
Approximate Online Inference for Dynamic Markov Logic Networks

Thomas Geier, Susanne Biundo
Institute of Artificial Intelligence

Ulm University
Ulm, Germany

forename.surname@uni-ulm.de

Abstract—We examine the problem of filtering for dy-
namic probabilistic systems using Markov Logic Networks.
We propose a method to approximately compute the marginal
probabilities for the current state variables that is suitable for
online inference. Contrary to existing algorithms, our approach
does not work on the level of belief propagation, but can be
used with every algorithm suitable for inference in Markov
Logic Networks, such as MCSAT. We present an evaluation of
its performance on two dynamic domains.

Keywords-markov logic networks; dynamic probabilistic in-
ference; online inference

I. INTRODUCTION

One of the goals of Artificial Intelligence research is to
provide technical systems with the ability to take on tasks in
a real-world setting. A popular and very apparent example
is robot navigation and acting; but the problem stretches
further to any sensory platform, like a PC equipped with
a microphone or a video camera, or even a PC with only
mouse and keyboard input.

Any such system contains an explicit or, most of the time,
implicit model of its environment. For example, even the
saved user preferences of some software product are a model
of the product’s user. Most current technical systems rely on
deterministic models. But in order to gain flexibility and
robustness, the incorporation of uncertainty is sometimes
beneficial to accommodate for partial observability or non-
deterministic behavior. Incorporating statistical knowledge
to make “best guesses” about a user’s preferences can
enhance situations where the total time of interaction is not
long enough to justify letting the user explicitly state any
preferences. For example, a ticket vending machine at a
train station can categorize a user into beginner or expert
in order to decide between a very simple or a more efficient
user interface on the fly.

One tool for creating such probabilistic models can be
Markov Logic Networks (MLN) [1]. They combine first-
order predicate logic with probabilistic semantics and allow
a more abstract and convenient way of modeling proba-
bilistic systems than working at a propositional level like
it is necessary when crafting Bayesian networks directly.
Probabilistic weights can be provided by experts, taken
from literature, or they can be retrieved from data sets by
parameter learning techniques.

In addition, to be able to model more complex systems
it is often necessary to incorporate time for systems that
change dynamically and information from a past state shall
be carried over by means of the probabilistic model. Such
problems can range from object tracking to the development
of markets or social networks.

In two experimental setups, dynamic MLNs have already
been used to model and recognize events from pre-processed
video data of a parking lot surveillance scene [2] and from
GPS data recorded during a game of capture the flag [3].
In both settings, the MLNs have been applied in an offline
mode, where the inference is done over a defined time frame,
usually the whole experiment, after the experiment is over.
For real applications this solution is often insufficient and a
method is needed that can run online and in real-time.

Recent publications by Nath and Domingos address the
need for efficient online inference methods for MLNs [4],
[5]. Their approach of Expanding Frontier Belief Propa-
gation (EFBP) describes a message computation schedule
for belief propagation. The method aims to reuse past
computation results when making incremental changes to
the model.

Although belief propagation is usually very fast, it can
fail to converge to the correct solution or even enter into
oscillation when applied to loopy graphs. For this reason,
we propose an alternative approach of reusing past inference
results, which is not limited to belief propagation, but can
also be applied to MCMC methods and inference algorithms
special to MLNs, like MCSAT. This is achieved by con-
structing a new MLN for each time step which is then
augmented with additional information that is taken from
the marginal probabilities obtained during the computation
for the last time step. The disadvantage of not working on
the level of message passing is a loss in flexibility. While
EFBP can be tuned to weigh accuracy against speed by the
use of a parameter, the approach presented in this paper is
fixed to compute only approximate results.

The rest of the paper is structured as follows. First we
describe MLNs and our approximation method. Then we
give an overview of the relevant related work. Finally we
provide an evaluation of the method using two dynamic do-
mains. The paper closes with a conclusion and a perspective
on future applications.

