Using SPARQL with RDFS and OWL Entailment

Birte Glimm

The University of Oxford, Department of Computer Science, UK

Abstract. This chapter accompanies the lecture on SPARQL with entailment
regimes at the 7% Reasoning Web Summer School in Galway, Ireland, 2011.
SPARQL is a query language and protocol for data specified in the Resource De-
scription Format (RDF). The basic evaluation mechanism for SPARQL queries
is based on subgraph matching. The query criteria are given in the form of RDF
triples possibly with variables in place of the subject, object, or predicate of a
triple, called basic graph patterns. Each instantiation of the variables that yields
a subgraph of the queried RDF graph constitutes a solution. The query language
further contains capabilities for querying for optional basic graph patterns, al-
ternative graph patterns etc. We first introduce the main features of SPARQL as
a query language. In order to define the semantics of a query, we show how a
query can be translated to an abstract query, which can then be evaluated ac-
cording to SPARQL’s query evaluation mechanism. Apart from the features of
SPARQL 1.0, we also briefly introduce the new features of SPARQL 1.1, which
is currently being developed by the Data Access Working Group of the World
Wide Web Consortium.

In the second part of these notes, we introduce SPARQL’s extension point for
basic graph pattern matching. We illustrate how this extension point can be used
to define a semantics for basic graph pattern evaluation based on more elaborate
semantics such as RDF Schema (RDFS) entailment or OWL entailment. This al-
lows for solutions to a query that implicitly follow from an RDF graph, but which
are not necessarily explicitly present. We illustrate what constitutes an extension
point and how problems that arise from using a semantic entailment relation can
be addressed. We first introduce SPARQL in combination with the RDFS entail-
ment relation and then move on to the more expressive Web Ontology Language
OWL. We cover OWL'’s Direct Semantics, which is based on Description Logics,
and the RDF-Based Semantics, which is an extension of the RDFS semantics.
For the RDF-Based Semantics we mainly focus on the OWL 2 RL profile, which
allows for an efficient implementation using rule engines.

We assume that readers have a basic knowledge of RDF and Turtle, which we
use in examples. For the OWL parts, we assume some background in OWL or
Description Logics (see lecture notes Foundations of Description Logics). The
examples for the OWL part are given in Turtle, OWL’s functional-style syntax
and Description Logics syntax. Although the inferences that are relevant for the
example queries are explained, a basic idea about OWL’s modeling constructs
and their semantics are certainly helpful.

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides a
mechanism via which users and applications can interact with ontologies and data. Sev-
eral query languages have been designed for this purpose, including RDQL, SeRQL
and, most recently, SPARQL. We consider the SPARQL [26] query language (pro-
nounce sparkle) here, which was standardized in 2008 by the World Wide Web Con-
sortium (W3C) and which is now supported by most RDF triple stores. Currently, the
next SPARQL standard is being developed by W3C, named SPARQL 1.1 [13]. Apart
from being a query language, the W3C standard also defines a protocol for communi-
cating queries between client and server [11] and a results format for representing query
results in XML [5].

The main mechanism for computing query results in SPARQL is subgraph match-
ing: RDF triples in both the queried RDF data and the query pattern are interpreted as
nodes and edges of directed graphs, and the resulting query graph is matched to the data
graph using variables as wild cards.

In this section, we give some simple examples of SPARQL queries and the query
evaluation process. We further introduce the basic ideas behind entailment regimes. In
Section 2, we introduce the general features of SPARQL in more detail and explain
more formally how a SPARQL query is evaluated. We then introduce SPARQL entail-
ment regimes and explain the design rationals behind the RDFS entailment regime in
Section 3. Next, we clarify the relationship between OWL’s structural specification and
RDF graphs in and introduce the OWL Direct Semantics Entailment Regime in Sec-
tion 4. Finally, we give some exercises and pointers to additional literature for further
reading.

1.1 SPARQL Query Examples

We start with a simple example that illustrates SPARQL’s standard query evaluation
mechanism, which is based on sub-graph matching. We use Turtle [4] to write down
RDF data throughout this chapter and we use the RDF triples shown in Table 1 through-
out this and the next section.

Example 1 We consider the following SPARQL query over that data from Table 1:

PREFIX foaf: <http://xmiIns.com/foaf/0.1/>
SELECT ?name?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox }

For the query, we start by declaring a prefix that allows for abbreviating otherwise long IRIs
in the query body. In the remainder we omit this prefix declaration, but assume that the foaf
prefix is declared as above. The main part of the query starts with a select clause that specifies
which variables should be returned with their bindings as part of the result. The where clause
specifies the conditions that answers have to satisfy. Note that the where clause is still written
as a set of triples as in the data above, but the subject and the object are now variables. In order
to evaluate such a basic graph pattern (BGP), we substitute the variables with terms from the
data and if the substitution yields a subgraph of the queried graph, the substituted values are
called a solution. The BGP from the above query yields the solutions:

Table 1. Example data used in Section 1 and 2

@prefix foaf: <http://xmins.com/foaf/0.1/>.
_a foaf:name "Birte Glimm".
_:a foaf:mbox "b.glimm@googlemail.com".
_:a foaficqChatID "b.glimm".
_:a foaf:aimChatID "b.glimm".
_b foaf:name "Sebastian Rudolph".
_b foaf:mbox <mailto:rudolph @kit.edu>.
_:c foaf.name "Pascal Hitzler".
_:C foaf:aimChatID "phi".
foaficqChatID rdfs:subPropertyOf foaf:nick.
foaf:name rdfs:domain foaf:Person.
7x name 7mbox
_:a "Birte Glimm" "b.glimm@googlemail.com"

_:b "Sebastian Rudolph" <mailto:rudolph @kit.edu>

Since the select clause only specifies 7name and ?mbox as output variables, a further projection
step is required to evaluate the complete query, which only leaves the values for 2name and
?mbox in the query solutions.

1.2 RDF Datasets

Some might be surprised by the absence of a from clause in the query from Exam-
ple 1, which specifies which data is to be queried. This is because SPARQL queries
are executed against an RDF dataset, which represents a collection of graphs, and each
SPARQL query engine has a default dataset that is normally used. An RDF dataset
comprises one graph, called the default graph, which does not have a name, and zero or
more named graphs, where each named graph is identified by an IRI. Unless we change
the so called active graph for the BGP evaluation with the GRAPH keyword to one of
the named graphs, the query is executed against the default graph. In Example 1 the ac-
tive graph is the default graph, which we have implicitly assumed to contain the given
set of triples. Alternatively, a SPARQL query may specify a custom dataset that is to be
used for matching by using the FROM and FROM NAMED keyword. In this case, the
dataset used for the query consists of a default graph, which is obtained by merging all
graphs referred to in a from clause, and a set of (IRI, graph) pairs, one from each from
named clause.

Example 2 For an example with custom datasets, let us assume that the data from Table 1
is available under the IRI <http://example.org/foaf/myFoaf>. The following query creates a
custom dataset with an empty default graph (no FROM clause) and one named graph.

SELECT ?name?mbox
FROM NAMED <http://example.org/foaf/myFoaf>
WHERE { GRAPH <http://example.org/foaf/myFoaf>
{ 2x foaf:name ?name. ?x foaf:mbox ?mbox }

}

Since we used the GRAPH keyword, the active graph for the BGP evaluation is the given
named graph. Alternatively, we could use a variable instead of the IRI for the GRAPH keyword,
which would evaluate the BGP once over each named graph, binding the graph variable to the
corresponding IRI of the named graph. The query answer is the same as for Example 1.

1.3 Blank Nodes in Queries and Query Results

Finally, we want to point out that in our intermediate results for the query from Ex-
ample 1 we use exactly the same blank node names as in the data from Table 1. This
does not have to be the case. Blank nodes just denote the existence of something and we
cannot rely on a label being used consistently, it can change when a graph is reloaded or
during a merge operation. Furthermore, the query is in fact evaluated against the scop-
ing graph, which is equivalent to the active graph, but allows for renaming of blank
nodes. Thus, evaluating the BGP could equally result in the solutions where _:a is re-
named into _:X and _:b is consistently renamed into _:y. Note, however, that we cannot
rename _:a and _:b into the same blank node, nor can we rename the first occurrence
of _:b different from the second occurrence.

Since blank node merely denote the existence of something, we can also not under-
stand a blank node in the query as referring to an element with exactly that blank node
label in the queried graph. Blank nodes in a BGP can rather be understood as variables,
which are immediately projected out after BGP matching, i.e., a blank node cannot oc-
cur in the SELECT clause. Since in Example 1 we are not interested in the concrete
value that 7x is mapped to, we could equally replace the query pattern with

{ _:x foaf:name ?name . _:x foaf:mbox ?mbox }

which exactly the same results.

1.4 SPARQL Entailment Regimes

Various W3C standards, including RDF and OWL, provide semantic interpretations
for RDF graphs that allow additional RDF statements to be inferred from explicitly
given assertions. The entailment regimes in SPARQL 1.1 [12] define how basic graph
pattern matching can be defined using semantic entailment relations instead subgraph
matching.

Example 3 We again use the data from Table 1 to illustrate the use of inference with the query:

SELECT ?name ?nick
WHERE { ?x foaf:name ?name . ?x foaf:nick ?nick }

Using subgraph matching, we do not get an answer. The triple _:a foaf:nick "b.glimm" is, how-
ever, entailed by the given triples under RDFS semantics since any subject related with the
property foaficqChatID is necessarily related to that object also with the property foaf:nick in
any RDFS-interpretation that satisfies the data. Under the RDFS entailment regime we expect,
therefore, to get "Birte Glimm" as binding for ?name and "b.glimm" as binding for ?nick in the
solution.

The entailment regimes developed by the W3C specify exactly what answers we
get for several common entailment relations such as RDFS entailment or OWL Direct
Semantics entailment. Aspects that have to be addressed include:

How are the infinitely many axiomatic triples under the RDF(S) semantics handled?
These are entailed even by an empty graph and infinite answers, at least due to such
axiomatic triples, are rarely desirable.

How are entailed triples handled that just differ in blank node labels?

How are inconsistent graphs handled?

What happens in case of errors?

For OWL’s Direct Semantics we further have to address the issue that the semantics is
not defined in terms of triples, but in terms of structural objects, which correspond to
Description Logic constructs.

1.5 SPARQL as a Protocol

The SPARQL Protocol for RDF defines how a SPARQL query can be conveyed from
a query client to a query processor. The protocol is firstly described in an abstract in-
terface independent of any concrete realization, implementation, or binding to another
protocol; but a HTTP and SOAP binding of the interface is also provided. We do not
further explain the protocol and instead focus on the semantics of SPARQL queries ei-
ther with subgraph matching (aka simple entailment) or with more elaborate entailment
regimes.

2 SPARQL Basics

In the previous examples, we have already seen some basic SPARQL queries. We now
make it more precise what parts belong to a query and which choices we have in select-
ing the data that is returned as the query answer.

2.1 Graph Patterns

The basic selection criteria are specified in the WHERE clause, but before we describe
this in more detail, we first recall some basic notions from RDF.

Definition 1. We write | for the set of all International Resource Identifiers (IRIs), L for
the set of all RDF literals, and B for the set of all blank nodes. The set of RDF terms,
denoted T, is lUL UB.

An RDF graph is a set of RDF triples of the form (subject, predicate, object) €
(1UB) X | X T. We normally omit “RDF” in our terminology if no confusion is likely,
and we use Turtle syntax [4] for all examples. The vocabulary Voc(G) of a graph G is
the set of all terms that occur in G.

Queries are built using a countably infinite set V of query variables disjoint from
T. A variable v € V is prefixed by the variable identifier ? or $. The outer-most graph
pattern in a query is called the query pattern.

The variable identifier is not part of the variable name, e.g., $x and ?x denotes the
same variable even if both prefixes are used within one query. The variable name itself
can contain numbers, letters, and various other admissible symbols [26].

We generally abbreviate IRIs using prefixes rdf, rdfs, owl, xsd, and foaf to refer to
the RDF, RDFS, OWL, XML Schema Datatypes, and FOAF namespaces, respectively.
We further use the prefix ex for an imaginary example namespace. Prefix declarations
for these namespaces are generally omitted in example data and queries.

The simplest form of a WHERE clause consists of a basic graph pattern (BGP), but
we can also construct more complex graph patterns by combining smaller patterns in
various ways that are described in detail within this section.

Basic Graph Patterns As we have seen in the introductory section, basic graph pat-
terns are the basic building blocks for building a SPARQL query and we can define
these formally as follows:

Definition 2. A triple pattern is member of the set (TU V) x (1UV) X (TU V), and a
basic graph pattern (BGP) is a set of triple patterns.

