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We give a simplified propositional HTN formalization inspired by the
formalization of Erol et al. [2] and show

• the plan existence problem is still undecidable despite the
simplifications

• HTN planning with insertion (hybrid planning) is decidable;
from the proof of decidability, we obtain an upper complexity
bound of EXPSPACE for the plan existence problem for propo-
sitional hybrid planning

Abstract

A task network tn = (T,≺) is a partially ordered sequence of tasks:

• T is a finite and non-empty set of tasks

• ≺ ⊆ T ×T is a strict partial order on T

Definition (Task Network)

A planning problem is a 6-tuple P = (V,C,O,M,cI,sI) and

• V is a finite set of state variables

•C is a finite set of compound tasks

• O is a finite set of primitive tasks,
for o ∈ O, (prec(o),add(o),del(o)) ∈ 2V ×2V ×2V is an operator

•M ⊆C×TN is a finite set of decomposition methods

• cI ∈C is the initial task

• sI ∈ 2V is the initial state

Note that the part of the planning problem that is usually called
the domain (tasks and methods) is given with the problem.

Definition (Planning Problem)

Figure 1: a search space fragment
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1. Decomposition:

• given a task network tn = (T,≺), use method (t, tn′) ∈M
to replace t ∈ T by tn′. Then adjust ordering constraints.

2. Insertion:

• insert primitive tasks from O
• insert ordering constraints

Possible Modifications

Figure 2: decomposition methods
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Here, the decomposition methods describe two context-free
grammars (CFGs); their languages are L(G) = a(a|b)+b and

L(G′) = (a′(a′|b′))∗a′b′.

1. A task network tn is an HTN solution iff:

• tn is obtained via decomposition
• there is an executable linearization of tn’s tasks

2. A task network tn is a hybrid solution iff:

• tn is obtained by decomposition followed by insertion
• there is an executable linearization of tn’s tasks

Solution Criterion

Figure 3: structure of solutions
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The plan existence problem is undecidable for HTN planning.

Proof idea (by Erol et al. [4]):

• the following question is undecidable: Given two CFGs, do
their languages produce a common word?

• observe that the production rules of CFGs can be simulated
by decomposition methods

• given two CFGs, construct a planning problem which has an
HTN solution iff the languages of the two grammars have
a non-empty intersection

Theorem

Figure 4: removing cycles from a decomposition tree
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Imposing certain restrictions on planning problems can make HTN
planning decidable:

Criterion 1: Decomposition tree is acyclic
Intuition: search space becomes finite.

Criterion 2: All methods are totally ordered (cf. SHOP system [5])
Intuition: solution corresponds to an intersection of a regular gram-
mar with one that is context-free (decidable problem).

Criterion 3: Methods contain at most one compound task (regular)
Intuition: the combinations of possible states before and after the
abstract task are finite.

Criterion 4: Allow task insertion
Intuition: insertion makes cyclic method applications superfluous
→ minimal solution lengths are bounded like in classical planning.

Decidability Criteria

The plan existence problem is decidable for hybrid planning.

Proof Idea:

• establish an upper bound on the size of shortest solutions

• enumerate all short task networks and check whether they
are a solution

• if no solution has been found, then we know that no solution
exists at all

Theorem

Any hybrid solution to P can be constructed using at most bc

decompositions where b is the number of tasks inside the largest
method. (maximum branching factor of the decomposition tree)

We apply the idea of the pumping lemma for context-free grammars
to task decomposition:

1. remove all cycles from the decomposition tree

2. replace the removed elements using task and ordering insertion

Right after decomposition the intermediate task network contains at
most b|C| tasks because the depth of the generating tree is limited by
the number of compound tasks |C|.

Proof — Bounding Decomposition

Figure 5: pumping down decompositions
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Given a task network tn with n tasks, we have to insert at most n2|V |

additional tasks to turn it into a solution, if this is possible at all.

• to obtain the bound, fix a (totally ordered) solution that contains
tn; thus it can be obtained from tn via insertion

• remove all task sequences that produce loops in the state space
and that do not contain tasks from tn

• we obtain a solution which contains at most n(2|V |+1) tasks

Proof — Bounding Task Insertion

For every planning problem P, there exists a hybrid solution with at
most b|C|(2|V |+1) tasks if such a solution exists at all.

The bound follows from the bounds on task decomposition and the
bound on task insertion.

Proof — Bounding Solutions

• allowing task insertion makes HTN planning decidable resulting in the following
complexity classes [1, 3, 4]:

classical hybrid HTN

lifted EXPSPACE-complete EXPSPACE-hard RE

propositional PSPACE-complete PSPACE-hard ∩ EXPSPACE RE

Computational Complexity

• one can think of HTN planning with insertion having a different meaning than HTN planning

I HTN planning: specifies, what must not be in a plan
I Hybrid planning: specifies, what has to be in a plan
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