax):

Rule : Person(?x), integer(?y)−> hasPossibleIncome(?x, ?y)

This rule would, for any named instance of the class Person generate infinitely
many hasPossibleIncome tuples, one for each integer. Restricting the data vari-
ables, similarly to individual variables, to data values that occur in the input
can result in very counter-intuitive results since, for example, a range of integers
greater than 17 and smaller than 19 contains exactly 18, but 18 is never men-
tioned in the input and can, thus, not be used as a binding with this restriction.
We propose, therefore, a different restriction and require that each data variable
in a data range atom also occurs in a data property atom in the body. This al-
lows for deferring the rule application until we know about required data valued
successors of a named individual. For example, the rule

Rule : Person(?x), hasSSN(?x, ?y), integer(?y)−> hasID(?x, ?y)

satisfies this restriction since the variable ?y from the data range atom integer(?y)
also occurs in the data property atom hasSSN(?x, ?y). Such a rule can be rewrit-
ten into

Rule : Person(?x), hasSSN(?x, ?y)−> not integer(?y) or hasID(?x, ?y)

and only when we know that a particular person has some SSN, we can make a
non-deterministic decision as to whether ?y is not an integer or a hasID successor
of the individual bound to ?x. Standard OWL 2 axioms naturally result in such
rules, when translated to First-Order Logic.



2.2 Description Graphs

Similar to rules, description graphs [4] are knowledge modeling constructs that
can describe objects with parts connected in arbitrary ways. For example, one
can describe benzene as a chemical compound that contains a ring composed of
six carbon atoms with alternating double and single bonds (cf. Figure 1).

Since standard DL axioms can only describe tree-
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Fig. 1. A representa-
tion of the benzene com-
pound.

like structures, modeling a ring is not directly possi-
ble otherwise. Description graphs can also be com-
bined with rules to express conditionals, but since
description graphs do not contain named individu-
als, using the DL Safe restriction is not reasonable.
Instead Motik et al. [4] propose a restriction called
strong separation under which properties from the on-
tology cannot be mixed with properties used in the
description graphs that extend the ontology. For ex-
ample, if the ontology contains a description graph

describing benzene, which uses the properties :doubleBondsTo and :singleBondsTo
to connect the carbon atoms (as illustrated by the double and single lines in
Figure 1), then a rule can be used to infer that every single bond is a bond if the
rule is not applied under the DL Safe restriction. To satisfy the strong separation
criterion, it must be possible to separate the properties used in the ontology into
two disjoint sets of graph properties and non-graph properties such that graph
properties are only used in description graphs and graph rules and non-graph
properties are only used in standard OWL 2 axioms and in (DL Safe) non-graph
rules. I.e., the properties bondsTo, singleBondsTo, and doubleBondsTo cannot be
used in standard OWL 2 axioms and DL Safe rules.

Applying the graph rules without the DL Safe restriction still allows for
decidable reasoning because description graphs also have to satisfy an acyclicity
condition, which ensures that the description graphs can always be represented
by finite structures.

3 Syntax Extension

In this section we describe the new rule syntax that is inspired by the OWL 2
functional-style syntax, the according OWL/XML serialization, and the mapping
of rules to RDF graphs.

3.1 Functional-Style Syntax

We specify the rule syntax by means of an extended BNF. Terminal symbols
are shown in single quotes and non-terminal symbols are shown in bold face.
Components that can occur at most once are enclosed in square brackets ([. . .]);
components that can occur any number of times (including zero) are enclosed
in braces ({. . .}), and a vertical bar denotes an alternative choice. Whitespace
is ignored in the productions given here.