According to the above definition, variables can, thus, occur in place of a subject,
predicate, or an object. It is also worth pointing out, that the subject of a triple pattern
can be a literal although this is not allowed in RDF. This is meant to support (possible
future) extensions of RDF. At the moment queries with literals in the subject position
can simply not have an answer.

So far we have not seen the effect of blank nodes in BGPs. Since blank nodes do
not really refer to a particular resource in the graph, but only denote the existence of
something, we cannot expect that the blank node _:a in a BGP is mapped to exactly
the blank node _:a in the data as foaf:name in the query is mapped to foaf:name in the
queried graph. Instead, blank nodes act similar to variables with the difference that they
cannot be selected in the SELECT clause.

Example 4 Since we are not interested in the mappings for ?x in Example 1, we could achieve
the same result as with that query pattern:
{ _:a foaf:name ?name . _:a foaf:mbox ?mbox }

Note that we have deliberately used _:a, which is a blank node label that occurs in the data. The
blank node _:a in the BGP acts, however, as a variable and can be substituted any of the blank
nodes from the data. Thus, we get the same result with the above query pattern as in Example 1.

As we have seen in Section 1, a WHERE clause that consists of a BGP requires that
the set of triple patterns that make up the BGP must all match. In the following, we
introduce more complex patters:

— Group Graph Patterns, where a set of graph patterns must all match,

— Optional Graph Patterns, where additional patterns may extend the solution,

— Alternative Graph Patterns, where two or more possible patterns are tried, and
— Patterns on Named Graphs, where patterns are matched against named graphs.

Group Graph Patterns Group graph patterns combine patterns conjunctively, sim-
ilarly to BGPs that combine triple patterns conjunctively. In order to create a group,
SPARQL uses curly braces. Grouping by itself is not very useful unless if we only work
with basic graph patterns, but it becomes useful when we consider further constructors.
For example, we can combine two groups with the UNION keyword, which means that
solutions are obtained by matching one or the other group. Before we come to that, we
first introduce grouping in more detail.

Example 5 Using groups, patterns of the query from Example 1 can equivalently be written
as:

{ { ?7x foaf:name ?name}

{}

{ ?7x foaf:mbox ?mbox } }

We now separated the BGP from Example 1 into three groups. The first and the third group now
consists of a single triple pattern. The second group is the empty group pattern, which matches
to any data. The inclusion or omission of the empty pattern has, therefore, no effect here. A
query with only the empty pattern returns always one solution in which any variable that is
selected is unbound. Omitting the braces around the two triple patterns as illustrated below:

{ ?7x foaf:name ?name

{}

?x foaf:mbox ?mbox }

leaves us with a group of three elements: a BGP of one triple pattern, an empty group, and again
a BGP of one triple pattern.

Alternative Patterns Now that we can group patterns, we can combine groups with
other constructors, e.g., the UNION constructor for specifying alternative restrictions.
The UNION constructor is a binary operator, i.e., it is used as pattern UNION pattern.

Example 6 We assume that the default graph contains the data from Table 1 and that the
SPARQL query is:
SELECT ?mbox
WHERE { { ?x foaf:name ”BirteGlimm”. 7x foaf:mbox ?mbox }
UNION
{ ?x foaf:name 'S ebastianRudolph” . ?x foaf:mbox ?mbox }

}

The result for this query consists of the two email addresses from the queried data. The first
email address matches the first BGP and the one for Sebastian Rudolph matches the second
BGP, and the results from both BGPs contribute to the final answer due to the UNION keyword.

It is worth noting that the UNION keyword is not denoting an exclusive or and that
SPARQL does not have a set semantics as, for example, SQL, so we can have duplicate
results in the answer.

Example 7 We illustrate the fact that UNION does not represent an exclusive or and that
SPARQL queries can have duplicate results by means of the following query again over the
data from Table 1:

SELECT ?name ?chatlD

WHERE { ?x foaf.name ?name .
{ ?x foaficqChatID ?chatID } UNION
{ 2 foaf:aimChatID ?chatID } }

The results for the query are as follows:

7name 7chatID
"Birte Glimm" "bgl"
"Birte Glimm" "bgl"
"Pascal Hitzler" "phi"

where the first solution results from matching the first alternative and the latter two result from
matching the second alternative. The solutions for this query are in fact computed by building
the union (without duplicate elimination) from the results of evaluating two graph patters:

{ 2x foaf:name ?name. and { ?x foaf.name ?name.
{ 2x foaficqChatID ?chatID } } { ?2x foaf:aimChatID ?chatID } }

In case we use multiple unions, e.g., of the form pattern UNION pattern UNION
pattern, this is equivalent to writing: { pattern UNION pattern } UNION pattern, i.e.,
the UNION operator is left-associative.

Optional Patterns Apart from using the UNION keyword, we can declare some parts
as optional using the OPTIONAL keyword, i.e., we allow for only retrieving bindings
for these optional parts when these are available.

Example 8 We assume that the default graph contains the data from Table 1 and that the
SPARQL query is:

SELECT ?name ?mbox
WHERE { ?x foaf.name ?name
OPTIONAL { ?x foaf:mbox ?mbox } }

The result for this query now consists of one additional solution compared to the result for
Example 1 in which ?name is bound to "Pascal Hitzler" and ?mbox is unbound. We indicate
unbound values by simply leaving the entry in the results table empty:

7Tname 7mbox

"Birte Glimm" "b.glimm@googlemail.com"
"Sebastian Rudolph" <mailto:rudolph @kit.edu>
"Pascal Hitzler"

The OPTIONAL operator is again binary, i.e., it is used pattern OPTIONAL pat-
tern. Although { OPTIONAL pattern } is syntactically valid, it just abbreviates { {}
OPTIONAL pattern }. Like UNION, OPTIONAL is left-associative, i.e., pattern OP-
TIONAL pattern OPTIONAL pattern is equivalent to: { pattern OPTIONAL pattern }
OPTIONAL pattern.

Mixing Optional and Alternative Patterns We can, of course, also mix the use of
OPTIONAL and UNION. In this case, left-associativity still applies.

Example 9 The following query over the data from Table 1 gives three results given the left-
associativity of UNION and OPTIONAL:

SELECT ?name ?chatID ?mbox

WHERE { ?x foaf:name ?name .
{ 2 foafiicqChatID ?chat|D } UNION
{ 7 foaf:aimChatID ?chatID } OPTIONAL
{ ?x foaf:mbox ?mbox } }

name 7chatID 7mbox
"Birte Glimm" "b.glimm" "b.glimm@googlemail.com"
"Birte Glimm" "b.glimm" "b.glimm@googlemail.com"

"Pascal Hitzler" "phi"

After matching the first triple pattern, the union is evaluated. Finally, the optional part is applied
to enrich the so far computed solutions. If we were to make the operator preference explicit, we
get the following equivalent pattern:

{ { ?2x foaf:name ?name .
{ { ?x foaficqChatID ?chatID } UNION { ?x foaf:aimChatID ?chatID } }

}
OPTIONAL { ?x foaf:mbox ?mbox }

}

If we do not want the standard left-associate behavior of SPARQL, we have to use braces to
enforce a different grouping.

Filters SPARQL filters restrict solutions to those for which the filter evaluates to true.
The FILTER keyword is followed by a Boolean filter function that evaluates to true or
false. Only if the filter function evaluates to true is the solution to be included in the
solution sequence.

Example 10 In order to illustrate the use of a filters, we employ the isIRI filter function to filter
out results in which the foaf:mbox is not given as an IRI. We use again the data from Table 1
and the query:

SELECT ?name ?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox
FILTER isIRI(?mbox)
}

Since the isIRI function evaluates to false when ?mbox is bound to the plain literal
"b.glimm@googlemail.com", the match cannot be included in the solutions and we get just
one result:

name 7mbox
"Sebastian Rudolph" <mailto:rudolph @kit.edu>

There are quite a range of filter functions, e.g., functions for comparing numerical
values or date, filtering strings according to a regular expression, test whether a binding
is a blank node, or whether a variable is bound at all. For more details, we refer to the
SPARQL Query specification [26].

Literals The general syntax for literals in a SPARQL query is a string enclosed in
either double quotes ("...") or single quotes (’...”) with either an optional language tag
(introduced by @) or an optional datatype IRI or prefixed name (introduced by ™).

For convenience, integers can be written without quotation marks and an explicit
datatype IRI. Such literals are interpreted as typed literals of datatype xsd:integer,
xsd:decimal if there is no ’.” in the number; otherwise the number is interpreted as
xsd:decimal if no exponent is given and as xsd:double otherwise. Literals of type
xsd:boolean can also be written as true or false.

To facilitate writing literal values which themselves contain quotation marks or
which are long and contain newline characters, SPARQL provides an additional quoting
construct in which literals are enclosed in three single- or double-quotation marks.

Examples of literal syntax in SPARQL include:

— "chat" or 'chat'

— "chat" @fr with language tag "fr"

- "xyz""<http://example.org/ns/userDatatype>

- "abc"""appNS:appDataType

— "'The librarian said, "Perhaps you would enjoy 'War and Peace'." "
— 1, which is the same as "1"""xsd:integer

— 1.3, which is the same as "1.3"""xsd:decimal

— 1.300, which is the same as "1.300"""xsd:decimal
— 1.0e6, which is the same as "1.0e6"""xsd:double
— true, which is the same as "true"""xsd:boolean

— false, which is the same as "false"""xsd:boolean

2.2 Result Formats

SPARQL has four query forms. These query forms use the solutions from pattern
matching to form result sets or RDF graphs. The query forms are:

— SELECT returns all, or a subset of, the variables bound in a query pattern match.
CONSTRUCT returns an RDF graph constructed by substituting variables in a set
of triple templates.

ASK returns a boolean indicating whether a query pattern matches or not.
DESCRIBE returns an RDF graph that describes the resources found.

The XML results format of SPARQL can be used to serialize the result set from a select
query or the boolean result of an ask query.

SELECT queries return variables and their bindings directly. The syntax SELECT *
is an abbreviation that selects all of the variables in a query that are in scope. The
definition of scope becomes relevant when making use of the SPARQL 1.1 sub-select
feature in which case only variables that are projected in the sub-query are visible in
the enclosing query.

CONSTRUCT queries return a single RDF graph. The result is an RDF graph formed
by taking the specified graph template and by instantiating it with each query solution
in the solution sequence. The triples obtained from each solution are combining into a
single RDF graph by set union.

If any such instantiation produces a triple containing an unbound variable or an
illegal RDF construct, e.g., containing a literal in subject or predicate position, then that
triple is not included in the output RDF graph. The graph template can contain triples
with no variables (known as ground or explicit triples), and these also appear in the
output RDF graph returned by the CONSTRUCT query form.

A template can create an RDF graph containing blank nodes. The blank node labels
are scoped to the template for each solution. If the same label occurs twice in a template,
then there will be one blank node created for each query solution, but there will be
different blank nodes for triples generated by different query solutions.

Example 11 In order to see an example for construct and the effect of blank nodes in the
template, we se the following query over the data from Table 1:

CONSTRUCT { ?x rdf:itype foaf:Person . ?x foaf.givenName _:x }
WHERE { ?7x foaf:name ?name }

Evaluating the query pattern yields the following bindings:

7Xx 7name

_:a "Birte Glimm"

_:b "Sebastian Rudolph"”
_:c "Pascal Hitzler"

Instantiating and building the set union of the template then results in:

_:u rdftype foaf:Person.
_:u foaf.givenName _:x4
_:v rdftype foaf:Person.
_:v foaf.givenName _:xp
_:w rdfitype foaf:Person.

:w foaf.givenName _:x3

Note that the variable binds to blank nodes in the data and there is not even a guarantee that in
the intermediate results the same blank node labels are used. In the constructed data a different
blank node label is created. Similarly, the blank node in the template just causes a different
blank node label to be created each time the template is instantiated.

ASK queries test whether or not a query pattern has a solution. No information is
returned about the possible query solutions, just whether or not a solution exists.

Example 12 The following queries illustrates the use of the ASK query form for the data from
Table 1:

ASK { ?x foaf:name "Birte Glimm" }

The result to this query is true or yes since there is a possible binding for ?x in the data.

DESCRIBE queries return a single RDF graph containing RDF data about resources.

Example 13 Possible examples for DESCRIBE are the following:

DESCRIBE foaf:Person or
DESCRIBE ?x WHERE { ?x foaf:name "Birte Glimm" }

The exact output is not prescribed by the SPARQL Query specification, i.e., results
depend on the SPARQL query processor and can vary between systems. The resulting
RDF graph can be complex and can, for example, mention other resources that are
somehow related to the given resource. For example, whether a property denotes an
inverse or an inverse functional property, or the name and mbox if the resource that is
to be described is from a FOAF file.

