sfb transregio 62 Companion Technology

On the Decidability of HTN Planning with Task Insertion

Thomas Geier and Pascal Bercher

Institute of Artificial Intelligence, Ulm University, Germany

IJCAI 2011, International Joint Conference on Artificial Intelligence, 19-22 July 2011, Barcelona, Spain

Abstract

We give a simplified propositional HTN formalization inspired by the formalization of Erol et al. [2] and show

- the plan existence problem is still undecidable despite the simplifications
- HTN planning with insertion (hybrid planning) is decidable; from the proof of decidability, we obtain an upper complexity bound of **EXPSPACE** for the plan existence problem for propositional hybrid planning

Definition (Task Network)

- A *task network* $tn = (T, \prec)$ is a partially ordered sequence of tasks:
- T is a finite and non-empty set of tasks
- $\prec \subseteq T \times T$ is a strict partial order on T

Possible Modifications

- 1. Decomposition:
 - given a task network $tn = (T, \prec)$, use method $(t, tn') \in M$ to replace $t \in T$ by tn'. Then adjust ordering constraints.
- 2. Insertion:
 - insert primitive tasks from O
 - insert ordering constraints

Figure 2: decomposition methods

Decidability Criteria

Imposing certain restrictions on planning problems can make HTN planning decidable:

Criterion 1: Decomposition tree is acyclic *Intuition:* search space becomes finite.

Criterion 2: All methods are totally ordered (cf. SHOP system [5]) *Intuition:* solution corresponds to an intersection of a regular grammar with one that is context-free (decidable problem).

Criterion 3: Methods contain at most one compound task (regular) *Intuition:* the combinations of possible states before and after the abstract task are finite.

Criterion 4: Allow task insertion

Intuition: insertion makes cyclic method applications superfluous \rightarrow minimal solution lengths are bounded like in classical planning.

Definition (Planning Problem)

- A planning problem is a 6-tuple $P = (V, C, O, M, c_I, s_I)$ and
- *V* is a finite set of *state variables*
- *C* is a finite set of *compound tasks*
- *O* is a finite set of *primitive tasks*,
- for $o \in O$, $(\operatorname{prec}(o), \operatorname{add}(o), \operatorname{del}(o)) \in 2^V \times 2^V \times 2^V$ is an operator
- $M \subseteq C \times TN$ is a finite set of *decomposition methods*
- $c_I \in C$ is the *initial task*
- $s_I \in 2^V$ is the *initial state*

Note that the part of the planning problem that is usually called the *domain* (tasks and methods) is given with the problem.

Figure 1: a search space fragment

Here, the decomposition methods describe two context-free grammars (CFGs); their languages are $L(G) = a(a|b)^+b$ and $L(G') = (a'(a'|b'))^*a'b'$.

Solution Criterion

- 1. A task network tn is an HTN solution iff:
- tn is obtained via decomposition
- there is an executable linearization of tn's tasks
- 2. A task network tn is a hybrid solution iff:
 - tn is obtained by decomposition followed by insertion
 - there is an executable linearization of tn's tasks

Figure 3: structure of solutions

Theorem

The plan existence problem is *decidable* for hybrid planning.

Proof Idea:

- establish an upper bound on the size of shortest solutions
- enumerate all short task networks and check whether they are a solution
- if no solution has been found, then we know that no solution exists at all

Proof — Bounding Decomposition

Any hybrid solution to P can be constructed using at most b^c decompositions where b is the number of tasks inside the largest method. (maximum branching factor of the decomposition tree)

We apply the idea of the pumping lemma for context-free grammars to task decomposition:

- 1. remove all cycles from the decomposition tree
- 2. replace the removed elements using task and ordering insertion

Right after decomposition the intermediate task network contains at most $b^{|C|}$ tasks because the depth of the generating tree is limited by the number of compound tasks |C|.

Figure 5: pumping down decompositions

Theorem

The plan existence problem is undecidable for HTN planning.

Proof idea (by Erol et al. [4]):

- the following question is undecidable: Given two CFGs, do their languages produce a common word?
- observe that the production rules of CFGs can be simulated by decomposition methods
- given two CFGs, construct a planning problem which has an HTN solution iff the languages of the two grammars have a non-empty intersection

Proof — Bounding Task Insertion

Given a task network tn with n tasks, we have to insert at most $n2^{|V|}$ additional tasks to turn it into a solution, if this is possible at all.

- to obtain the bound, fix a (totally ordered) solution that contains tn; thus it can be obtained from tn via insertion
- remove all task sequences that produce loops in the state space and that do not contain tasks from tn
- we obtain a solution which contains at most $n(2^{|V|}+1)$ tasks

Proof — Bounding Solutions

For every planning problem *P*, there exists a hybrid solution with at most $b^{|C|}(2^{|V|}+1)$ tasks if such a solution exists at all.

Figure 4: removing cycles from a decomposition tree

The bound follows from the bounds on task decomposition and the bound on task insertion.

Conclusion & Discussion

 allowing task insertion makes HTN planning decidable resulting in the following complexity classes [1, 3, 4]:

	Computational Complexity		
	classical	hybrid	HTN
lifted	EXPSPACE-complete	EXPSPACE-hard	RE
propositional	PSPACE-complete	PSPACE -hard ∩ EXPSPACE	RE

• one can think of HTN planning with insertion having a different meaning than HTN planning

- ► HTN planning: specifies, what **must not** be in a plan
- ► Hybrid planning: specifies, what has to be in a plan

References

[1] Tom Bylander. Complexity results for planning. Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI 1991), pages 274–279, 1991.

[2] Kutluhan Erol, James Hendler, and Dana S. Nau. UMCP: A sound and complete procedure for hierarchical task-network planning. Proceedings of the 2nd International Conference on Artificial Intelligence Planning Systems (AIPS 1994), pages 249–254, 1994.

[3] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decidability and undecidability results for domain-independent planning. Artificial Intelligence, 76:75–88, 1995.

[4] Kutluhan Erol, James Hendler, and Dana S. Nau. Complexity results for HTN planning. Annals of Mathematics and Artificial Intelligence, 18(1):69–93, 1996.

[5] Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. The SHOP Planning System. Al Magazine, 22(3):91–94, 2001.

Deutsche Forschungsgemeinschaft **DFG**