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Abstract. Finding the optimal selection of an OWL reasoner and ser-
vice interface for a specific ontology-based application is challenging.
Over time it has become more and more difficult to match application
requirements with service offerings from available reasoning engines, in
particular with recent optimizations for certain reasoning services and
new reasoning algorithms for different fragments of OWL. This work is
motivated by real-world experiences and reports about interesting find-
ings in the course of developing an ontology-based application. Bench-
marking outcomes of several reasoning engines are discussed — especially
with respect to accompanying sound and completeness tests. We com-
pare the performance of various service and communication protocols
in different computing environments. Hereby, it becomes apparent that
these largely underrated components may have an enormous impact on
the overall performance.

1 Introduction

In the recent past, the application of Semantic Web technologies has seen a
steady increase in a broad variety of services and applications. On the foundation
of W3C’s Web Ontology Language (OWL) [1], Semantic Technologies are meant
to be soon adopted by the industry. In the course of developing applications that
rely on ontology based reasoning mechanisms, not only an appropriate reasoning
engine needs to be selected. In fact, finding the right combination of reasoner and
communication interface for expressive ontologies with the required level of ex-
pressivity is crucial for the overall reasoning performance. Existing benchmarks
promise to shed some light on the performance of popular inference engines, at
least for some selected ontologies and thus particular reasoning tasks. Our own
experience has shown that most of the benchmark results are not as helpful as
desired. When building an ontology based application, designers typically have
to deal with many different requirements and constraints on the query inter-
face, ontology updates, reliability of results, etc. To utilize ontology reasoning
for applications in the mobile space, we first tried to identify an appropriate
reasoning infrastructure by applying standard benchmarks as well as spot tests



for different ontologies. In a second step, concrete reasoning scenarios for our
application with specifically designed ontologies have been evaluated. In this pa-
per, our experiences in the development are discussed to help others in realizing
an appropriate reasoning infrastructure.

The remainder of this work is organized as follows: Section 2 gives an overview
of existing reasoning engines and discusses some benchmarking results of the
former. In the subsequent Section 3, a set of tests gained from developing real-
world applications are performed. Concluding remarks can be found in Section 4.

2 OWL Reasoning Infrastructure

The core element of any OWL infrastructure consists of a reasoning engine ca-
pable of processing OWL ontologies at a certain level of expressivity. The typical
processing services cover consistency and entailment checks as well as any kind
of query answering. Important criteria of these services are soundness resp. com-
pleteness and practical efficiency. It is worth noting that both criteria are of
equal importance and inherently depend on each other. For instance, efficiency
can easily be achieved by giving up sound- and completeness. On the other hand,
practical efficiency in a real-world usage scenario is without doubt an important
requirement for semantic applications, even if reasoning with OWL is known
to be unfeasible in the worst case. Nevertheless, highly optimized implementa-
tions of well-chosen calculi have empirically proven that real-world applications
are possible. Besides, the variety of profiles of OWL 2 provides a selection of
language fragments with different characteristics for various needs and ontology
sizes.

Finding the appropriate reasoning approach resp. system for a given expres-
sivity and problem size is all but obvious. Certain approaches perform well only
with specific language fragments and the performance of reasoning engines may
vary significantly from case to case because of subtle optimization techniques.
However, when it comes to large volumes of ontology data, incremental rea-
soning or answer caching may be more important than any other optimization
technique. Besides all these partly conflicting requirements, an application de-
signer needs to know whether or not the chosen reasoning engine is mature and
reliable enough for a particular setting. In other words, if a system is not sound
(for whatever reason), it is practically useless for the vast majority of applica-
tions.

This sections summarizes empirical results from currently available OWL
reasoning systems with respect to the above mentioned issues. Our findings only
draw a very fragmentary picture, even though valuable insights can still be given.
Our survey is based on experiences with a benchmark suite for large ABox data
on the one hand, and a selection of small but difficult T- and ABox test cases on
the other hand. This work updates and extends previous analyses with respect
to hard spot tests [2] as well as huge volumes of instance data [3].

Our evaluation shows that even with only one benchmark suite, it is hard
to draw a reliable conclusion. The runtime of systems heavily varies from case



to case and is utterly unpredictable. We even found out that the benchmark
suite itself was incorrect with respect to the official number of results. On the
opposite end of testing, namely the small but hard test cases, the results are
likewise disappointing. Almost all reasoning systems failed at least for one of the
cases.