2.3 Solution Modifiers

Query patterns generate a multiset of solutions, each solution being a partial function
from variables to RDF terms. These solutions are then treated as a sequence (a solution
sequence), initially in no specific order; any sequence modifiers are then applied to
create another sequence. Finally, the sequence is used to generate one of the results of
a SPARQL query form. A solution sequence modifier is one of:

— Order modifier to put the solutions in order

— Projection modifier to choose certain variables and eliminate others from the solu-
tions

— Distinct modifier to eliminate duplicate solutions

— Reduced modifier to permit elimination of some non-unique solutions

— Offset modifier to control where the solutions start from in the overall sequence of
solutions

— Limit modifier to restrict the number of solutions

ORDER BY is a keyword that establishes an order within a solution sequence. It is fol-
lowed by a sequence of order comparators, composed of an expression and an optional
order modifier (either ASC(-) or DESC(-)). Each ordering comparator is either ascend-
ing (indicated by the ASC(-) modifier or by no modifier) or descending (indicated by
the DESC(-) modifier).

Example 14 We illustrate the use ORDER BY with the following query over the data from
Table 1:

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name

Since ascending is the default ordering, the query is equivalent to:

SELECT ?name
WHERE { 2 foaf:name ?name }
ORDER BY ASC(?name)

The results are now ordered according to the bindings for the variable ?name:

Tname

"Birte Glimm"
"Pascal Hitzler"
"Sebastian Rudolph”

With the DESC(-) keyword we would get the exact opposite order.

The ascending order of two solutions with respect to an ordering comparator is es-
tablished by substituting the solution bindings into the expressions and comparing them
with the < operator, which is defined by the SPARQL Query specification for numer-
ics, simple literals, xsd:string, xsd:boolean, and xsd:dateTime. Descending order is the
reverse of the ascending order. Ordering never changes the cardinality of solutions.

Pairs of IRIs are ordered by comparing them as simple literals. SPARQL also fixes
an order between some kinds of RDF terms that would not otherwise be ordered (given
here from lowest in the order):

no value assigned to the variable or expression in this solution,
blank nodes,

IRIs,

RDF literals.

bl

A plain literal is lower than an RDF literal with type xsd:string of the same lexical form.
Note that SPARQL does not define a total ordering over all possible RDF terms; a few
examples of pairs of terms for which the relative order is undefined are:

— asimple literal and a literal with a language tag, e.g., "a" and "a"en_gb,

— two literals with language tags, e.g., "a"en_gb and "b"en_gb,

— asimple literal and an xsd:string, e.g., "a" and "a"""xsd:string,

— asimple literal and a literal with a supported data type, e.g., "a" and "1"""xsd:integer,
— two unsupported data types, e.g., "1""my:integer and "2"""my:integer

— a supported data type and an unsupported data type, e.g., "1"""xsd:integer and

"2""my:integer.

The ORDER BY clause can also contain a LIMIT n and an OFFSET m condition
to limit the number of returned results to 7 and to start only with the m" result. Using
LIMIT and OFFSET to select different subsets of the query solutions will not be useful
unless the order is made predictable by using ORDER BY.

Using ORDER BY on a solution sequence for a CONSTRUCT or DESCRIBE
query has no direct effect because only SELECT returns a sequence of results. Used
in combination with LIMIT and OFFSET, ORDER BY can be used to return results
generated from a different slice of the solution sequence. An ASK query does not in-
clude ORDER BY, LIMIT or OFFSET.

Projection can be used to transform the solution sequence into one involving only a
subset of the variables. For each solution in the sequence, a new solution is formed
using a specified selection of the variables as specified in the SELECT clause.

We have used projection already any many previous examples, so do not give an-
other example here.

DISTINCT is a solution modifier that causes the elimination of duplicate solutions.
Specifically, each solution that binds the same variables to the same RDF terms as
another solution is eliminated from the solution set.

REDUCED is not as strong as DISTINCT because it permits duplicate elimination, but
does not enforce it. Thus, some duplicates might be eliminated, whereas other remain
in the solution sequence.

2.4 SPARQL Algebra Processing

So far we have mainly used examples to illustrate the effect of different SPARQL op-
erators. In this section, we precisely define how a the result for a SPARQL query is
computed, which requires transforming a query string into a SPARQL algebra object
that is then evaluated in order to compute the query result.

The first step towards obtaining an algebra object for a query string is parsing. In
the parsing process, we expanding abbreviations for IRIs and triple patterns, e.g., for
triple patterns that use Turtle’s comma or semicolon abbreviations.

Table 2. SPARQL 1.0 grammar elements that make up a query pattern

GroupGraphPattern :="{" TriplesBlock?
((GraphPatternNotTriples |Filter)’.?
TriplesBlock?)*
'y

GraphPatternNotTriples ::= OptionalGraphPattern |GroupOrUnionGraphPattern
| GraphGraphPattern

OptionalGraphPattern = ’OPTIONAL’ GroupGraphPattern

GraphGraphPattern ::= '"GRAPH’ VarOrIRIref GroupGraphPattern

GroupOrUnionGraphPattern ::= GroupGraphPattern ("UNION’ GroupGraphPattern)*
Filter ::=FILTER’ Constraint

Translating SPARQL Query Patterns to Algebra Expressions Parsing of a SPARQL
query string involves expanding abbreviations for IRIs and triple patterns and the con-
struction of an abstract syntax tree that can then be transformed into a SPARQL algebra
expressions. The semantics of a query is then given based on the algebra expression.
After parsing, we have an abstract syntax tree that represents the expanded query string
and which is then converted into an algebra object.

Example 15 The algebra expression corresponding to the simple query
SELECT ?s WHERE { ?s :p 70 }

is Project(Bgp(?s <http://example.org#p> ?0), {?s}) if we assume that the empty prefix is de-
fined as <http://example.org#>. The algebra expression is evaluated inside out, i.e., we first
evaluate the pattern ?s <http://example.org#p> ?0 given as parameter to the Bgp algebra ex-
pression; then a projection is performed so that only the values for the variable ?s remain.

We start by looking into the translation of a query pattern before we come to solu-
tion modifiers and other parts that are not related to the query pattern. We restrict our
explanation to SPARQL 1.0 elements; SPARQL 1.1 works quite similar, but due to the
much increased features the translation gets far more involved.

The translation is defined in terms of objects from the SPARQL grammar, i.e., one
has to understand which part of a query pattern has been produced by a certain gram-
mar object. The grammar defines a query pattern as a GroupGraphPattern and we
give the relevant grammar part in Table 2, where TriplesBlock denotes a basic graph
pattern, VarOrIRIref denotes a variable or an IRI, and Constraint represents a filter
expression.

We first define a function algbr that takes a query pattern and inductively translates
it into a SPARQL algebra expression. The algebra objects that we encounter in the
translation process are

— Bgp, for expressing that a BGP has to be evaluated, e.g., by performing subgraph
matching,

— Join, for joining results, e.g., from different groups,

— LeftJoin, for combining results with optional values,

— Filter, for filtering results according to a filter expression,
— Union, for combining results from alternatives,
— Graph, for evaluating a query part on a named graph.

We further encounter the empty pattern, denoted Z, which is a basic graph pattern that
evaluates to an empty solution mapping, i.e., to a solution mapping that does not map
any variable to a value. Thus, the empty pattern can be joined with any other pattern
without any effect, i.e., Z is the identity for join.

Definition 3. We define the function algbr(P) as follows: If P is TriplesBlock, then

4 ifPi t
algbr(P) := ifPis e.mp 4
Bgp(P) otherwise.
If P is GroupOrUnionGraphPattern with elements €1, ..., €n, then
algbr(P) = alg.br(e1) forn =.1 and
Union(algbr(e1), algbr(e; UNION...UNION e)) otherwise.

If P is GraphGraphPattern of the form term GRAPH P’, then

algbr(P) :=Graph(term, algbr(P’)).

If P is GroupGraphPattern containing filter elements f1,...,f, and other elements
€1,...,6m then
Filter(fi & & . . . &&fy, translateGroup(ey, ...,em)) ifn > 0and
algbr(P) := i
translateGroup(ey, ..., emn) otherwise,

where translateGroup is described in Algorithm 1 and && is SPARQL’s conjunction
operator for filter expressions.

The resulting algebra objects can be simplified by exploiting the join identity prop-
erty of the empty pattern Z: we can replace Join(Z, A) by A and Join(A, Z) by A.

Example 16 For example, the simple query pattern

{?7s 7?0} is translated to Join(Z, Bgp(?s ?p ?0))
since { 7s ?p ?0 } is an instance of GroupGraphPattern (as every query pattern), which is
translated according to Algorithm 1 (line 10), where the triple pattern itself is translated as
TriplesBlock. According to the join identity simplification, the expression can be simplified
to Bgp(?s ?p ?0).

In order to see some examples of the translation, we go through several of the ex-
ample query patterns that we have encountered so far.

Algorithm 1 Translation of non-filter elements in group graph patterns

Algorithm: translateGroup(e, ..., €n)
Input: eq,...,e,: the list of non-filter elements in a group pattern
Output: a SPARQL algebra expression A

1: A :=7Z {the empty pattern}

2: for i=1,...,n do

3 if e is of the form OPTIONAL pattern then

4 if algbr(pattern) is of the form Filter(F, A’) then
5: A = Leftdoin(A, A", F)

6: else

7: A := LeftJoin(A, algbr(pattern), true)

8: end if

9: else
10: A := Join(A, algbr(e))
11: end if

12: end for

13: return A

Example 1:

Query pattern: Join(Z, Bgp(?x foaf.name ?name. ?x foaf:mbox ?mbox)),
Simplification: Bgp(?x foaf.name ?name. ?x foaf:mbox ?mbox).

Example 2:

Query pattern: Join(Z, Graph(iri, Join(Z, Bgp(BGP)))),
Simplification: Graph(iri, Bgp(BGPy)).
We use iri and BGP1 instead of the given graph IRI and BGP.

Example 3:

Query pattern: Join(Z, Bgp(?x foaf.name ?name. ?x foaf:nick ?nick)),

Simplification: Bgp(?x foaf:name ?name. ?x foaf:nick ?nick).

Note that the example was used to illustrate the effects of entailment regimes, but this does
not influence the conversion to algebra objects. The only effect is that the Bgp(-) algebra
objects are evaluated differently.

Example S:

Query pattern: Join(Join(Join(Z, Bgp(TP4)), Z), Bgp(TP>)),

Simplification: Join(Bgp(?x foaf:name ?name), Bgp(?x foaf:mbox ?mbox)).

We abbreviate the two triples patterns with TPy and TP,, respectively. Although the query
from Example 5 yields the same results as the query from Example 1 on any data, its
algebra version is different due to the use of groups. We first used Algorithm 1 on the
three elements of the query pattern, which is a group graph pattern. Each element itself is
then translated as a GroupOrUnionGraphPattern using the case for single elements. A
query optimizer might further modify this algebra object so that it becomes the same as the
simplified version of the algebra expression for Example 1.

Example 6:

Query pattern: Join(Z, Union(Bgp(BGP1), Bgp(BGP->))),
Simplification: Union(Bgp(BGP1), Bgp(BGPy)).
We abbreviate the two BGPs from the union pattern with BGP¢ and BGP,, respectively.

Example 7:

Query pattern: Join(Join(Z, Bgp(tpy)), Union(Bgp(ipz), Bgp(tps))),

Simplification: Join(Bgp(tp+), Union(Bgp(tp2), Bgp(tps))).

We abbreviate the three triple patterns from the example with tpq to tps, respectively.
Example 8:

Query pattern: Leftdoin(Join(Z, Bgp(ip1)), Bgp(p2), true),

Simplification: LeftJoin(Bgp(tp;), Bgp(tps), true).

The triple patterns from the example are abbreviated with 1py and tp,, respectively.
Example 9:

Query pattern:

LeftJoin(Join(Join(Z, Bgp(tp4)), Union(Bgp(tp2), Bgp(ips))), Bgp(tps), true),

Simplification:

LeftJoin(Join(Bgp(tp1), Union(Bgp(tpz), Bgp(tps))), Bap(tps), true).

We again abbreviate the triple patterns from the example with 1pq to 1pa4, respectively.
Example 10:

Query pattern: Filter(isIRI(?mbox), Join(Z, Bgp(bgp1))),

Simplification: Filter(isIRI(?mbox), Bgp(bgp1)).

For the translation of the query pattern we use the first case of translating group graph

patterns. We abbreviate the basic graph pattern from the example with bgp;.

We omit the examples for NOT EXISTS, EXISTS, and MINUS since these are
SPARQL 1.1 features, for which we do not go into details in the algebra translation.

Evaluating Algebra Expressions for Query Patterns In order to define the evaluation
of an algebra object for a query pattern, we first define the most basic operation, i.e.,
the evaluation of a basic graph pattern.