From the OWL 2 Structural Specification and Functional-Style Syntax doc-
ument [7], we can see that an ontology contains (possibly empty) sets of ax-
ioms, annotations, declarations, and import statements. The production rules
in Table 1 extend the grammar from the OWL 2 Structural Specification and
Functional-Style Syntax (Appendix 13) by allowing for rules as an additional
type of axiom.

axioms ::= { Axiom | Rule | DGAxiom }

Rule ::= DLSafeRule | DGRule

DLSafeRule ::= DLSafeRule ‘(’ {Annotation} ‘Body’ ‘(’ {Atom} ‘)’
‘Head’ ‘(’ {Atom} ‘)’ ‘)’

Atom ::= ‘ClassAtom’ ‘(’ ClassExpression IArg ‘)’
| ‘DataRangeAtom’ ‘(’ DataRange DArg ‘)’
| ‘ObjectPropertyAtom’ ‘(’ ObjectPropertyExpression IArg IArg ‘)’
| ‘DataPropertyAtom’ ‘(’ DataProperty IArg DArg ‘)’
| ‘BuiltInAtom’ ‘(’ IRI DArg {DArg} ‘)’
| ‘SameIndividualAtom’ ‘(’ IArg IArg ‘)’
| ‘DifferentIndividualsAtom’ ‘(’ IArg IArg‘)’

IArg ::= IndividualID
| ‘IndividualVariable’ ‘(’ IRI ‘)’

DArg ::= Literal
| ‘LiteralVariable’ ‘(’ IRI ‘)’

DGRule ::= DescriptionGraphRule ‘(’ {Annotation} ‘Body’ ‘(’ {DGAtom} ‘)’
‘Head’ ‘(’ {DGAtom} ‘)’ ‘)’

DGAtom ::= ‘ClassAtom’ ‘(’ ClassExpression IArg ‘)’
| ‘ObjectPropertyAtom’ ‘(’ ObjectPropertyExpression IArg IArg ‘)’

DGAxiom ::= ‘DescriptionGraph’ ‘(’ {Annotation} DGName DGNodes
DGEdges MainClasses‘)’

DGName ::= IRI
DGNodes ::= ‘Nodes’‘(’ NodeAssertion {NodeAssertion } ‘)’

NodeAssertion ::= ‘NodeAssertion’‘(’ Class DGNode ‘)’
DGNode ::= IRI
DGEdges ::= ‘Edges’‘(’ EdgeAssertion {EdgeAssertion } ‘)’

EdgeAssertion ::= ‘EdgeAssertion’ ‘(’ ObjectProperty DGNode DGNode‘)’
MainClasses ::= ‘MainClasses’ ‘(’ Class {Class } ‘)’

Table 1. The production rules for the rules and description graph extension in
functional-style syntax.

In the following section we clarify the semantics of the rules, but it is worth
noting that the semantics of built-in atoms are not defined here. It is suggested



that implementers who want to add support for built-in atoms look at the SWRL
W3C member submission for guidance [6].

3.2 Direct Model-Theoretic Semantics

The model-theoretic semantics is a straightforward extension of the semantics
for OWL 2. The interpretation of description graphs is the natural one and we
refer interested readers to [4] for further details.

OWL 2 Direct Semantics We give just a short summary of standard OWL 2
semantics [5].

A datatype map is a 6-tuple D = (NDT , NLS , NFS , ·DT , ·LS , ·FS), where
NDT is a set of datatypes, NLS is a function that assigns lexical forms to
each datatype, NFS is a function that assigns a set of facet value pairs to each
datatype, ·DT is an interpretation function that assigns a value space to each
datatype, ·LS is an interpretation function that assigns a data value to a pair
(LV,DT ) where LV is a lexical form of the datatype DT , and ·FS is an interpre-
tation function that assigns a set of data values to a pair of constraining facet
and data value.

A vocabulary V = (VC , VOP , VDP , VI , VDT , VLT , VFA) over a datatype map
D is a 7-tuple, where VC is a set of classes, VOP is a set of object properties, VDP

is a set of data properties, VI is a set of individuals (named and anonymous),
VDT is a set containing at least all datatypes of D plus the datatype rdfs:Literal,
VLT is a set of literals LV ∧∧DT with DT a datatype and LV a lexical form for
DT , and VFA is the set of pairs of constraining facets and literals.