2.1 Benchmarking Scalability

In order to measure the performance of the given systems with respect to large
volumes of instance data we have chosen the University Ontology Benchmark
(UOBM) [4]. The UOBM extends the well-known Lehigh University Benchmark
(LUBM) [5] by adding extra TBox axioms making use of all of OWL Lite (UOBM
Lite) and OWL DL (UOBM DL). The ABox is enriched by interrelations between
individuals of formerly separated units, which makes it less artificial and more
realistic. Please note that our intention is not to simply run this benchmark
again. Instead, our main interest is to analyze different settings and outcomes.

The set of reasoning engines within our survey consists of FaCT-++ (v1.2.3)3
[6], KAON2 (2008-06-29)*, Pellet (v2.0.0RC5)® [7] and RacerPro (1.9.3b)% [8].
We have used the latest available versions of these systems except for RacerPro,
for which we had access to a soon to be released beta version. Hermit (v0.9.3)7 [9]
was initially also within the set of potential candidates but repeatedly produced
exceptions while processing the UOBM. A feature matrix of selected system
characteristics can be found in Table 2. For all tests in this section we used
64bit versions of the systems, which were running on a 16GB quad-core Linux
machine.

Since FaCT++ does not come with a SPARQL or any other conjunctive query
language, the set of test systems with respect to query answering only consists
of Pellet, RacerPro and KAON2. However, KAONZ2 is known for its performance
decrease in the presence of cardinality restrictions. In fact, the KAON2 engine
was two and more magnitudes slower than the other systems. In addition more
than 10 GB of main memory were allocated even for the smallest UOBM data
set (lite-1). A comparison of KAON2 with the SHER® system for the UOBM
without cardinality restrictions can be found in [10].

We tested the systems with their standard settings for optimized but com-
plete query answering (e.g. nRQL mode 3) and a warm-up phase of three queries
disjoint from the set of benchmark queries. In our comparison, we just computed
the number of answers without retrieving them to get measures which are inde-
pendent of the utilized interface. The systems do not vary dramatically in loading
the data. The smallest data set (lite-1) was loaded into KAON2 in 12 seconds,

3 http://owl.man.ac.uk/factplusplus

4 http://kaon2.semanticweb.org

® http://clarkparsia.com/pellet

5 http://www.racer-systems.com

" http://www.hermit-reasoner.com

8 http://www.alphaworks.ibm.com/tech/sher



in Pellet in 20 seconds, whereas RacerPro required about 30 seconds. The setup
and query preparation time for RacerPro was about 85 seconds compared to
Pellet with 9 seconds. Computing the query results for lite-1 was accomplished
in less than a second for both Pellet and RacerPro, except for two queries. Pellet
needed more than 100 resp. 500 seconds for the queries number 8 and 13 whereas
RacerPro required more than 4 resp. 8 seconds for the queries number 2 and 9.
Altogether RacerPro completed the whole lite-1 test in roughly 100, Pellet in
680 seconds.

Overall memory consumption was lowest for RacerPro with not more than
3GB for lite-1. Pellet requires up to 4GB of main memory for the same test set.
When classifying the TBox before querying, the timings do not vary significantly.
The only exception is query number 13 with Pellet only requiring 270 (instead
of 550) seconds.

In case of realizing the ABox (as well as classifying the TBox) before query-
ing, it turned out that RacerPro performs slightly better for almost all queries
but required more than 16 instead of 8 seconds for query 9. Likewise, Pellet per-
formed dramatically better for three queries (query 2, 8, and 13) with a slight
performance decrease for query 4. Realizing the ABox took about 10 minutes
for RacerPro and more than one hour for Pellet. We did not succeed in realizing
the smallest UOBM lite data set with FaCT++. The system aborted after sev-
eral minutes, with having allocated all of the 16GB main memory. Interestingly,
we were able to realize the small and mid-size UOBM dl data sets (realizing
the mid-size data set consumed less than 2.4GB main memory). It seems that
the reasoning procedure of FaCT++ for less expressive languages is not as op-
timized as for the expressive ones. In conclusion, realizing the ABox helps to
increase performance for some queries. However, the influence on query answer-
ing is somehow unpredictable and due to the computational overhead it is not
feasible for larger data sets and was only performed here for comparison.