Definition 4. Evaluating a SPARQL graph pattern results in a solution sequence that
lists possible bindings of query variables to RDF terms in the active graph. Such bind-
ings are represented by partial functions y from V to T, called solution mappings. For
a solution mapping u — and more generally for any (partial) function — the set of ele-
ments on which p is defined is the domain dom(w) of , and the set ran(u) = {u(x) | x €
dom(u)} is the range of u. For a graph pattern GP, we use u(GP) to denote the pattern
obtained by applying u to all elements of GP in dom(u).

This convention is extended in the obvious way to filter expressions, and to all functions
that are defined on variables or terms.

The order of solution sequences is relevant for later processing steps in SPARQL,
but not for obtaining the solutions for a graph pattern. Thus, we obtain a solution mul-
tiset when evaluating a basic graph pattern, or, more generally, any SPARQL graph
patterns.

Definition 5. A multiset over an underlying set S is a total function M : § — N* U{w}
where N* are the positive natural numbers, and w > n for all n € N*. The value M(s)
is the multiplicity of s € S, and w denotes a countably infinite number of occurrences.

Infinitely many occurrences of individual solution mappings are indeed possible when
considering SPARQL entailment regimes, although a major concern when defining ex-
tensions to basic graph pattern matching is how to avoid sources of infinite solutions.

Table 3. Evaluation of algebraic operators for query patterns in SPARQL over a dataset D, where
the multiplicity functions M, M;, and M, are assumed to be those for the multisets [[GP]]D,G,
[[GP1]]D’G, and [[GPg]]D,G, V is a variable, and iri is an IRI

[Union(GP+, GP2)] 6 = {(.n) | n = My () + Ma(s) > O}

[Join(GP1, GP) 6 = {(1.7) | 1= Xy, pes (Mi (1) * Ma(uz2)) > O} where
J() = {(u1, 12) | p1, 1o compatible and p = p; U pp}
[Filter(F, GP)] 5 6 = {(.7) | M(u) = n > 0 and [u(F)] = true}
[[LeftJoin(GP1,GP2,F)]}DG = [[Filter(F,Join(GP1,GPg))]]D,G U
{(p],M](p])) | for all pp with M>(up) > 0 : u; and p, are
incompatible or [(¢; U up)(F)] = false}
g [GP],q ifiriis an IRT with (iri, Gy) € D
Graph(iri, GP =1 i
[Graph()] DG {{ } otherwise
[Graph(v,GP)], & = [Union(Join(Graphiri,, GP), {: v irig)),
Union(Join(Graph(irin_1, GP), {u: v > irin_1}),
Union(...,
Join(Graph(iriy, GP), {u: v = iris D)o
foririy, ..., irin the IRIs of the named graphs in D

We often represent a multiset M with underlying set S by the set {(s, M(s)) | s € S}.
Accordingly, we may write (s,n) € M if M(s) = n. Also, we assume that M(s) denotes
0 whenever s ¢ S. In some cases, it is also convenient to use a set-like notation where
repeated elements are allowed, e.g. writing {a,b, b} for the multiset M with underlying
set {a, b}, M(a) = 1, and M(b) = 2.

To define the solution multiset for a BGP under the simple semantics, we still need
to consider the effect of blank nodes. Intuitively, these act like variables that are pro-
jected out of a query result, and thus they may lead to duplicate solution mappings. This

is accounted for using RDF instance mappings as follows:

Definition 6. An RDF instance mapping is a partial function o: B — T from blank
nodes to RDF terms. We extend o to pattern graphs and filters as done for solution
mappings above. The solution multiset [BGP] D.G for a basic graph pattern BGP over
the dataset D with active graph G is the following multiset of solution mappings:

{(u,n) | dom(u) = V(BGP), and n is the maximal number such that
o1,...,0, are distinct RDF instance mappings such that, for all 1 <i < n,
dom(o) = B(BGP) and u(cy(BGP)) is a subgraph of G}.

Note that the number n in the definition of [BGP], 5 is always finite.

The algebraic operators that are required for evaluating non-basic graph patterns
correspond to operations on multisets of solution mappings. This remains unchanged
even if we use an entailment regime different from SPARQL’s standard simple entail-
ment. To take infinite multiplicities into account, which can occur in some entailment
regimes, we assume w+n=n+w =wforalln >0, w*n=n+*w =wforalln >0
and w * 0 = 0 = w = 0. We denote the truth value from evaluating a filter F by [F].

Definition 7. Two solution mappings y; and p, are compatible if yy(v) = ua(v) for all
v € dom(uy) N dom(uy). If this is the case, a solution mapping uy U uy is defined by
setting () U po)(v) = i (v) if v e dom(uy), and (u; U up)(v) = ua(v) otherwise.

The evaluation of a graph pattern over G, denoted [- |, o, is defined as in Table 3,
where the multiplicity functions M /| My / M, are assumed to be those for the multisets

[GP] D.G /[GP;]]D,G /[GP2] D.G'

Note that, for brevity, we join an algebra object with a multiset in the evaluation of
Graph(v, GP) with v a variable, which is strictly speaking not possible since both of the
joined elements should be algebra objects that are then evaluated in the join evaluation.

Translating and Evaluating SPARQL Queries Apart from the query pattern itself,
the solution modifiers of a query are also translated into corresponding algebra objects.
The resulting algebra object together with a dataset for the query and a query form
defines a SPARQL abstract query.

Definition 8. Given a SPARQL query Q with query pattern P, we step by step construct
an algebra expression E as follows:

1. E := Tolist(algbr(P)), where ToList turns a multiset into a sequence with the same
elements and cardinality. There is no implied ordering to the sequence; duplicates
need not be adjacent.

2. E := OrderBy(E, (c1,...,Cn)) if the query string has an ORDER BY clause, where
Ci,s...,Cy the order comparators in Q.

3. E := Project(E, vars) if the query form is SELECT, where vars is the set of vari-
ables mentioned in the SELECT clause or all named variables in the query if
SELECT * is used.'

4. E := Distinct(E) ifthe query form is SELECT and the query contains the DISTINCT
keyword.

5. E := Reduced(E) if the query form is SELECT and the query contains the REDUCED
keyword.

6. E := Slice(E, start, length) if the query contains OFFSET start or LIMIT length,
where start defaults to 0 and length defaults to (size(E) — start) with size(E) de-
noting the cardinality of E.

7. E := Construct(E,templ) if the query form is CONSTRUCT and templ is the
template of the query.

8. E := Describe(E, VarsRes) if the query form is DESCRIBE, where VarsRes is the
set of variables and resources mentioned in the DESCRIBE clause or all named
variables in the query if DESCRIBE * is used.

The algebra expression for Q, denoted algbr(Q), is E.
We define the RDF dataset for Q as follows: if Q contains a FROM or FROM NAMED
clause, then the RDF dataset D for Q is {G, (iriy, G1), ..., (irin, Gn)} where the default

! Note that for SPARQL 1.1, * only refers to variables that are in scope, e.g., if the query contains
a sub-query, then only variables that are selected in the sub-query are in scope for the enclosing

query.

Table 4. Evaluation of algebraic operators for queries over a dataset D with default graph G

[[ToLiSt(E)]]D’G = (Uyy .o pty) fOr {uy, ..o} = [[E]]D,G
[OrderBy(E, (c, ... ’Cm))]]D,G = (uy,...,M,) such that (u, ..., u,) satisfies (cy, ..., cn)

and {py, ..o} = {ulpe HE]]D,G}
[Project(E, vars)], == (W}, ., ;) with (i, u,) = [E], 6 dom(u)) = vars < dom(u),

and y; is compatible with y; for 1 <i<n

[Distinct(E)lp g = (1 - - ») With {1, .., pn} = {e | € fr | € [E] 6}
and (uy, . . ., ty) preserves the order of [E] DG

HReduced(E)]]DAG = (ﬂla e uum) with {/Jb LR ’.un} c {/J | M E [[E]]D,G}’
sy =l e [E]p g}
and (uy, . . ., ty) preserves the order of [E] DG

HS”CG(E, Start, |en9th)]] D.G = (ﬂsmrta e ’/Jsturt+length) for (/Jl PR ’ﬂm) = [E]] D.G

[[Construct(E,templ)]]D’G = {templ) | {ir, .. .o) = [[E]]D,G,l <i < n, templ; is graph
equivalent to templ, w;(templ;) is valid RDF, and
B(templ)) N U < <n, j=(Btempl;) U ran(muy)) = 0}

[Describe(E, VarsRes)]]D’G := {desc(u;(VarsRes)) | {u1, ...,) = [[E]]D,G,l <i<n
where descr generates a system-dependent description
for the given resources

graph G is the RDF merge of the graphs referred to in the FROM clauses and each
pair (iri;, Gi) results from a FROM NAMED clause with IRI irij where irij identifies a
resource that serializes the graph G;; otherwise the dataset for Q is the dataset used by
the queried service.

The SPARQL abstract query for Q is a tuple (algbr(Q), D, F) where D is the RDF
dataset for Q, and F is the query form for Q.

We extend the evaluation of algebra expressions as defined in Table 4. To evaluate
(E,D,F), one first computes [E |, . If the query form is SELECT, CONSTRUCT, or
DESCRIBE, the query answer is [[E HD,G’ which is a solution sequence for SELECT
queries and a set of RDF triples otherwise. If the query form is ASK the query answer
is li([[E]]D’G) > 0.

Note that in case of DESCRIBE queries, the concrete result is not normatively de-
fined and depends on the implementation.

Example 17 In order to see some examples of abstract queries, we go through several of the
examples again, in particular those with solution modifiers or query forms other than SELECT.

Example 1:

Abstract Query: (Project(ToList(algbr(P)), {?name, ?mbox}), D, SELECT)

with P the query pattern from Example 1 and D the dataset of the SPARQL query processor.
Example 2

Abstract Query:

(Project(ToList(algbr(P)), {?name, mbox}), {0, (iri, Gi:)}, SELECT)
with P the query pattern from Example 2, iri the IRI in the FROM NAMED clause, and Gi;
the graph serialized by iri.
Example 11
Abstract Query: (Construct(ToList(algbr(P)), templ), D, CONSTRUCT)
with P the query pattern from Example :ex : construct,templ the template from the query,
and D the dataset of the SPARQL query processor.
Example 12
Abstract Query: (ToList(algbr(P)), D, ASK)
with P the query pattern from Example :ex : ask and D the dataset of the SPARQL query
processor.
Example 13
Abstract Query (a): (Describe(ToList(2), {foaf:Person}), D, DESCRIBE)
Abstract Query (b): (Describe(ToList(algbr(P)), {?x}), D, DESCRIBE)
with P the query pattern from the second query in Example :ex : describe and D the dataset
of the SPARQL query processor.
Example 14
Abstract Query:
(Project(OrderBy(ToList(algbr(P)), (ASC(?name))), {?name}), D, SELECT)
with P the query pattern from Example :ex : order and D the dataset of the SPARQL query
processor.

2.5 SPARQL 1.1 Features

The W3C Data Access Working Group is currently in the process of specifying the
next version of SPARQL, which is named SPARQL 1.1. The new version adds several
features to the query language [13], which we briefly introduce in this section. We do not
provide an algebra translation for these features and only give examples of how these
features can be used. We further give a brief overview of the new parts in SPARQL 1.1
apart from the query language and the entailment regimes.

Aggregates Aggregates allow for counting the number of answers, computing aver-
age, minimal, or maximal values from solutions by applying expressions ver groups of
solutions.

Example 18 One intuitive way of aggregates is counting, which we illustrate with the data
from Table 1 and the query:

SELECT (COUNT(?x) AS 2num)
WHERE { ?x foaf:name ?name }

‘We obtain one solution with binding 3 for ?num.

Table S. Triples used in the examples for the new features of SPARQL 1.1

:auth1 :writes :book1 .
:auth1 :writes :book2 .
:auth2 :writes :book3 .
:auth3 :writes :book4 .
:book1 :costs 9.
:book2 :costs 5.
:book3 :costs 11.
:book4 :costs 2.

Example 19 In order to select variables to which no aggregate is applied, one has to group the
solutions accordingly. We illustrate this with the data from Table 5 and the query:

SELECT ?auth (AVG(?price)AS?avgPrice)
WHERE { 2auth :writes ?book . ?book:costs ?price }
GROUP BY ?auth

Without grouping by author, we were not able to have ?auth in the SELECT clause. We obtain:

?auth ?avgPrice
autht 7

:auth2 11

:auth2 2

We can further extend the query with a HAVING clause to filter some of the aggregated values.
For example, adding

HAVING (AVG(?price) > 5)

results in the last solution being filtered out.