II. MARKOV LOGIC NETWORKS

In the following paragraphs, we describe MLNs and their
probabilistic semantics. After introducing dynamic Markov
Logic Networks (DMLN), we define slice networks as an
approximation to a DMLN.

A Markov logic network L = {(f1, w1), . . . , (fn, wn)}
for n ∈ N is a set of first-order formulas f1, . . . , fn that are
given weights w1, . . . , wn ∈ R. Together with a finite set of
constants C, they define a probability distribution over all
interpretations (or possible worlds). An interpretation maps
each grounding of each predicate to a truth value. Let g(f)
be the set of groundings of formula f obtained by replacing
the free variables in f by all combinations of constants
from C. Given an interpretation x, then ni(x)

def
= |{g | g ∈

g(fi) and x |= g}| are the number of groundings of formula
fi that are true under x. Then the probability distribution PL

that is defined by the MLN L is given as

PL(X = x)
def
=

1

Z

∏
i

exp
(
wini(x)

)
(1)

where i ranges over all formulas in L and Z is the normal-
ization constant.

Note that we can consider an interpretation to be an
assignment to a multivariate probability distribution where
the random variables are the truth values of the elements of
the Herbrand base (the atoms formed by the grounding of the
predicates). We can thus compute the marginal probability
of a ground atom p being true as

PL(p)
def
=

1

Z

∑
x

PL(X = x)Ix(p), (2)

where the function Ix maps p to 1 if x |= p and to 0,
otherwise.

For practical reasons a sorted (or typed) logical language
is used for MLNs. In order to model dynamic domains we
assign a dedicated time sort T whose constants are elements
from the natural numbers, i.e., CT ⊆ N. We demand that
the time parameter appears as the first argument in every
time-dependent predicate. A dynamic Markov logic network
is a MLN for which such a dedicated time sort T exists. We
call a DMLN pure, if all predicates are time-dependent.

A. Slice Networks

The main idea of the paper is to reuse old computations
when doing inference over a DMLN progressing in time.
When employing a belief propagation algorithm, this can
be achieved by selectively updating only newer nodes while
reusing the messages emitted by older nodes, like it is done
by EFBP. Contrary, reusing past results when performing
inference with MCMC methods is not as simple, because
new evidence usually invalidates already obtained samples.
Also, MCSAT does not lend itself very well to tweaking,
because it requires that factors are given as weighted logical

Table I: Listing of the MLNs, used for evaluation. The upper
one, which is an adaption of the classic smokers example
to a dynamic domain, is taken from Kersting et. al [6]. The
lower one is inspired by the social force model for pedestrian
movement [7].

(a) Dynamic Smokers Domain

//smoking causes cancer
1.0 smokes(t,x)⇒cancer(t,x)

//friends share smoking habits
1.0 friends(t,x,y)⇒(smokes(t,x)⇔smokes(t,y))

//friendship persists over time
3.0 friends(t,x,y)⇔friends(t+1,x,y)

//smoking persists over time
3.0 smokes(t,x)⇔smokes(t+1,x)

(b) Social Force Domain

//predicate is functional in Location
at(Time, Agent, Location!)

//only move one step at a time
2 at(t+1,a,x) ⇒ at(t,a,x-1) ∨ at(t,a,x)

∨ at(t,a,x+1)

//two agents do not occupy the same location
1.5 !(at(t,a1,x) ∧ at(t,a2,x))

formulas. Thus one cannot simply add arbitrary factors to
an existing network.

We overcome these problems by using the marginal
probabilities of ground atoms of a past time step to construct
weighted formulas to be included in the network for the
next time step. These formulas capture the summary over
the removed messages from the older time slice. Obtaining
simply a new MLN, we can then run inference with every
algorithm that is suited to compute marginal probabilities
for MLNs. We are now going to introduce the necessary
vocabulary.