Interestingly, the number of results for two out of 13 UOBM queries for lite-1
with RacerPro (nRQL mode 3) were different compared to the number of results
returned by Pellet as well as the official numbers. For query 10, RacerPro came
up with fewer, for query 9 with more answers. When using nRQL’s incomplete
mode 1 or 2 even eight answers were different, but the performance increased
(all queries were processed in less than a second except for query 9).

In a different case, namely query 11 of the dI-5 test set, the official number of
query results is obviously wrong. Pellet as well as RacerPro provide 6230 answers
here, whereas the UOBM only states 6225 correct results. However, when ana-
lyzing the five additional answers it can be easily seen that they meet the query
condition. More precisely, all results are correct because of their equivalence to
other individuals in the result set. This is due to an individual merge caused by
the functional object property “isTaughtBy”. Pellet and RacerPro also disagree
with the official result on query 15 (also dI-5) with 72 individuals. Both reasoner,
however, return no answer at all.

Based on our findings we conclude that it is not only difficult to write expres-
sive and scalable reasoning engines but also to generate sophisticated benchmark



Table 1. Correctness Spot Tests

no. expressivity C P D 1 FaCT  Racer Pellet HermiT KAON2
b  SHIN 6 7 0 0 + time  time + time
2a  SHN 8 9 0 0 + + + time time
2b  SHN 8 9 0 O + + time time time

9 SHF 7T 7 0 0 - + + + +

28  ALC 33 7 0 O + + + time +
29b SHIF 12 6 0 0 - + + + +

30 SHOIF 23 6 0 41 + (+) error’ + n.a.
35 ALCOZ 17 7 0 9 memory (+) + + n.a.

suites. More than that, conducting benchmarks requires a careful interpretation
of the results from different view points and for different requirements.

2.2 Sound- and Completeness Spot Tests

Reasoning with OWL Lite as well as OWL DL is known to be of high worst-
case complexity. However, trading soundness/completeness for efficiency is not
a solution, in our opinion. Instead, application designers should carefully choose
their language fragment and size of ontology in order to be able to pick the right
approach resp. system. Implementors of reasoning engines should, on the other
hand, take special care about creating a reliable system in terms of soundness
and completeness (which is, for sure, a formidable challenge). Otherwise, perfor-
mance results of different systems are not comparable at all. Even if a bug-free
reasoning system may never be available, our experiences in intensively using
various engines have revealed a number of disappointing results. Some systems
fail to answer even small or trivial test cases, some failures tend to re-appear
in subsequent system versions, or termination varies not only from system to
system but also from release to release.

As a consequence, we tested our systems with an empirical evaluation using
spot tests which are intentionally designed to be hard to solve but small in
size. They try to meter the correctness of the reasoning engines with respect to
inference problems of selected language features and were published two years
ago [2]. The tests were conducted with the systems listed in Table 2. We used
FaCT, Pellet, Hermit via the OWL-API, whereas KAON2 and RacerPro were
tested via their native interfaces for loading OWL files. Surprisingly, almost all
reasoners failed in some test cases by providing either wrong results or were not
able to find a solution within 10 minutes. Table 1 shows a selection of these
test cases, all ran on a Linux maschine (ubuntu 2.6.17, 16GB ram, Java 1.6, gcc
4.0.3):

9 Varies with respect to platform (Linux resp. MacOS) and Java version (1.5 resp 1.6)
from time-out to an error caused by an exception.



Table 2. Reasoner Feature Matrix
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In the first column, each test case has been assigned an identifier.'® The sub-
sequent columns list the expressivity, the number of classes (C), object properties
(P), datatype properties (P), and individuals (I) of the respective test case. A
“+” for a specific system means that the system could provide the correct an-
swer (typically satisfiability /unsatisfiability of a class), whereas round brackets
denote that the result was computed on the basis of approximate reasoning. Fur-
thermore, “time” indicates that the system could not provide an answer within
ten minutes. Since our test environment provided more than 16GB of main mem-
ory an “out of memory” error did only occur once within our time frame of 10
minutes. A “-” signals that the system returned the wrong result. To identify
potential modeling patterns that are supposed to slow down reasoning, we fed
all the test cases into Pellint!! v0.2 [11]. Hereby, no performance barriers have
been reported.