Subqueries Subqueries provide a way to embed SPARQL queries within other queries,
normally to achieve results which cannot otherwise be achieved

Example 20 We use again the triples from Table 5. We use a subquery to answer the query
"Which author has a book that costs more than the most expensive book of :auth1?". For such
query, two queries have to be executed: the first query finds the most expensive book of :auth1
and the second finds those authors who have a book more expensive than that. Using subqueries
we can directly embed the first query into the second:

SELECT ?auth
WHERE { ?auth :writes ?book . ?book :costs ?price
{
SELECT (MAX(?price) AS ?max)
WHERE { :auth1 :writes ?book . ?book :costs ?price }
}
FILTER (?price > ?max)
}

Evaluating the inner query yields 9 as binding for ?max. Note that only ?max is projected and,
therefore, available to the outer query. The variable ?price from the inner query is not visible
for the outer query (it is out of scope) and the variable ?price from the outer query unrelated to
it. The filter applies, as usual, to all elements in the group, which makes sure that the two triple
patterns and the subquery are evaluated and the results are joined before the filter is applied.

Negation comes in two styles, one is based on filtering out results that do not match a
given graph pattern using filers with the NOT EXISTS keyword, and the other way is
to directly remove solutions related to another pattern with MINUS.

Filtering of query solutions is done within a FILTER expression using NOT EXIST
and EXISTS.

Example 21 We illustrate the use of filtering combined with NOT EXISTS (EXISTS) using
the data from Table 1 and the query:

SELECT ?name
WHERE { ?x foaf:name ?name
FILTER NOT EXISTS { ?x foaf:mbox ?mbox }
}

Since only for ?x bound to "Pascal Hitzler" the NOT EXISTS filter evaluates to true, we get just
one solution:

7name
"Pascal Hitzler"

We can similarly test for the existence of a match for the pattern by using FILTER EXISTS
instead of FILTER NOT EXISTS, which would yield one solution with ?name once bound to
"Birte Glimm" and once to "Sebastian Rudolph".

A different form of negation is supported via the MINUS keyword, which takes the
form pattern MINUS pattern.

Example 22 We illustrate the use MINUS with the following query over the data from Table 1:

SELECT ?name ?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox
MINUS { ?x foaf:.name "Birte Glimm" }
}

In this case, the left-hand side consists of the two triple patterns, which yield the two solutions:

7x 7name Tmbox
_:a "Birte Glimm" "b.glimm@googlemail.com"
_:b "Sebastian Rudolph" <mailto:rudolph@kit.edu>

The right-hand side of the MINUS operator yields one solution in which ?name and ?mbox are
unbound (since they do not occur in the pattern and are, therefore, not matched):

?7x "name ?mbox
:a

In order to compute the query result, we keep only solutions for the left-hand side pattern if they
are not “compatible” with the solutions for the right-hand side. Two mappings are compatible if
whenever they both map a variable, then they map it to the same value. We will refer to the two
solutions for the left-hand side pattern as /; and /,, respectively, and to the solution for the right-
hand side pattern as r;. In our case, we have that /; is compatible with r; since the mappings
for ?x is the same and since ?name and ?mbox are unbound in r;, which does not contradict
the mapping for 2name and ?mbox in /;. Since /; and r| are compatible, /; is removed from the
solutions. For [, and ry, it is, however, clear that the mappings are not compatible since /, maps
7x to _:b whereas r; maps 7x to _:a. This means that /, remains in the solutions for the whole
pattern, which gives the following overall result:

Tname Tmbox
"Sebastian Rudolph" <mailto:rudolph @kit.edu>

SELECT Expressions can be used in the SELECT clause to combine variable bindings
already in the query solution, or defined earlier in the SELECT clause to produce a
binding in the query solution, e.g., SELECT ?net ((?net * 1.2) AS ?gross) will return
bindings for ?net and 120% of that value as binding for ?gross.

Property Paths allow for specifying a possible route through a graph between two
graph nodes through property path expressions that apply to the predicate of a triple.
A trivial case is a property path of length exactly 1, which is a triple pattern. Property
paths allow for more concise expression of some SPARQL basic graph patterns and
also add the ability to match arbitrary length paths. For example, the BGP

7x foaf:name "Birte Glimm" . ?x foaf.knows+/foaf:name ?name

The query starts from an element which is associated with the name Birte Glimm and
then follows a path of length one or more (+) along the property foaf:knows followed
by (/) a path of length one along the foaf:name property. Thus, the query finds the
names of all people that Birte knows directly or indirectly. The / operator can always be
eliminated, e.g., by rewriting the second triple into ?x foafknows + ?y . ?y foafname
?name. The arbitrary length paths, however, cannot be eliminated in this way and a
SPARQL query processor has to implement them natively in order to fully support
property paths.

Assignments can be used in addition to SELECT expressions in order to add bindings.
Whereas SELECT expressions are limited to the SELECT clause, on can use the BIND
keyword followed by an expression to add bindings already in the WHERE clause.
The BINDINGS keyword can further be used to provide a solution sequence that is
to be joined with the query results. It can used by an application to provide specific
requirements on query results and also by SPARQL query engine implementations that

provide federated query through the SERVICE keyword to send a more constrained
query to a remote query service.

CONSTRUCT Short Forms allow for abbreviating CONSTRUCT queries provided
the template and the pattern are the same and the pattern is just a basic graph pattern
(i.e., no FILTERs and no complex graph patterns are allowed in the short form). The
keyword WHERE is required in the short form.

Furthermore, SPARQL 1.1 provides an expanded set of functions and operators.

SPARQL 1.1 Update [28] provides a way of modifying a graph store by inserting or
deleting triples from graphs. It provides the following facilities:

Insert new triples into an RDF graph.

Delete triples from an RDF graph.

Perform a group of update operations as a single action.
Create a new RDF graph in a graph store.

Delete an RDF graph from a graph store.

The behavior of update queries in a system that uses entailment regimes is left open
in SPARQL 1.1. A straightforward way of implementing updates under entailment
regimes would be to interpret such queries under simple entailment semantics.

The SPARQL protocol has also been extended to allow for an exchange of update
requests between a client and a SPARQL endpoint [22].

Service Descriptions [30] have been added SPARQL 1.1 as a method for discovering
and vocabulary for describing SPARQL services made available via the SPARQL Pro-
tocol for RDF[11]. Such a description is intended to provide a mechanism by which a
client or end user can discover information about the SPARQL implementation/service
such as supported extension functions and details about the available dataset or the used
entailment regime.

Federation Extensions are currently under development as part of SPARQL 1.1 to ex-
press queries across distributed data sources. At the time of writing a first public work-
ing draft is available at http://www.w3.0org/TR/sparqlll-federated-query/.

JSON Result Format is so far a working group note available at http://www.w3.
org/TR/rdf-sparql-json-res/. The working group intends to bring this to recom-
mendation status, but at the time of writing no public working draft is available.

3 SPARQL Entailment Regimes

In the previous section, we have defined the syntax of SPARQL queries and how such
queries are evaluated with subgraph matching as means of evaluating basic graph pat-
terns. This form of basic graph pattern evaluation is also called simple entailment since

it can equally be defined in terms of the simple entailment relation between RDF graphs.
In order to use more elaborate entailment relations, which also allow for retrieving so-
lutions that implicitly follow from the queried graph, we now look at so-called entail-
ment regimes. An entailment regime specifies how an entailment relation such as RDF
Schema entailment can be used to redefine the evaluation of basic graph patterns from
a SPARQL query making use of SPARQL’s extension point for basic graph pattern
matching. In order to satisfy the conditions that SPARQL places on extensions to basic
graph pattern matching, an entailment regimes specifies conditions that limit the num-
ber of entailments that contribute solutions for a basic graph pattern. For example, only
a finite number of the infinitely many axiomatic triples can contribute solutions under
RDF Schema (RDFS) entailment. In this section, we introduce the RDFS entailment
regime and explain the design rationale behind the regime. In Section 4, we then show
how the OWL 2 Direct Semantics entailment relation can be used.

Each entailment regime is characterized by a set of properties:

Name: A name for the entailment regime, usually the same as the
entailment relation used to define the evaluation of a basic
graph pattern.

IRI: The IRI for the regime. This IRI can be used in the service

description for a SPARQL endpoint, which is an RDF graph
that describes the functionality and the features that it provides.

Legal Graphs: Describes which graphs are legal for the regime.

Legal Queries: Describes which queries are legal for the regime.

Illegal Handling: Describes what happens in case of an illegal graph or query.

Entailment: Specifies which entailment relation is used in the evaluation of
basic graph patterns.

Inconsistency: Defines what happens if the queried graph is inconsistent under
the used semantics.

Query Answers: Defines how a basic graph pattern is evaluated, i.e., what the
solutions are for a given graph and basic graph pattern of a
query.

Before we start describing a concrete entailment regime, we first analyze what con-

ditions an entailment regime has to satisfy. These conditions also motivate the choice
of the above properties that are defined for each entailment regime.

3.1 Conditions on Extensions of Basic Graph Pattern Matching

In order to extend SPARQL for an entailment relation E such as RDFS or OWL Di-
rect Semantics entailment, it suffices to modify the evaluation of BGPs accordingly,
while the remaining algebra operations can still be evaluated as in Definition 7. When
considering E-entailment, we thus define solution multisets [BGP] E,G.

The SPARQL Query 1.0 specification [26] already envisages the extension of the

BGP matching mechanism, and provides a set of conditions for such extensions that we
recall in Table 6. These conditions can be hard to interpret since their terminology is not

Table 6. Conditions for extending BGP matching to E-entailment (quoted from [26])

1. The scoping graph SG, corresponding to any consistent active graph AG, is uniquely speci-
fied and is E-equivalent to AG.

2. For any basic graph pattern BGP and pattern solution mapping P, P(BGP) is well-formed
for E.

3. For any scoping graph SG and answer set {P1,..., P,} for a basic graph pattern BGP, and
where BGP,...,BGP, is a set of basic graph patterns all equivalent to BGP, none of which
share any blank nodes with any other or with SG

SG Fe (SGUP{(BGPy)U...UPL(BGP)).

4. Each SPARQL extension must provide conditions on answer sets which guarantee that every

BGP and AG has a finite set of answers which is unique up to RDF graph equivalence.

Table 7. Clarified conditions for extending BGP matching to E-entailment

An entailment regime E must provide conditions on basic graph pattern evaluation such that
for any basic graph pattern BGP, any RDF graph G, and any evaluation Hg that satisfies the
conditions, the multiset of graphs {(1(BGP),n) | (u,n) € [BGP]§} is uniquely determined up to
RDF graph equivalence. An entailment regime must further satisfy the following conditions:

1. For any consistent active graph AG, the entailment regime E uniquely specifies a scoping
graph SG that is E-equivalent to AG.

2. A set of well-formed graphs for E is specified such that, for any basic graph pattern BGP,
scoping graph SG, and solution mapping u in the underlying set of [[BGP]]EG, the graph
H(BGP) is well-formed for E.

3. For any basic graph pattern BGP, and scoping graph SG, if {ui,...,u,} = [BGP]; and
BGP,,...,BGP, are basic graph patterns all equivalent to BGP but not sharing any blank
nodes with each other or with SG, then

SG ke SGU U 1n(BGP,).

1<i<n

4. Entailment regimes should provide conditions to prevent trivial infinite solution multisets.

aligned well with the remaining specification. In the following, we discuss our reading
of these conditions, leading to a revised clarified version presented in Table 7.2

Condition (1) forces an entailment regime to specify a scoping graph based on
which query answers are computed instead of using the active graph directly. Since an
entailment regime’s definition of BGP matching is free to refer to such derived graph
structures anyway, the additional use of a scoping graph does not increase the freedom
of potential extensions. We assume, therefore, that the scoping graph is the active graph
in the remainder. If the active graph is E-inconsistent, entailment regimes specify the
intended behavior directly, e.g., by requiring that an error is reported.

Condition (2) refers to a “pattern solution mapping” though what is probably meant
is a pattern instance mapping P, defined in [26] as the combination of an RDF instance
mapping o and a solution mapping u where P(x) = u(o(x)). We assume, however, that

2 The SPARQL 1.1 Query working draft has been updated to contain the revised conditions.

(2) is actually meant to refer to all solution mappings in [[BGP}]E’G. Indeed, even for
simple entailment where well-formedness only requires P(BGP) to be an RDF graph,
condition (2) would be violated when using all pattern instance mappings. To see this,
consider a basic graph pattern

{_:abwc}.

Clearly, there is a pattern instance mapping P with P(_:a) = "1"*"xsd:int, but P(BGP) =
{"1""xsd:int :b :c} is not an RDF graph. Similar problems occur when using all solution
mappings. Hence we assume (2) to refer to elements of the computed solution multiset
[BGP] E,G. The notion of well-formedness in turn needs to be specified explicitly for
entailment regimes.

Condition (3) uses the term “answer set” to refer to the results computed for a BGP.
To match the rest of [26], this has to be interpreted as the solution multiset [BGP] S’G.
This also means mappings P; are solution mappings (not pattern instance mappings as
their name suggests). The purpose of (3), as noted in [26], is to ensure that if blank node
names are returned as bindings for a variable, then the same blank node name occurs in
different solutions only if it corresponds to the same blank node in the graph.