Given a datatype map D and a vocabulary V over D, an interpretation
I = (∆I , ∆D, ·C , ·OP , ·DP , ·I , ·DT , ·LT , ·FA) for D and V is a 9-tuple, where ∆I

is a nonempty set called the object domain, ∆D is a nonempty set disjoint with
∆I called the data domain, ·C is the class interpretation function that assigns
to each class C ∈ VC a subset CC of ∆I , similarly ·OP and ·DP interpret object
and data properties as binary relations over ∆I×∆I and ∆I×∆D respectively,
·I assigns to each individual a ∈ VI an element aI ∈ ∆I , ·DT assigns to each
datatype DT ∈ VDT a subset of ∆D, ·LT is the literal interpretation function
that assigns to a literal LV ∧∧DT ∈ VLT a data value (LV,DT )LS ∈ (DT )DT ,
and, finally, ·FA is the facet interpretation function.

Rule Semantics and Restrictions To interpret the variables in rules, we
define bindings—extensions of OWL interpretations that also map variables to
elements of the domain in the usual manner. A rule is satisfied by an inter-
pretation if and only if every binding that satisfies the body also satisfies the
head. The semantics of normal non-rule axioms and ontologies are unchanged,
so an interpretation satisfies an ontology if and only if it satisfies every axiom
(including the rules) in the ontology.

Given an interpretation I for an OWL 2 ontology O, a binding B(I) w.r.t.
O is an interpretation that extends I such that ·I maps individual variables to



elements of ∆I and ·LT maps literal variables to data values in ∆D. For the DL
Safe restriction we additionally require that, for each individual variable x that
occurs in a DL Safe rule with xI = d, there is some individual name a ∈ VI that
occurs in O such that aI = d. If the ontology contains description graphs, we
additionally require that the set of object property names VOP can be divided
into two disjoint sets of normal object properties VNOP and description graph
properties VGOP such that no property in VNOP occurs in a description graph
or description graph rule and no property in VGOP occurs in a normal OWL
axiom or DL Safe rule. We further require that each literal variable in a data
range atom also occurs in a data property atom in the body.

An atom at is satisfied by B(I) under the conditions given in Table 2, where
C is an OWL 2 class expression, D is an OWL 2 data range, OP is an OWL 2
object property expression, DP is an OWL 2 data property, x and y are individual
variables or OWL individuals, and z is a literal variable or an OWL data value.

Table 2. Interpretation conditions.

at Condition on Interpretation

ClassAtom(C x) xI ∈ CI

DataRangeAtom(D z) yDT ∈ DDT

ObjectPropertyAtom(OP x y) 〈xI , yI〉 ∈ OPI

DataPropertyAtom(DP x z) 〈xI , zLT 〉 ∈ DPDP

SameIndividualAtom(x y) xI = yI

DifferentIndividualsAtom(x y) xI 6= yI

A binding B(I) satisfies a body B iff B is empty or B(I) satisfies every atom
in B. A binding B(I) satisfies a head H iff H is not empty and B(I) satisfies
every atom in H. A rule R is satisfied by an interpretation I iff for every binding
B such that B(I) satisfies the body, B(I) also satisfies the head. The semantic
conditions relating to axioms and ontologies are unchanged. In particular, an
interpretation satisfies an ontology iff it satisfies every axiom (including rules)
in the ontology; an ontology is consistent iff it is satisfied by at least one inter-
pretation; an ontology O2 is entailed by an ontology O1 iff every interpretation
that satisfies O1 also satisfies O2.

Please note that although several atoms can occur in the head of a rule,
these are interpreted as conjunction. In this case, the rule can equivalently be
transformed into several rules with a single head atom by the standard Lloyd-
Topor transformation [2]. E.g., the rule

Rule(Body(ObjectPropertyAtom(:singleBondsTo Variable(:x) Variable(:y)))
Head(ObjectPropertyAtom(:bondsTo Variable(:x) Variable(:y))

ObjectPropertyAtom(:singleBondsTo Variable(:y) Variable(:x))))



is equivalent to the rules

Rule(Body(ObjectPropertyAtom(:singleBondsTo Variable(:x) Variable(:y)))
Head(ObjectPropertyAtom(:bondsTo Variable(:x) Variable(:y))))

Rule(Body(ObjectPropertyAtom(:singleBondsTo Variable(:x) Variable(:y)))
Head(ObjectPropertyAtom(:singleBondsTo Variable(:y) Variable(:x))))

4 Concrete Syntaxes

In this section, we specify the mappings from the syntax specified in Table 1
to RDF graphs, to OWL/XML and to the Manchester OWL Syntax have been
specified. We first give a flavour of the various sytaxes using an example rule,
which specifies that someone who has a sibling that is a man, has that man as
a brother.