It is worth noting that the results of our spot test often change from ver-
sion to version for FaCT++ and Pellet and even from platform to platform resp.
environment (operating system and/or Java version). For instance, previous ver-
sions were able to solve 1b (Pellet) or 2b (FaCT++) but did not terminate or
failed with others. In addition, FaCT++ v. 1.2.1 on Mac OS X (gcc 4.0.1) suc-
ceeds for test case 2b but fails for 1b. With version 1.2.0 it is the other way
round. The newest Pellet release candidate (2.0.0RC5) is able to solve test case
28 within seconds whereas previous versions did not. Interestingly, various ver-
sions of Pellet randomly abort with an exception on test case 30 (whereas Pellet
1.4 produces a time-out). Test case 30 is the only one using all of OWL DL and

!0 The corresponding OWL file can be found at http://www.informatik.uni-ulm.de/
ki/Liebig/reasoner-eval/no.owl
" http://pellet.owldl.com/pellint



cannot be handled by KAON2 and only in an approximative way by RacerPro.
Again, the MacOS X version of FaCT++ does not terminate on test case 30.

Please note that all test cases above are within OWL 1 and even only a
fraction of OWL Lite in some cases. The upcoming OWL 2 adds further language
constructs which makes reasoning even more difficult. Extrapolating the given
results indicates that reliable OWL 2 reasoning engines might still need some
more time to mature.

3 Reasoning in Practice

IYOUIT!? [12], a mobile community service in the field of context-awareness
makes use of formal representations to reason about gathered data. IYOUIT
allows people equipped with an ordinary mobile handset like the gPhone to
instantly share personal experiences with others while on the go. The mobile
application is connected to a network of components on the Internet. All data
gathered by the mobile handset, such as the current location or nearby Bluetooth
beacons, are sent to the appropriate component, which stores and further pro-
cesses this information. One of the main tasks of each component is to abstract
from low-level sensor data (e.g., location traces) to corresponding qualitative
representations (e.g., important places of a user). Once theses abstractions are
linked to concepts formalized in OWL ontologies, reasoning is applied to de-
rive additional information. In the following, two of these reasoning use cases
are highlighted, both with different requirements on the expressiveness of the
underlying ontology and temporal constraints on the overall reasoning process.

All relationships in the IYOUIT user community are represented within a
social ontology to allow for expressing social relationships between users. Ontol-
ogy based reasoning is applied to maintain the consistency of the social network
and to make implicit relations explicitly available. The structure of the comple-
mented social network is in turn used for privacy control.

We performed several tests to find the appropriate combination of reason-
ing engine and ontology modeling style that complies with the requirements
on correctness as well as performance. To ensure comparable results, we con-
nected all reasoning engines via the standard Java-based OWL API'3 [13] using
the corresponding connector.' In addition, we analyzed the performance of the
HTTP-based DIG protocol via the OWL API DIG connector, OWLIlink!® [14]
and RacerPro’s native TCP interface. All tests have been performed with an
Apple MacBook Pro 2,33 GHz Intel Core 2 Duo notebook computer with 3GB
of memory running Mac OS X 10.5.5 with Java 5.0 32bit and Java 6.0 64bit,

12 http://www.iyouit.eu

13 We used the SVN version of the OWL API from http://owlapi.sourceforge.net
as of 9.12.2008 for all experiments.

14 Reasoners analyzed in Section 2 that do not implement all required functions of the
OWL API interface yet, were not considered in the following tests.

15 http://www.owllink.org



respectively. The reasoning engines were initialized with their default configu-
ration and the Java Virtual Machine has been configured as follows: The maxi-
mum stack size for each thread has been set to 4MB, the minimum heap space
to 30MB and the maximum heap space has been limited to 200MB. Before the
actual measurements have been recorded, five consecutive runs were applied to
warmup the Java hotspot compiler and to initialize the reasoner. In total, 100
runs were performed to average out minimum and maximum measurements and
to simulate the actual real-world setting as part of a server infrastructure.