Example 23 To illustrate the problem, consider the following graphs:
G::@ab_:c. G, ::a:b_:by. G, ::a:b _:b,. Gs::a:b _:by.
_:d:ef. _:bo e . _:by e . _:by e .
Clearly, G simply entails G; and G,, but not G; where the two blank nodes are identified. Now
consider a basic graph pattern BGP
{:a:b?x ?:ef}

A solution multiset for BGP could comprise two mappings

Hi: X by, ?y > b, and
Ho: X by, 2y > _:by.

We then have u; (BGP) = G; and uy(BGP) = G, and both solutions are entailed. Condition (3)
requires, however, that G U u;(BGP) U u,(BGP) is also entailed by G, and this is not the case
in our example since this union contains Gs.

The reason is that our solutions have unintended co-references of blank nodes that
(3) does not allow. SPARQL’s basic subgraph matching semantics respects this condi-
tion by requiring solution mappings to refer to blank nodes that actually occur in the
active graph, so blank nodes are treated like (Skolem) constants.® The revised condition
in Table 7 has further been modified to not implicitly require finite solution multisets
which may not be appropriate for all entailment regimes. In addition, we use RDF in-
stance mappings for renaming blank nodes instead of requiring renamed variants of the
BGP.

Finally, condition (4) requires that solution multisets are finite and uniquely deter-
mined up to RDF graph equivalence, again using the “answer set” terminology. Our

3 Yet, SPARQL allows blank nodes to be renamed when loading documents, so there is no
guarantee that blank node IDs used in input documents are preserved.

revised condition clarifies what it means for a solution multiset to be “unique up to
RDF graph equivalence.” We move the uniqueness requirement above all other condi-
tions, since (2) and (3) do not make sense if the solution multiset was not defined in this
sense. The rest of the condition was relaxed since entailment regimes may inherently
require infinite solution multisets, e.g., in the case of the Rule Interchange Format RIF
[17]. Tt is desirable that this only happens if there are infinite solutions that are “inter-
esting,” so the condition has been weakened to merely recommend the elimination of
infinitely many “trivial” solution mappings in solution multisets. The requirement thus
is expressed in an informal way, leaving the details to the entailment regime. Within this
paper, we will make sure that the solution multisets are in fact finite (both regarding the
size of the underlying set, and regarding the multiplicity of individual elements).

3.2 Addressing the Extension Point Conditions

Before coming to OWL, we introduce the RDFS entailment regime since RDFS is
well-known and simpler than OWL while the regime still illustrates the main points
in which an entailment regime differs from SPARQL’s standard query evaluation. The
major problem for RDFS entailment is to avoid trivially infinite solution multisets as
suggested by Table 7 (4), where three principal sources of infinite query results have to
be addressed:

1. An RDF graph can be inconsistent under the RDFS semantics in which case it
RDFS-entails all (infinitely many) conceivable triples.

2. The RDFS semantics requires all models to satisfy an infinite number of axiomatic
triples even when considering an empty graph.

3. Every non-empty graph entails infinitely many triples obtained by using arbitrary
blank nodes in triples.

We now discuss each of these problems, and derive a concrete definition for BGP
matching in the proposed entailment regime at the end of this section.

Treatment of Inconsistencies SPARQL does not require entailment regimes to yield a
particular query result in cases where the active graph is inconsistent. As stated in [26],
“[the] effect of a query on an inconsistent graph [...] must be specified by the partic-
ular SPARQL extension.” One could simply require that implementations of the RDFS
entailment report an error when given an inconsistent active graph. However, a closer
look reveals that inconsistencies are extremely rare in RDFS, so that the requirement of
checking consistency before answering queries would impose an unnecessary burden
on implementations.

Indeed, graphs can only be RDFS-inconsistent due to improper use of the datatype
rdf:XMLLiteral.

Example 24 A typical example for this is the following graph:
:a b "<"*rdf:XMLLiteral. b rdfs:range rdfs:Literal.
The literal in the first triple is ill-typed as it does not denote a value of rdf:XMLLiteral. This does

not cause an inconsistency yet but forces "<"*"rdf:XMLLiteral to be interpreted as a resource
that is not in the extension of rdfs:Literal, which in turn cannot be the case in any model that
satisfies the second triple.

Il-typed literals are the only possible cause of inconsistency in RDFS and as such
not a frequent problem.* Moreover, inconsistencies of this type are inherently “local” as
they are based on individual ill-typed literals that could easily be ignored if not related
to a given query.

It has thus been decided in the SPARQL working group that systems only have to
report an error if they actually detect an inconsistency. Until this happens, queries can
be answered as if all literals were well-typed. Our exact formalization corresponds to a
behavior where tools simply assume that all strings are well-typed for rdf:XMLLiteral,
and hence does not put additional burden on implementers.

Treatment of Axiomatic Triples Every RDFS model is required to satisfy an infinite
number of axiomatic triples. The reason is that the RDF vocabulary for encoding lists
includes property names rdf:_i for all i > 1, with several (RDFS) axiomatic triples for
each rdf:_i. For instance, we find a triple rdf._i rdf:type rdf:Property for all i € N. Thus,
the query ?x rdftype rdf:Property could have infinitely many results. We consider such
results trivial in the sense of Table 7 (4), and thus we want avoid them in the RDFS
entailment regime.

We therefore propose that axiomatic triples with a subject of the form rdf:_i are only
taken into account if the subject’s IRI explicitly occurs in the active graph. This ensures
that only finitely many axiomatic triples are considered, since there is only a finite
number of axiomatic triples whose subjects do not have the form rdf:_i. To conveniently
formalize this, Definition 10 below still refers to the standard RDFS entailment, but
restricts the range of solution mappings to a finite vocabulary, which consists of terms
from the queried graph and from terms of the RDFS vocabulary apart from those of the
form rdf:_i.

Treatment of Blank Nodes Even if condition (3) in Table 7 holds, solution multisets
could include infinitely many results that only differ in the identifiers for blank nodes.
Simple entailment avoids this problem by restricting results to blank nodes that occur
in the active graph. For entailment regimes, however, one must take entailed triples into
account. This already leads to triples with different blank nodes, as illustrated in the
graphs G; and G, in Example 23.

Restricting the range of solution mappings to blank nodes in the active graph would
ensure finiteness but is not a satisfactory solution.

4 Implementations may support additional datatypes that can lead to similar problems. Such
extensions go beyond the RDFS semantics we consider here, yet inconsistencies remain rare
even in these cases.

Example 25 To see why restricting the range of solution mappings to blank nodes in the active
graph is not a satisfactory, consider the graph

G::ab:wc dwe_f
The query pattern BGP = { :a :b ?x } yields only one solution mapping x : ?x +— :c under
simple entailment. Yet, the mapping 1’ : ?x — _:f uses only blank nodes from G, and satisfies
G [1/ (BGP) even under simple semantics.

This shows that the latter two conditions are not sufficiently specific for handling
blank nodes in entailment regimes. A more adequate approach is the use of Skolemiza-
tion:

Definition 9. Let the prefix skol refer to a namespace IRI that does not occur as the
prefix of any IRI in the active graph or query. The Skolemization sk(_:b) of a blank
node _:b is defined as sk(_:b) := skolb. We extend sk(-) to graphs and filters just like
other (partial) functions on RDF terms.

Intuitively, Skolemization changes blank nodes into resource identifiers that are not
affected by entailment. Clearly, we do not want Skolemized blank nodes to occur in
query results, but it is useful to restrict to solution mappings p for which sk(G)
sk(u(BGP)). In Example 25 above, this condition is indeed satisfied by y but not by p’.

In order to illustrate the effect, we use an RDF graph that does not make use of any
special RDFS terms, i.e., simple entailment would result in the same solutions. Let G,
sk(G), and BGP be as follows:

G::ab:c. sk(G) : :a b wc. BGP: 7 b _:d
:ab:wc. skol:a :b skol:c.

Here the Skolem function sk maps _:a to skol:a and _:c to skol:c for skol defined as
some imaginary prefix not used anywhere in G or BGP. We can now return only those
solutions u for which applying the Skolem function to blank nodes in the range of u
and some RDF instance mapping o yields ground triples that are entailed by sk(G).
For example, all the mappings below yield entailed triples, but only the first two satisfy
the stated requirement because applying sk to _:a and _:c yields a ground triple that is
entailed by sk(G):

Hi: X a oy _de ¢

Mot X _:a oy: _d—> _iC

uz: X by o3 _de by

3.3 The RDFS Entailment Regime

The set of well-formed graphs for the RDFS entailment regime is simply the set of all
RDF graphs. BGP matching for RDFS is defined as follows.

Definition 10. Let G be an RDF graph, BGP a basic graph pattern, V(BGP) the set of
variables in BGP, B(BGP) the set of blank nodes in BGP, sk a Skolemization function

as in Definition 9 such that ran(sk) N (Voc(G) U Voc(BGP)) = 0. Let Voc(RDFS) be the
RDFS vocabulary and Voc™ (RDFS) = Voc(RDFS) \ {rdf._i | i € N}.
We write =rprs for the RDFS entailment relation and define the evaluation of BGP
over G under RDFS entailment, [BGP] B%FS, as the solution multiset
{(u, n) | dom(u) = V(BGP), and n is the maximal number of distinct RDF instance
mappings such that, for each 1 <i < n,
(i) dom(sigma;) = B(BGP),
(ii) u(o;(BGP)) are well-formed RDF triples,
(iii) sk(u(oiy(BGP))) are ground RDF triples,
(iv) sk(G) Frors sk(u(ci(BGP))), and
(v) ran(u) € Voc(G) U Voc™ (RDFS)}.

Other types of graph patterns are evaluated as in Definition 7. If the active graph is
RDFS-inconsistent, implementations may compute solution multisets based on the as-
sumption that all literals of type rdf:XMLLiteral are well-typed, so that no inconsistency
occurs. When the inconsistency is detected, implementations should report an error. We
summarize the RDFS entailment regime in Table 8.

Condition (i) ensures that only RDF instance mappings that map all and only the
blank nodes of BGP can increase the multiplicity of a solution mapping. Condition (i7)
ensures that the instantiated triples are well-formed, e.g., variables tat occur in the sub-
ject position cannot be mapped to a literal by a solution mapping. Similarly, variables
in the predicate position cannot be mapped to blank nodes. Condition (iii) then ensures
that all blank nodes are indeed Skolemized by sk, resulting in ground RDF triples.
Condition (iv) and (v) ensure that blank nodes and the axiomatic triples are handled as
described in the previous section, therefore, avoiding infinitely many answers.

The definition might look quite complicated, but has the advantage that we can
simply swap in another entailment relation and vocabulary to get another entailment
regime. For example, when we use the simple entailment relation in place of the RDFS
entailment relation and the empty set instead of Voc(RDFS) (as there are no special
terms for simple interpretations), then we get exactly the behavior of subgraph match-
ing (aka simple entailment) described in Definition 6. Furthermore, we can also swap
the RDFS entailment relation for RDF or the OWL RDF-Based Semantics entailment
relation and get a valid entailment regime. The OWL Direct Semantics needs some
minor tweaks as the Direct Semantics is not defined in terms of triples, but based on
Description Logics.

Example 26 In order to see why the range of a solution mapping can also use terms from
Voc(RDFS), we consider the data from Table 1 and the query:

SELECT ?name
WHERE { ?x foaf:name ?name . ?x rdf:type foaf:Person }

Under RDFS entailment, the queried graph entails

_:a foaf:name "Birte Glimm"
_:a rdftype foaf:Person

Thus, u; : 7name — "Birte Glimm" is a solution. Note, however, that rdf:type is not part of the
vocabulary of the graph, and the solution is only part of the result since we include the RDFS
vocabulary. Overall, we get the following three solutions:

Tname

"Birte Glimm"
"Sebastian Rudolph"
"Pascal Hitzler"

Furthermore, in order to implement the regime, we can simply materialize all RDFS
inferences and use subgraph matching on the extended graph. We illustrate this with the
next example.

Example 27 In order to get an idea of how we can implement the RDFS entailment regime
via materialization, we consider again the data from Table 1 and the query from the previous
example.

In order to materialize all RDFS inferences, we add triples that are RDFS entailed and
obtain a graph G’, which contains (among other triples):

_:a rdftype foaf:Person
_:b rdftype foaf:Person
_:c rdftype foaf:Person

due to the triple foaf:name rdfs:domain foaf:Person combined with the three triples with the
predicate foaf:name. Furthermore, we would add

_:a foafnick foafb.glimm
_:c foafinick foaf:phi

due to the fact that foaficqChatID is a subproperty of foaf:nick. Furthermore, the full material-
ization would also contain triples such as t rdf:type rdfs:Resource, for each term t in subject or
object position plus other triples (cf. [14], [15]).