Mapping to RDF Graphs In order to maximise backwards compatibility with
current syntaxes, the mapping specified for SWRL rules [6] is used.

<swrl:Variable rdf:about="#x"/>
<swrl:Variable rdf:about="#y"/>
<swrl:Imp>

<swrl:body rdf:parseType="Collection">
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#hasSibling"/>
<swrl:argument1 rdf:resource="#x" />
<swrl:argument2 rdf:resource="#y" />

</swrl:IndividualPropertyAtom>
<swrl:ClassAtom>

<swrl:classPredicate rdf:resource="#Man"/>
<swrl:argument1 rdf:resource="#y"/>

</swrl:ClassAtom>
</swrl:body>
<swrl:head rdf:parseType="Collection">

<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="#hasBrother"/>
<swrl:argument1 rdf:resource="#x" />
<swrl:argument2 rdf:resource="#y" />

</swrl:IndividualPropertyAtom>
</swrl:head>

</swrl:Imp>

OWL/XML The mapping to OWL/XML follows the same pattern as the OWL
2 specification. Names used in the extended functional syntax are mapped into
elements. For example,

<owl:DLSafeRule>
<owl:Body>

<owl:ObjectPropertyAtom>
<owl:ObjectProperty IRI="#hasSibling"/>
<owl:IndividualVariable IRI="#x"/>
<owl:IndividualVariable IRI="#y"/>

</owl:ObjectPropertyAtom>
<owl:ClassAtom>

<owl:Class IRI="#Person"/>
<owl:IndividuialVariable IRI="#x"/>

</owl:ClassAtom>



</owl:Body>
<owl:Head>

<owl:ObjectPropertyAtom>
<owl:ObjectProperty IRI="#hasBrother"/>
<owl:IndividualVariable IRI="#x"/>
<owl:IndividualVariable IRI="#y"/>

</owl:ObjectPropertyAtom>
</owl:Head>

</owl:DLSafeRule>

Manchester OWL Syntax Rules can be represented in the Manchester OWL
Syntax using a “Rule” frame. Variables are prefixed with a question marks, atoms
in the rule body and rule head are separated by commas, and a dash followed by
a ‘greater than’ symbol is used to separate the rule body from the head. ASCII
symbols were chosen over special glyphs for conjunction and implication for ease
of typing into an editor.

Rule :
hasSibling(?x, ?y),Man(?y) − > hasBrother(?x, ?y)

5 Implementation

Implementation support comes in the form of an API, and reference imple-
mentation, for creating, manipulating and loading rules from various concrete
serialisations, and also comes in the form of reasoning support.

API Support The OWL API has been augmented with support for working
with rules. Various interfaces for representing rules, atoms, and variables have
been added. Additionally, it supports parsing and rendering rules in the ex-
tended Functional Syntax, RDF based syntaxes (RDF/XML and Turtle) and
OWL/XML.

Reasoning Support Pellet supports reasoning with DL Safe rules including sup-
port for most of the SWRL built-ins for numeric comparison etc. HermiT sup-
ports DL Safe rules without SWRL built-in atoms. Additionally, HermiT sup-
ports reasoning with description graphs and description graph rules.

6 Conclusion

We have presented here a syntax for rules, very similar to the SWRL syntax
for rules, that is tightly integrated into the OWL 2 syntax. This syntax serves
to allow rules to be part of OWL 2 ontologies and permits them to be easily
presented and manipulated in OWL 2 ontology editors. We have also presented
a semantics for these rules using the common DL Safe restriction and a new data
range safety restriction to preserve decidability.

The DL Safe semantics for rules is not appropriate for rules used with De-
scription Graphs. We have thus allowed for two types of rules in our syntax, one



for use with description graphs and one for use elsewhere in the ontology, and
have also presented the semantics for rules used with Description Graphs.

Reasoning support for these rules already exists (for example, in Pellet for
DL Safe rules and in HermiT for both kinds of rules). Syntactic support for these
rules is being added to the OWL API and we expect this to spur the general
addition of rule support to OWL reasoners.
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