3.1 Social Ontology

To model qualitative social relationships we developed a social ontology for the
IYOUIT system. Formalized in OWL-Lite, a fragment of OWL 1, it fulfills the
requirements on expressivity (in modeling the social network) and decidability.
Complying with the Description Logic SHZF, the social ontology makes use of
an object-property hierarchy with transitive, inverse and functional properties
(cf. Figure 1). Social relationships are represented as instantiations of those
object-properties, whereas entities that represent IYOUIT users are formulated
as instances of the class Person. In total, the social ontology contains, 6 primitive
concepts, 1 disjoint class axiom, 20 object properties and 110 individuals with
280 object property assertion axioms.

business_partner g
colleague coworker

[ supervised by [

contact _[i}—[ family_member — PouE .
sibling = [ rother E

classmate sister |

fellow ] [ fellow_student

friend _FA——#[ best friend
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s

Functional E Inverse Functional E Transitive Symmetric @ Inverse Property

Fig. 1. Social Object Properties

We initially defined a set of test cases to verify that our social ontology
captures the intended semantics.'® The first two queries, encoded in Test A and
Test B, analyze the inferred object property structure by requesting the direct

16 The ontologies for all tests in this section can be found at http://www.informatik.
uni-ulm.de/ki/Liebig/reasoner-eval/IYOUIT.zip



and the full set of sub-properties of the property contact, respectively. Please
note that for Test A and B an earlier and slightly larger version of the social
ontology with in total 74 object properties has been used. The last query, Test C,
requests the total set of object property relationships of one specific individual.
Here, the optimized social ontology with its 20 object properties has been used
(cf. Figure 1). This ontology and the respective query can also be found in the
actual real-world application within IYOUIT.

Interestingly, different reasoning engines returned different results for our
queries. Table 3 lists the number of results returned by different engines for all 3
test cases. To the best of our knowledge, only the results returned by RacerPro
v1.9.3b are correct, whereas all other results are wrong, which has also been
confirmed by the respective developers. Earlier versions of RacerPro returned
wrong results as well, similar to FaCT++ for versions in between 1.1.9-1.1.11
that returned the same wrong results as the latest FaCT++ version 1.2.1. Version
1.2.0 is the only version of FaCT++ that provided the correct results for case A
and B (case C could not be tested via the OWL API since the required interface
function is only supported in v1.2.1). Pellet version 1.5.0 and 1.5.1 suffer from a
typo in the OWLAPI interface implementation and return only the direct sub-
properties in Test case B. For Pellet 2.0.0RC1, the result set for Test A and B
actually depends on the JavaVM version. Here, the number of results indicated
before the slash are obtained with Java v1.5, those after the slash with v1.6.

In summary, we were astound by the number of issues (sometimes reoccur-
ring in later versions after having been fixed before) produced by our relatively
simple ontology. It seems that the use of inverse properties accounts for the com-
plications in the reasoning kernel in most cases, while other problems were just
caused by implementation errors in the corresponding interface functions.

Table 3. Object Property Inferences

‘Test A Test B Test C

FaCT++ 1.2.1| 12 50 53

Pellet 1.4] 10 10 38

Pellet 2.0.0RC1| 10/9 44/46 71

Pellet 1.5.2 & 2.0.0RC3| 10 50 71
RacerPro 1.9.3b| 10 50 72

3.2 Object Property Reasoning

Social reasoning mechanisms are applied to complement the social network of
IYOUIT users and to maintain the consistency of explicitly given social relations.
To find the most appropriate reasoner for the social network reasoning, four
different reasoning engines, namely RacerPro 1.9.3 beta, Pellet 1.5.2, the latest
Pellet release candidate version 2.0.0RC3 and FaCT++ 1.2.1, were compared via
the OWL API. To measure the practical reasoning performance and to trigger
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Fig. 2. Object Property Reasoning Performance

the actual classification process, an additional relationship property axiom has
been added to the already defined 280 object property assertion axioms of the
social ontology. Next, all relationships were retrieved from the reasoner and
finally, the initially added relationship has been removed again. While adding
and removing axioms has been performed very fast by all reasoning engines,
significant differences were observed in retrieving the actual inference result. On
the left-hand side of Figure 2, the results of this retrieval process are shown
in more detail. With an average of 9,3 milliseconds, FaCT++ has been the
fastest engine, followed by Pellet with 38,6 milliseconds. Here, no significant
performance difference was found when comparing Pellet 1.5.2 with the latest
version 2.0.0RC3. With 195,2 milliseconds, RacerPro 1.9.3b took considerably
longer to answer the given query. Performance aside, RacerPro has been the
only system that returned the correct result (1620 relationships). Pellet was
missing exactly one relationship and FaCT++ only returned 1440 relationships
(cf. Section 3.1).17 As a result, a concluding performance assessment cannot be
made as long as not all reasoning engines do return the correct result.