For evaluation the query, we do not have to make the Skolemization explicit, instead, we
can just consider the blank nodes in G’ as constants. However, if a blank node occurs in the
query that occurs also in the graph, we have to keep in mind that the blank node from the query
cannot only map to that very blank node in the graph, but it still acts like a variable. Thus, if _:Xx
in our query were _:a, it could still match to _:b in G’. Hence, we get the same three solution
by performing subgraph matching on G’ as in the previous example.

Since computing the required partial RDFS closure (partial, since we do not require
all axiomatic triples) can be done in polynomial time [15] and BGP evaluation then
amounts to subgraph matching over the partial closure, it follows that the complexity of
the evaluation problem under the RDFS regime is the same as for standard SPARQL.
For set semantics instead of multiset semantics this is known to be PSPACE-complete
[24].

Table 8. The RDFS entailment regime

Name RDFS

IRI http://www.w3.org/ns/entailment/RDFS

Legal Graphs Any legal RDF graph

Legal Queries Any legal SPARQL query

Illegal Handling In case the query is illegal (syntax errors), the system must raise a
MalformedQuery fault. In case the queried graph is illegal (syntax errors),
the system must raise a QueryRequestRefused fault.

Entailment RDFS Entailment

Inconsistency The scoping graph is graph-equivalent to the active graph even if the active
graph is RDFS-inconsistent. If the active graph is RDFS-inconsistent, an
implementation may raise a QueryRequestRefused fault or issue a warning
and it should generate such a fault or warning if, in the course of processing,
it determines that the data or query is not compatible with the request. In the
presence of an inconsistency the conditions on solutions still guarantee that
answers are finite.

Query Answers Basic Graph Patterns are evaluated as in Definition 10

4 The OWL Entailment Regimes

In contrast to the RDFS semantics, a graph does no longer admit a unique canonical
model that can be used to compute answers under the RDF-Based Semantics (RBS)
and Direct Semantics (DS) of OWL, i.e., we can no longer imagine queries to act on
a unique “completed” version of the active graph. This affects reasoning algorithms,
but has only little effect on our definitions. The main new challenges for OWL are
its expressive datatype constructs that may lead to infinite answers, and the fact that
the OWL DS is defined in terms of OWL objects to which a given RDF graph and
query must first be translated. The problems discussed for RDF(S) also require slightly
different solutions for OWL:

1. Inconsistent input ontologies are required to be rejected with an error.

2. The axiomatic triples of RDFS are used only by the RBS and can again be handled
by suitably restricting solutions to terms from a finite vocabulary.

3. The problem of blank nodes occurs for both semantics and can again be addressed
by Skolemization, but for DS the blank nodes that are used to encode OWL objects
must not be Skolemized.

The main difference to RDFS is the stricter first item which no longer permits deferred
inconsistency detection. Inconsistencies in RDFS were easy to ignore since they always
related to single literals. Neither OWL semantics suggests such simple reasoning under
inconsistencies. Although proposals exists for addressing this, they disagree on the in-
ferred entailments and tend to require complex computations. On the other hand, typical
OWL reasoning algorithms are model building procedures which detect inconsistencies
as part of their normal operation. Hence, reporting errors in this case can usually be
done without additional effort.

4.1 Mapping from RDF Graphs to OWL Structural Objects

For the OWL 2 Direct Semantics entailment regime, semantic conditions are defined
with respect to ontology structures (i.e., instances of the Ontology class as defined in
the OWL 2 structural specification [21]). Given an RDF graph G, the ontology structure
for G, denoted Og, is obtained by mapping the queried RDF graph into an OWL 2
ontology [23]. This mapping is only defined for OWL 2 DL ontologies, i.e., ontologies
that satisfy certain syntactic conditions.

In this section, we use both Turtle and OWL’s functional-style syntax (FSS) that is
used in the OWL 2 structural specification [21]. We further provide a Description Logic
(DL) syntax version for those with a background in DLs.

For many triples that use as predicate a special term from the RDFS vocabulary, the
mapping to OWL structural objects is straightforward.

Example 28 For example a subclass statement in RDFS has a straightforward representation
in OWL’s FSS:

Turtle: foaf:Person rdfs:subClassOf foaf:Agent .
FSS: SubClassOf(foaf:Person foaf:Agent)
DL: Person o= Agent

Note that DLs have no notion of IRIs, namespaces, or prefix declaration and we just write the
short name without any prefix in the DL syntax. It is also characteristic that several terms of
the specialized RDFS and OWL vocabulary in the Turtle syntax are translated to constructors
in the FSS, e.g., rdfs:subClassOf is mapped into a SubClassOf constructor.

Similarly, the translation of domains and ranges is relatively straightforward.

Example 29 For example, the following domain and range statements translate straightfor-
wardly to the FSS, but the DL syntax is slightly more involved:

Turtle: foafknows rdfs:range foaf:Person .
foaf:knows rdfs:domain foaf:Person .

FSS: ObjectPropertyRange(foafknows foaf:Person)
ObjectPropertyDomain(foaf:knows foaf:Person)

DL: T C V knows Person
dknows.T C Person

First, it can be noted that in the FSS the term rdfs:range becomes ObjectPropertyRange. The
counterpart to ObjectPropertyRange is DataPropertyRange range, which is used for proper-
ties that relate individuals (such as instances of the class foaf:Person) to concrete data val-
ues. For example, the property foaf:name relates an individual to a string, i.e., an element
from xsd:String. Since OWL supports very expressive reasoning with datatypes, which requires
different algorithms from reasoning with abstract (non-datatype) elements, every property in
OWL DL must be typed. Thus, we would have that foaf:knows is of type owl:ObjectProperty
whereas foaf:name is of type owl:DataProperty.

In the DL syntax, there is no direct constructor for domains and ranges. The above state-
ments are, however, logically equivalent. The first axiom uses on the left-hand side the special

symbol T, which corresponds to owl:Thing and is always true. Thus, the axiom can be read
as “It is always implied that all (V) knows-successors of an element are instances of the class
Person,” which is exactly what a range axiom specifies. The second axiom can be read as “If
an element has some () knows-successor, then it is an instance of the class Person.”

Elements of an OWL 2 DL Ontology Now that we have seen some examples of
the mapping from RDF triples to OWL axioms, we introduce the basic elements in an
OWL 2 DL ontology. An OWL 2 DL ontology consists of an ontology header and a
set of axioms. The ontology header specifies the IRI of the ontology and which other
ontologies are imported by it.

Example 30 The following set of RDF triples constitute a valid OWL 2 DL ontology.

Turtle: @prefix foaf: <http://xmIns.com/foaf/0.1/> .
<http://example.org/ont1> rdfitype owl:Ontology .
<http://example.org/ont1> owlimports <http://example.org/ont2> .

FSS: Prefix(foaf:= <http://xmins.com/foaf/0.1/>)
Ontology(<http://example.org/ont1>
Import(<http://example.org/ont2>)
)

The ontology header has no representation in Description Logic syntax and it has no
direct influence on the logical consequences of the ontology other than through imports,
which instruct an OWL parser to additionally include the triples that are obtained from
parsing the imported ontology.

The axioms in an ontology are used to describe a domain of interest, e.g., in the pre-
vious section we described people, their names, email addresses and chat IDs making
use of terms from the FOAF (Friend of a Friend) ontology. Within the axioms, we dis-
tinguish between logical and non-logical axioms. As the ontology header, non-logical
axioms carry no semantics, i.e., they do not influence the consequences of an ontology,
and include:

— Annotations,
— Entity Declarations

With ontology annotations, one can describe properties of the ontology, e.g., who cre-
ated it, which version of the ontology this is and other things. Similarly, one can anno-
tate other axioms, e.g., with a comment or with provenance information, and one can
even annotate annotations themselves. Entity declarations specify the types of terms.
For example, we have learned above that foaf.knows is an object property whereas
foaf:name is a data property. In addition to object and data properties, OWL also pro-
vides recognizes annotation properties, e.g., rdfs:label or rdfs:comment are built-in an-
notation properties, but one can define additional custom ones too. Similarly one can
declare classes and custom datatypes (ones that are not defined in the OWL 2 datatype
map) and named individuals. Such declarations are required to allow for an unambigu-
ous parsing process.

Example 31 We can extend the ontology from Example 30 with the following annotations and
declaration. Since the axioms are non-logical, the extended ontology still only entails tautolog-
ical statements under the Direct Semantics.

Turtle: <http://example.org/ont1> owl:priorVersion <http://example.org/ont0> .
foaf:knows rdf:type owl:ObjectProperty .
<http://example.org/ont1> rdfs:label "An example" .

FSS: Annotation(owl:priorVersion <http://example.org/ont0>)
Annotation(rdfs:label "An example")
Declaration(ObjectProperty(foaf.knows))

The first annotation gives the IRI of a previous version for the current ontology and the second
annotation just provides a label for the ontology. The declaration axiom specifies foaf:knows as
an object property.

In the remainder we frequently omit type declarations. Unless otherwise specified,
examples assume that properties are object properties and that terms refer to classes
rather than data ranges.

Complex Classes and Axioms So far we always had a straightforward correspondence
between one triple and one OWL axiom. A FSS axiom can, however, correspond to
several RDF triples, and the RDF triples might contain auxiliary blank nodes that are
not part of the corresponding OWL objects and are not visible in the corresponding FSS
axiom. This is usually the case if we want to represent complex OWL classes in RDF
triples. In most cases, we can “hide” the blank nodes and obtain a slightly more readable
Turtle format by making use of Turtles’s abbreviations: [...] implicitly introduces a
blank node, *“;” can be used if the following triple has the same subject, which is them
omitted, ““,” acts as *“;” but for the case where triples share subject and object, the (...)
constructor abbreviates lists of terms, and a abbreviates rdfitype.

Example 32 The first class assertion uses just a class name, which requires a single RDF triple,
but the second assertion uses a complex class, which requires several RDF triples with auxiliary
blank nodes.

Turtle: :Peter rdfitype :Person .
:Peter rdf:type XL
_x rdftype owl:Restriction .
_:x owlonProperty :hasFather .

_:x owlsomeValuesFrom :Person .

Turtle (abbr.): :Peter a :Person .
:Peter a [a owl:Restriction ;
owl:onProperty :hasFather ;
owl:someValuesFrom :Person | .

FSS: ClassAssertion(:Person :Peter)
ClassAssertion(ObjectSomeValuesFrom(:hasFather :Person) :Peter)

DL: Person(Peter)
(3 hasFather.Person)(Peter)

The first axiom just states that the individual :Peter is an instance of the class :Person. The
second axiom states that :Peter belongs to the class of things that have a :hasFather-successor
which is an instance of the class :Person.

Example 33 Disjunctions and conjunctions in the FSS similarly require several triples in RDF:

Turtle: :Birte rdf:type _IX.
:x rdfitype owl:Class .
:x owlunionOf _:l .

_:ly rdffirst :Vegetarian .
_:ly rdfinext il

il rdffirst :Vegan .

_:l> rdfrest rdf:nil .

Turtle (abbr.): :Birte a [a owl:Class ; owlunionOf (:Vegetarian :Vegan)] .

FSS: ClassAssertion(ObjectUnionOf(:Vegetarian :Vegan) :Birte)
DL: Birte C Vegetarian LI Vegan

The typing as owl:Class is required since owl:unionOf can equally be used to build the union
of two datatypes or data ranges (i.e., complex datatypes that are already obtained by combining
datatypes). Axiom states that the individual :Birte is a vegan or a vegetarian, i.e., an instance of
the class ObjectUnionOf(:Vegan :Vegetarian).

Blank Nodes and Anonymous Individuals Although in the above examples it was
always the case that the blank nodes disappeared in the FSS, this is not always the case.
The FSS may still contain blank nodes, but these correspond to OWL individuals that
have no explicit names and are called anonymous individuals.

Example 34 The following axiom uses anonymous individuals:

Turtle: :Peter :hasBrother _:y .
FSS: ObjectPropertyAssertion(:hasBrother :Peter _:y)

The meaning of the axiom is exactly the same as the meaning of the second axiom from Exam-
ple 32, i.e., we say that :Peter is related to some element with the property :hasBrother. Note
that in DL notation there is no counterpart to anonymous individuals and one always has to
use existential quantifiers (3) as in the first version of this axiom. For RDF graphs that can be

mapped into OWL 2 DL ontologies, it is, however, guaranteed that an according DL version
always exists.