If L is a pure DMLN, then L[t] is a DMLN, for which
the time sort has only two constants t− 1 and t, i.e., CT =
{t−1, t} and all formulas that contain only atoms of a single
time step are fixed to the time t. We call such a temporal
fragment a slice network.

The Herbrand base of a slice for time step t thus contains
only the ground atoms of time t and t − 1. The intra-
time formulas that relate between variables at time t − 1
are removed. Figure 1 illustrates which components of an
unrolled network are instantiated for a certain slice when
the ground MLN is seen as a factor graph. Note that ground
formulas are factor nodes and ground atoms are variable
nodes.

As a textual example, we look at the smokers domain
from Table I. To create the slice for time 3, we ground all

c

b

a

c

b

a

c

b

a

c

b

a

t− 2 t− 1 t t+ 1

Figure 1: The figure shows a factor graph representation of a
ground slice network for time t in bold, while the complete
network over the whole time span is indicated dashed. The
box surrounds the ground atoms associated with time t. The
square nodes are the factor nodes, which are induced by
ground formulas. The circles are variable nodes representing
ground atoms. Notice the slice network at time t contains
only the intra-time formula connecting variable b and c for
time t, although both variables are also instantiated for time
t− 1.

inter-time formulas to the time frame between 2 and 3 and
ground all intra-time formulas to the time 3. The resulting
slice network is given as follows:

//intra-time formulas
1.0 smokes(3,x)⇒cancer(3,x)
1.0 friends(3,x,y)

⇒(smokes(3,x)⇔smokes(3,y))

//inter-time formulas
3.0 friends(2,x,y)⇔friends(3,x,y)
3.0 smokes(2,x)⇔smokes(3,x)

What is still left to describe is the process of transferring
information from one slice to the next. This is done by
adding formulas that capture the marginal distribution for
each ground atom as it was calculated during the last slice;
we call this process augmentation.

Given a MLN L, a set of ground atoms V , and a
function p : V → [0, 1], that maps atoms to their marginal
probabilities, we define the augmented MLN by

L ↑ (V, p) def
= L ∪

{(
f, ln

p(f)

1− p(f)

)
| f ∈ V

}
. (3)

The augmentation preserves only some information from
a previous slice. To stay exact, it would be necessary to carry
over the joint distribution over the random variables in the
last time step. We approximate the joint distribution by the
marginal distributions over the atoms inside the last time

step, assuming marginal independence. This approximation
is also done in the factored frontier algorithm for dynamic
Bayesian networks [8].

Given a pure DMLN L, we define the sequence of
augmented slice networks as the augmented MLNs Li, with
0 ≤ i in the following way:

L0
def
= L[0] (4)

Li
def
= L[i] ↑ (Vi−1, pi−1) (5)

The second definition uses the set Vi−1 to refer to the ground
atoms of time i−1. Also, we have abbreviated the marginal
probabilities described by the MLN Li−1 with pi−1.

The reasoning why the augmentation is defined as de-
scribed goes as follows. We assume that we are performing
belief propagation on the ground factor graph, where each
ground formula corresponds to a factor node and is adjacent
to the variable nodes of the ground atoms that appear inside
the formula. We want to create a new factor fv for each
variable node v of time t − 1 in slice t that summarizes
the incoming messages to v originating from the removed
factors during the instantiation of slice t− 1.

Since all factors that were present during slice t − 1
are removed in slice t, we must summarize all incoming
messages for v. Fortunately, the marginal distribution of
v during slice t − 1 is exactly the summary over those
messages. And this can be obtained even if we do not
have access to the messages in the first place, e.g., when
running an MCMC algorithm. Thus by adding a factor that
emits the marginal distribution of v during the last slice,
i.e., pt−1(v), as its constant message to v, we capture the
“frozen” messages from slice t − 1 and can put them into
the model for slice t. This construction is sound and exact
as long as the factor graph contains no cycles spanning over
two time steps. Because then, the messages coming from the
older part will not change in the light of information coming
from the newer network and can be safely frozen.