In a second test, we compared two currently available interfaces for RacerPro,
the OWL API and its native JRacer interface, both connecting the reasoner and
the Java application via TCP. Again, adding and removing axioms took consid-
erably less time than retrieving the inference result. To our surprise, the OWL
API connection performed dramatically better than the native connection for
both, the inference retrieval as well as the axiom retraction. As summarized on
the right-hand side of Figure 2, transferring all relationships from RacerPro was
finished within 195,2 milliseconds in case of the OWL API and 2097,5 millisec-
onds in case of the native JRacer connection. One feasible explanation, which
has also been confirmed by the implementors of RacerPro, could be the fact that
the RacerPro OWL API connector is based on an optimized TCP protocol, while
the JRacer connection still relies on an older and thus un-optimized version of
the latter.

17 In its latest release candidates RC4 and RC5, Pellet now also returns the correct
result. Two newer versions of Fact++4, however, do not include a respective fix.
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3.3 Dynamic Classification

The situation estimation component [15] of the TYOUIT system constantly re-
trieves abstractions of the latest sensor data produced by the IYOUIT mobile
client such as the actual place of a user, a qualitative description of the current
time and the people in proximity. Its task is to compute an abstract description
of a user’s situation based on live context data and static profile information,
including all established qualitative social relationships.

The set of OWL DL ontologies used to realize this situational reasoning has
been refined step by step. The initial version, in the following referred to as
Ontology C, is within SHOZN and consists of 270 (cyclic) classes, 7 CGIs, 135
object properties, 65 datatype properties and 333 individuals. It is distributed
over 9 component ontologies including the social ontology (without its individ-
uals and object property assertion axioms) discussed above and the standard
time-entry ontology [16]. The second version of the ontology, Ontology B, was
derived from Ontology C by removing all remaining individuals and nominals,
breaking the cycles between classes, reducing the number of domain/range re-
strictions, datatype properties and inverse functional declarations, adding addi-
tional classes and disjoint class axioms, replacing the time-entry ontology by a
simpler time ontology and reducing the number of components. This results in
324 classes, 0 CGls, 116 object properties, 43 datatype properties and 0 individu-
als distributed over 4 component ontologies, reducing the complexity to SHZN .
The latest ontology, Ontology A, was derived from Ontology B by reducing the
number of object properties, classes and disjointness axioms, by removing all
datatype properties, most of the remaining domain/range restrictions and all
annotations, resulting in 137 classes, 0 CGlIs, 24 object properties, 0 datatype
properties and 0 individuals, distributed over 4 component ontologies in SHZN. .

Once the ontologies are loaded into the reasoner and all qualitative data used
to characterize a users situation is gathered from the IYOUIT network, the data
is translated into an OWL situation description, represented as individuals of the
corresponding classes within the ontology (cf. Figure 3). A situation individual s
of class Situation is associated with individuals representing the abstract time
and location of the user, as well as the buddies detected in proximity using object



property axioms. Additionally, object property axioms are defined between the
considered user (a member of the Myself class) and the detected nearby buddies
corresponding to the established social relations as discussed above. Based on
the axiomatization of the subclasses of Situation, the derived situation of s
can be retrieved by asking the reasoning engine for its direct types. In a final
clean-up step, the situation individual s is again removed from the ontology,
together with all associated individuals and object property axioms.

In case of the situational reasoning, our main interest is to compare the ef-
fect of the utilized interface between the reasoner and the application, since the
actual inference problem is rather simple. Comparing the performance of one
classification task formulated with ontologies of varying size and complexity, we
examine the influence of the ontology modeling and the effect of the potential
use of (large) standard ontologies. Furthermore, we analyze the effect of retrac-
tion and incremental reasoning by defining one distinct classification task in the
following three steps: a) establishing a situation description by adding the corre-
sponding axioms; b) requesting the classification result; ¢) removing the axioms
describing the situation again.
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Fig. 4. Interface Performance

Figure 4 summaries the results we obtained with the latest available versions
of RacerPro (v1.9.3b), FaCT++ (v1.2.1) and Pellet (v2.0.0RC3). The reasoners
were connected via the OWL API, via DIG over HTTP using the corresponding
DIG OWL API connector, and, for RacerPro, additionally via the native JRacer
connection over TCP and the OWLIink interface over HTTP. While Pellet and
FaCT++4 run within the same memory partition with the OWL API interface
being directly connected via the corresponding connector (in case of FaCT++
using its JNT interface), the RacerPro OWL APT connector accesses RacerPro
via its native TCP interface.

Not surprisingly, the actual performance largely depends on the complexity
of the underlying ontology. However, the effect of the selected ontology seems
to influence the performance of RacerPro differently than the other reasoners.



RacerPro, connected via TCP and with support for retraction, outperformed the
in-memory connected reasoners Pellet and FaCT++ for the less complex and
non-cyclic ontologies. The native RacerPro connection, without the additional
overhead caused by the OWL API, showed an even better performance. However,
in earlier experiments we discovered that predecessors of Racer v1.9.1 performed
slower from run to run, an issue that seems to have been solved in later versions.
The DIG interface fails to properly transmit the ontology to the reasoner as some
constructs (like cardinality restrictions on datatype properties) are not supported
by this protocol.'® This results in cyclic knowledge bases for all three variants of
the ontologies, a bad overall performance, in OutOfMemory errors for Pellet in
some cases and DIGReasonerExceptions for FaCT++. OWLIink, the successor
of DIG, allows to transmit all of OWL 2 and supports retraction. OWLIlink via
HTTP using retraction outperforms even Pellet’s in-memory connection. On the
positive side, different versions of Pellet and FaCT++ connected via the OWL
API (cf. Figure 5) show a steady improvement of performance during the last
1.5 years, especially for the more complex versions of the ontology.
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Fig. 5. Reasoner Development

4 Conclusions

By applying Semantic Technologies in real-world applications, complex facts can
be described by a well-defined model instead of writing application specific code.
A major advantage of this approach is the clear separation of the application
logic from the underlying model, which (in principle) reduces the risk of system
failures. However, choosing the appropriate combination of a reasoning engine,
a communication interface and expressivity of the utilized ontology is an un-
derestimated complex and time-consuming task. To evaluate the performance of
the selected components, appropriate test cases seem to be inevitable. However,

18 Furthermore, the latest OWL API version translated exact cardinality restrictions
into invalid DIG syntax. An issue we fixed before running the experiments.



what is known for being a good solution in one case, might as well be an inap-
propriate solution in another case. Standard test environments such as the one
introduced by Gardiner et al. [17] point in the right direction as they allow for
specifying and verifying the expected results. However, this approach is based
on DIG, and therefore fails to transfer the entire set of OWL axioms to the
reasoning engine. Isolating condensed test cases when either dealing with huge
knowledge bases or in case the correct result is not known beforehand is a chal-
lenging issue in practice. Here, the recent advancement of the OWL API is most
welcome, since it makes comparing different reasoning engines and ontologies far
easier without having to adapt the core application logic. Likewise, OWLIink,
the recently introduced successor of DIG, offers an implementation-neutral and
extensible protocol for the communication with diverse OWL reasoning systems
(also supporting retraction). Yet, deploying applications as part of a Web-service
based server infrastructure, native reasoner connections via TCP can still have
an advantage compared to in-memory solutions. Here, the actual application is
not affected in case the reasoning engine might not be responsive any more.

Another noticeable trend in recent years is concerned with the improvement
of implemented optimization strategies of most reasoning engines. However, we
were wondering why the addition of incremental consistency checking under syn-
tactic Abox updates in Pellet v1.5.0 [18] and the newly introduced incremental
classifier of Pellet 2.0.0RC1 [19] did no have a larger impact on the performance
of our incremental situation classification task. At least for some cases, these
optimizations result in more efficient reasoning tasks. Yet, we found that for
relatively simple reasoning use cases in which the actual classification takes only
a minimal amount of time, the inference retrieval is by far the most expensive
task in the whole process. Part of the problem lies in the fact that there is no
appropriate interface that would allow for retrieving only inferred axioms from
the reasoning engine. As a result, the application itself needs to retrieve the en-
tire inference result, including all told axioms, to compute only newly inferred
axioms. To maintain correct inference results and to ensure efficient reasoning
tasks, only lightweight, specifically designed ontologies were considered. Utilizing
standard ontologies such as DOLCE [20] or OpenCyc!? to profit from a well-
defined cross domain vocabulary concurrently increases complexity with respect
to the inference traceability and might as well have a negative impact on the
overall reasoning performance since reasoning in OWL is not modular.