We have now defined a series of MLNs, we call slice
MLNs, that each range over two time steps. The marginal
probabilities that are defined by them are an approximation
to the marginal probabilities defined by the DMLN that
ranges over the complete time span. The definition indicates
the intended way of inferring those probabilities. This is
done by successively constructing the slice networks, infer-
ring their marginal probabilities, constructing the next slice
using the output of the last, and so forth. For computing the
marginal probabilities of a slice, every inference algorithm
that works on MLNs and computes marginal probabilities
can be used.

III. RELATED WORK

Nath and Domingos have made two contributions to
online inference for MLNs in 2010. In “Efficient Lifting
for Online Probabilistic Inference” [4] they describe a way

to update lifted networks in order to reduce the cost of the
lifting procedure when dealing with incremental changes.
As a dynamic application, they apply their algorithm to the
computer vision task of video background segmentation over
short snippets (about ten frames) of motion data.

In “Efficient Belief Propagation for Utility Maximization
and Repeated Inference” [5], they describe an algorithm
called Expanding Frontier Belief Propagation, whose pur-
pose is to reuse as much information from an earlier run of
belief propagation as possible. This approach is applicable
to changes of evidence and network structure, and can thus
be useful for online inference. We describe this approach in
more detail, as it is related to the idea of slice networks.

EFBP begins by performing normal belief propagation on
a Markov network. The final messages after convergence are
stored. Then the network gets changed, which in our case
means the addition of a new temporal step and the according
evidence. All nodes that are directly affected by the change
are considered active. Then belief propagation is performed
with only the active nodes recomputing their messages.
The new messages are constantly compared with the stored
messages from the computation before the network update.
If a non-active node receives a message that differs more
than a predefined constant from the old message, then it
gets activated and participates in belief propagation for the
updated network.

The nodes that are activated directly after a network up-
date in EFBP are the nodes that are part of the current slice in
our approach. The difference to the slice network approach is
that we cannot activate additional nodes and thus our method
is a special case of EFBP where the message threshold is
infinity and no nodes are activated. But in contrast to EFBP,
slice networks allow using different inference algorithms
than EFBP, which requires belief propagation.

IV. EVALUATION

We have implemented the slice method for MLNs and
a set of inference algorithms based on a factor graph
representation using the Scala programming language. The
Alchemy system1 and pyMLNs2 have been used as reference
implementations. The system, including the experiments, is
available for download at our website3. The experiments
were run on an Intel Core2 CPU with 2.8 GHz and 4 GB
of RAM.

We have evaluated the approach using two domains.
The listing for both is given in Table I. The first domain
is a simple model of pedestrian movement. Agents may
wander in a one-dimensional space and they are repelled by
other agents. We have simulated this problem for 20 time
steps and two agents. Evidence was added as indicated in
the figure. We have used loopy belief propagation with a

1http://alchemy.cs.washington.edu
2http://www9-old.in.tum.de/people/jain/mlns
3http://www.uni-ulm.de/in/ki/forschung/mln/scb

Time

L
oc

at
io

n

(a) Slice Filtering

Time

L
oc

at
io

n

(b) Normal Filtering

Figure 2: Two plots of the probability distribution for the
location of only agent A against time. We have observed
the positions of both agents A and B at several time steps,
annotated by letters. For example at time 5, agent A is at
location 2 and agent B is at location 3. Darker cells represent
higher probability of agent A occupying the location. We
have plotted the slice approximation (a) and inferring over
the complete unrolled network up to the current time step
(b). Notice, the approximation does not differ much from
the exact solution.

flooding schedule as the inference algorithm. We ran four
parallel computations until the marginals have converged
below a variance of 10−5. The probability distributions are
graphically visualized in Figure 2.

The difference between inference using slice networks
(a) and normal inference (b) is very small for the given
domain and problem. Whether the error produced by the
approximation is feasible depends on the inference task and
the requirements of the application.