References

1. Grau, B.C., Horrocks, 1., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: The next step for OWL. Web Semantics: Science, Services and Agents on
the World Wide Web 6 (2008) 309-322

2. Liebig, T.: Reasoning with OWL: System Support and Insights. Technical Report
TR-2006-04, Ulm University, Germany (2006)

19 http://www.opencyc.org



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Weithoner, T., Liebig, T., Luther, M., Bohm, S., von Henke, F.W., Noppens, O.:
Real-world reasoning with OWL. In: Proc. of the 4th European Semantic Web
Conference (ESWC’07). (2007) 296-310

Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL
Ontology Benchmark. In: Proc. of the 3rd European Semantic Web Conference
(ESWC’06). Volume 4011 of LNCS., Springer (2006) 125-139

Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: Proc. of the 3rd Int. Semantic Web Conference (ISWC’04),
Hiroshima, Japan (2004) 274288

. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.

of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). (1998) 636647

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5 (2007) 51-53

Haarslev, V., Moller, R.: Description of the RACER system and its applications.
In: Proc. of the Int. Workshop on Description Logics. (2001)

Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient OWL Reasoner.
In: Proc. of the OWL Experiences and Directions Workshop at the ISWC’08. (2008)
Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable conjunctive query evaluation over large and expressive knowledge bases.
Technical report, IBM Watson Research Center (2008)

Lin, H., Sirin, E.: Pellint — A Performance Lint Tool for Pellet. In: Proc. of the
OWL Experiences and Directions Workshop at the ISWC’08. (2008)

Bohm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner, M., Wibbels, M.: In-
troducing IYOUIT. In: Int. Semantic Web Conf. (ISWC’08), October 27-29, 2008.
Volume 5318 of LNCS., Springer (2008) 804-817

Horridge, M., Bechhofer, S., Noppens, O.: The OWL API. In: Proc. of the 3rd
OWL Experiences and Directions Workshop at the ESWC’07. (2007)

Liebig, T., Luther, M., Noppens, O., Rodriguez, M., Calvanese, D., Wessel, M.,
Horridge, M., Bechhofer, S., Tsarkov, D., Sirin, E.: OWLIlink: DIG for OWL 2. In:
Proc. of the OWL Experiences and Directions Workshop at the ISWC’08. (2008)
Luther, M., Fukazawa, Y., Wagner, M., Kurakake, S.: Situational reasoning for
task-oriented mobile service recommendation. The Knowledge Engineering Review
23 (2008) 7-19

Pan, F., Hobbs, J.: Time in OWL-S. In: Proceedings of the AAAI Spring Sympo-
sium on Semantic Web Services, California, Stanford University (2004) 29-36
Gardiner, T., Horrocks, 1., Tsarkov, D.: Automated Benchmarking of Description
Logic Reasoners. In Parsia, B., Sattler, U., Toman, D.; eds.: Proc. of the Int.
Workshop on Description Logics (DL’06). Volume 189., CEUR.org (2006) 167174
Halaschek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syn-
tactic updates. In Meersman, R., Tari, Z., eds.: OTM Conferences. Volume 4275
of LNCS., Springer (2006) 722-737

Grau, B.C., Halaschek-Wiener, C., Kazakov, Y.: History matters: Incremental
ontology reasoning using modules. In: Proc. of the 6th Int. Semantic Web Conf.
and 2nd Asian Semantic Web Conf. (ISWC/ASWC’07). Volume 4825 of LNCS.,
Springer (2007) 183-196

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
ontologies with DOLCE. In: Proc. of the 13th Int. Conf. on Knowledge Engineering
and Knowledge Management. Volume 2473 of LNCS., Springer (2002) 166-181