For the second experiment, we have measured the running
times of the slice version of Gibbs sampling and MCSAT
against inference on the unrolled network. This was done
using the dynamic smokers domain by Kersting et al. [6].
We have chosen a simpler setup than theirs with only four
persons to reduce the inference times for the experiment. We
have simulated the problem for 12 time steps. Again we ran

0 2 4 6 8 10 12

10−1

100

101

Time

C
PU

Ti
m

e
(s

)

Gibbs normal
Gibbs slice

(a) Gibbs Sampling

0 2 4 6 8 10 12

10−1

100

101

102

103

Time

C
PU

Ti
m

e
(s

)

MCSAT normal
MCSAT slice

(b) MCSAT

Figure 3: The plots list the running time of Gibbs sampling
and MCSAT both on the unrolled network and incrementally
using the slicing approach for 12 time steps.

four parallel computations until the marginal probabilities
converged to a maximum variance below 0.003. To help
the convergence of the Gibbs sampler, we have reduced the
weights on some formulas in contrast to the original model.
We have also added random evidence, observing a random
truth value for each ground atom with a probability of 0.5,
thus observing about one half of the random variables. We
compare the computation time of unrolled inference for each
increment of time against the incremental inference times for
the slice network approach.

The CPU time for the unrolled computations increases
with the time span over which to infer, while the compu-
tation times for the slicing approach roughly stay constant.
As expected the effort for the slice approach is very low
compared to redoing inference on the unrolled network on
each time step.

V. CONCLUSION AND FUTURE WORK

We have presented an approach for approximate computa-
tion of marginal probabilities for DMLNs that is suitable for
online inference. The approximation ensures that at every
time step only a limited amount of computation must be
performed. The concept of slice MLNs is both a special
case of the EFBP algorithm and a generalization. The
EFBP algorithm is more flexible than using slice networks
because it allows to trade in speed for improved accuracy.
On the other hand EFBP is limited to belief propagation
inference while slice networks allow to employ any inference
algorithm for marginal probabilities of MLNs.

In the future, we intend to apply probabilistic models
based on MLNs to the integration of sensory data with
symbolic knowledge. Among the planned applications is the
selection of output modalities for multi-modal user interfaces
based on the environmental situation, like lighting and noise
level. Properties of the user and personal preferences shall
also be taken into account. For this application, a fast
inference algorithm is particularly important in order to
reduce the experienced lag of the resulting system.

ACKNOWLEDGMENT

This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

REFERENCES

[1] M. Richardson and P. Domingos, “Markov logic networks,”
Machine Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[2] S. Tran and L. Davis, “Event modeling and recognition using
markov logic networks,” Computer Vision–ECCV 2008, pp.
610–623, 2008.

[3] A. Sadilek and H. Kautz, “Recognizing multi-agent activities
from GPS data,” in Proceedings of the 24th AAAI Conference
on Artificial Intelligence, 2010, pp. 1134–1139.

[4] A. Nath and P. Domingos, “Efficient lifting for online proba-
bilistic inference,” in Proceedings of the 24th AAAI Conference
on Artificial Intelligence, 2010, pp. 1194–1198.

[5] A. Nath and Domingos, “Efficient Belief Propagation for
Utility Maximization and Repeated Inference,” in Proceedings
of the 24th AAAI Conference on Artificial Intelligence, 2010,
pp. 1187–1192.

[6] K. Kersting, B. Ahmadi, and S. Natarajan, “Counting belief
propagation,” in Proceedings of the 25th Conference on Un-
certainty in Artificial Intelligence. AUAI Press, 2009, pp.
277–284.

[7] D. Helbing and P. Molnár, “Social force model for pedestrian
dynamics,” Phys. Rev. E, vol. 51, no. 5, pp. 4282–4286, 1995.

[8] K. Murphy and Y. Weiss, “The factored frontier algorithm for
approximate inference in DBNs,” in Proceedings of the 17th
Conference on Uncertainty in AI, 2001, pp. 378–385.