While parsing an input document (containing RDF triples) into an OWL ontology,
it can be necessary to rename blank nodes/anonymous individuals and there is no guar-
antee that the blank node identifier _:y from the above triple is used as an identifier for
Peter’s brother in the ontology structure. Thus, the latter axiom from Example 34 could
also be parsed as the OWL axiom

ObjectPropertyAssertion(:hasBrother :Peter _:somethingelse)

Table 9. RDF data for Example 35

(1) <http://example.org/myOntology> a owl:Ontology

(2) :eats a owl:ObjectProperty
(3) :contains a owl:ObjectProperty
(4) :Vegetarian a owl:Class
(5) :Vegan a owl:Class
(6) :MilkProduct a owl:Class
(7) :Birte a[a owl:Class ; owl:unionOf (:Vegetarian :Vegan)] .
(8) :Birte :eats :Yoghurt .
(9) :Yoghurt :contains :Milk .
(10) :Milk a :MilkProduct .
(11) [a owlRestriction ; owl:onProperty :contains ; owl:someValuesFrom :MilkProduct]
rdfs:subClassOf :MilkProduct .
(12) :Vegan rdfs:subClassOf
[a owl:Restriction ; owl:onProperty :eats ; owl:allValuesFrom
[a owl:Class ; owl:complementOf :MilkProduct]

]

4.2 Introduction to the OWL Direct Semantics for SPARQL

Having introduced the basic ideas of how we get from an RDF graph to an ontology
that can be interpreted under OWL’s Direct Semantics, we now turn our attention to the
issue of deciding what is a consequence of an OWL ontology and how we can query
for such consequences with SPARQL.

OWL Entailment OWL reasoners are tools that decide OWL entailment. In order to
decide whether an RDF graph G entails an RF graph G’ under OWL 2 Direct Semantic
entailment, we can proceed as follows:

1. We compute the imports closure clos(G) of G by enriching G with directly and in-
directly imported triples and then we transform clos(G) into Og using the mapping
process as defined in the OWL 2 Mapping to RDF Graphs specification. If the map-
ping fails, then G is not well-formed and, thus, cannot be used under the OWL 2
Direct Semantics.

2. We proceed similarly for G’, obtaining Og'.

3. We check whether Og E Og/, where = denotes the OWL Direct Semantics entail-
ment relation. Most commonly OWL reasoners do this by searching for a counter-
model, i.e., a model I that satisfies Og and the negation of Og'. A problem is that
not all axioms can be negated in OWL. Thus, it is usually required to reformulate
the reasoning problem and deal with each axiom in Og ' separately.

We illustrate some of the problems that have to be addressed in an OWL DS entail-
ment regime in Example 35 below.

Table 10. FSS version of the triples for Example 35

(1’) Ontology(<http://example.org/myOntology>
2" Declaration(ObjectProperty(:eats))

(3" Declaration(ObjectProperty(:contains))

@) Declaration(Class(:Vegetarian))

57 Declaration(Class(:Vegan))

6" Declaration(Class(:MilkProduct))

(7) ClassAssertion(ObjectUnionOf(:Vegetarian :Vegan) :Birte)
(8’) ObjectPropertyAssertion(:eats :Birte :Yoghurt)
(9’) ObjectPropertyAssertion(:contains :Yoghurt :Milk)
(10%) ClassAssertion(:MilkProduct :Milk)
11’ SubClassOf(ObjectSomeValuesFrom(:contains :MilkProduct) :MilkProduct)
(12%) SubClassOf(:Vegan ObjectAllValuesFrom(:eats ObjectComplementOf(:MilkProduct)))

Example 35 We consider the query:

SELECT ?ind
WHERE { ?ind rdfitype :Vegetarian }

We assume that the default (and, hence, the active graph for the query) contains the triples from
Table 9. Since the Direct Semantics is defined in terms of OWL structural objects, we first
have to map the triples from Table 9 into OWL objects. The result of the mapping is shown in
Table 10. Triple (1) results in the ontology header (1’). This triple does not contribute anything
towards the logical consequences of the ontology, but is required to satisfy the constraints of
OWL 2 DL. Similarly, Triples (2) to (6) result in the non-logical axioms (2’) to (6’), which
declare terms as classes or object properties. Such declarations are required to allow for an
unambiguous parsing process. The remaining triples lead to logical axioms: Triple (7) is the
same as in Example 33 and states that the individual :Birte is a vegan or a vegetarian.

Note that in the FSS version of (7°) we have ObjectUnionOf whereas in the RDF triples,
we just have unionOf. This is because the FSS makes it explicit whether the element is a class
or a data range. In case of a data range DataUnionOf would be used. In order to be able to
decide what applies, the declarations are used, e.g., from (4) and (5) (in FSS (4’) and (5°),
respectively), we know that :Vegetarian and :Vegan are classes. Triple (8) translates into an
assertion saying that the individual :Birte :eats the individual :Yoghurt. In order to see whether
this is a data or an object property assertion in the FSS, we can again use the declarations.
Axiom (9’) is obtained similarly. From (11), we obtain a more complicated axiom that states: if
an element has a :contains relationship with something that is an instance of :MilkProduct, then
this element is itself an instance of :MilkProduct. Finally, (12) translates into a statement that
says that instances of the class :Vegan can only be related with the property :eats to something
that is not an instance of :MilkProduct. For those more familiar with Description Logic syntax,
Table 11 shows the logical axioms into Description Logic syntax with (7%), (11¥), and (12*)
terminological (TBox) axioms and (8*), (9*), and (10*) assertional (ABox) axioms.

In order to find the answers for the query under OWL DS entailment, we also need a version
of the BGP that can be interpreted according to the OWL structural specification. One way
of doing this would be to replace the variables with terms from the ontology, then map the
resulting triples to OWL axioms, and check entailment. This would, however, require frequent
parsing/mapping attempts that frequently will fail because we substituted a variable with a value

Table 11. Description Logic version of the logical axioms for Example 35

(77) (Vegetarian LI Vegan)(Birte)

(8%) eats(Birte, Yoghurt)

(9*) contains(Yoghurt, Milk)
(10) MilkProduct(Milk)
(11%) dcontains.MilkProduct C MilkProduct
(12%) Vegan C Veats.(=MilkProduct)

that violates the OWL 2 DL constraints, e.g., when we replace the variable ?ind with a class
name, e.g., :Vegan, we obtain a triple that cannot be mapped since :Vegan rdfitype :Vegetarian
is not allowed in OWL 2 DL, i.e., rdftype cannot be used to relate two classes. Since we know
that :Vegetarian is a class from (4), we know that ?ind has to be instantiated with individual
names. In order to avoid a parsing attempt for each possible assignment of variables, the choice
has been made to extend OWL’s structural specification to allow for variables in place of atomic
objects such as individuals, classes, properties, or literals. We can then simply map a BGP into
axioms from the extended specification. This yields:

ClassAssertion(:Vegetarian?ind)

For this axiom it is clear that ?ind occurs in an individual position and, therefore, has to be
replaced with individual names from the queried ontology. For this example, we only have to
substitute ?ind with :Birte. We could also use dedicated reasoner methods to retrieve instances
of the class :Vegetarian without iterating over all individual names to obtain the query result:

?ind
:Birte

Note that the class used in the query pattern could equally be a class expression such as
ObjectUnionOf(:Vegetarian :Vegan ObjectAllValuesFrom(:eats:MilkProduct)),

although that last disjunct is somehow far-fetched as a class of things that only eat milk products.
Assume further that we extend the ontology with:

(13) ClassAssertion(ObjectUnionOf(:Vegetarian :Vegan) :lan)
(14) SubclassOf(:Vegetarian :HasSpecialMealRequest)
(15) SubclassOf(:Vegan :HasSpecialMealRequest)

Clearly :lan belongs to the above stated disjunction, so should be returned as query answer
although membership in that class is not explicitly stated nor can we foresee all such classes
and extend the queried ontology accordingly. Furthermore, we might have to do case-based
reasoning. In this case, we can neither extend the ontology with a statement that :lan belongs
to the class :Vegetarian nor with one that establishes that :lan belongs to :Vegan. Nevertheless,
we know that :lan belongs to the extension of the class :HasSpecialMealRequest.

4.3 Mapping BGPs to Extended OWL Objects

Note that in the above example, it was clear from the queried ontology that ?ind rdf:type
:Vegetarian corresponds to a class assertion with ?ind mapping to individual names
since :Vegetarian was declared as a class in Og. In some cases, however, the variables
in a BGP do no longer allow for an unambiguous mapping, which is addressed by
variable typing triples.

Variable Typing In order to have an unambiguous correspondence between BGPs and
extended OWL objects, the Direct Semantics entailment regime requires for some cases
extra triples in a basic graph pattern that give typing information for the variables.

Example 36 In order to see why this is required, consider the following query:
SELECT ?s ?p 20 WHERE { ?s ?7p 70 }
Without any restrictions this query could be a query for

— declarations, i.e., the BGP maps to a declaration such as Declaration(Class(?s)) where
?p binds to rdftype, 70 to owl:Class, and bindings for ?s have to be computed or
Declaration(ObjectProperty(?s)) where ?p binds to rdf:type and ?0 to owl:ObjectProperty,
or any other type of declaration,

— inverse object properties, i.e., the BGP maps to ObjectinverseOf(?0) where ?s maps to a
blank node and ?p to owl:inverseOf,

— subclasses, i.e., the BGP maps to SubClassOf(?s ?0) with rdfs:subClassOf as binding for
p,

— equivalent classes, i.e., the BGP maps to EquivalentClasses(?s ?0) where ?p binds to
owl:equivalentClass,

— disjoint classes, i.e., the BGP maps to DisjointClasses(?s ?70) where ?p binds to
owldisjointWith,

In order to answer the query without any typing constraints, all possible ways of
mapping the BGP into ontology structures have to be considered. Even if variables can
only occur in the position of function parameters of the functional-style syntax, the
BGP from the above query can still be mapped to ObjectPropertyAssertion(?p ?s ?0),
DataPropertyAssertion(?p ?s ?0), or AnnotationAssertion(?p ?s ?0) without variable
typing information.

The inclusion of type declarations from the queried ontology means that at least the
non-variable terms in the query can be disambiguated without additional typing infor-
mation in the query. Typically, variables have to be declared if they represent classes,
properties, or datatypes, whereas individual variables do not need declarations for an
unambiguous mapping process. This is similar to typing in ontologies, where typing of
individuals is optional, but typing for properties, classes, and non-OWL 2 datatypes is
mandatory.

Table 12. Grammar extension for extended OWL objects

Class = IRI| Var ObjectProperty = IRI| Var DataProperty := IRl | Var
Individual := NamedIndividual | AnonymouslIndividual | Var
Literal := typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

Example 37 The BGP of the query
SELECT ?2x WHERE { ?x :p %y }

is parsed into (a) or (b) depending on whether :p is declared as an object or a data property in
the queried ontology

(a) ObjectPropertyAssertion(:p 7x ?y) (b) DataPropertyAssertion(:p ?x ?y)
If :p is changed into the variable ?p, we need an extra typing triple, e.g.,
Declaration(ObjectProperty(?p))

to allow for an unambiguous mapping process.

Definition 11. Let BGP be a basic graph pattern with 7X a variable occurring in BGP.
If BGP contains a triple

2 rdftype TYPE,
where TYPE is one of

owl:Class,
owl:ObjectProperty,
owl:DataProperty,
owl:Datatype, or
owl:NamedIndividual,

then X is declared to be of type TYPE.

From BGPs to Extended OWL Objects We now formally define how BGPs are
mapped into OWL axioms extended to contain variables, i.e., the result of the map-
ping yields rather axiom femplates than axioms.

The BGP of the query is mapped into an OWL 2 DL ontology, extended to al-
low variables in place of class names, object property names, datatype property names,
individual names, or literals. Table 12 shows how productions of the OWL 2 functional-
style syntax grammar [21] are extended to allow variables as defined by the Var produc-
tion from the SPARQL grammar [26]. If BGP contains no ontology header, i.e., a triple
of the form x rdftype owl:Ontology with x € | U B, we assume that BGP is extended
with _:o rdfitype owl:Ontology for _:0 a blank node name not occurring in BGP or the
active graph before parsing BGP into extended OWL objects. Solution mappings in a
query result are applied to such extended ontologies to obtain a set of OWL DL axioms
that is compatible with the queried ontology and also entailed by it under DS.

Table 13. A query with infinitely many entailed solutions

G : :Peter a [a owl:Restriction; BGP : :Peter a [a owl:Restriction;
owl:onProperty :dp; owl:onProperty :dp;
owl:allValuesFrom [a rdfs:Datatype; owl:allValuesFrom [a rdfs:Datatype;

owl:oneOf ("5""xsd:integer)]] owl:datatypeComplementOf [

a rdfs:Datatype; owl:oneOf (?x)]1]]
Og : ClassAssertion(DataAllValuesFrom(:dp DataOneOf("5"*"xsd:integer)) :Peter)

OSGP : ClassAssertion(DataAllValuesFrom(:dp DataComplementOf(DataOneOf(?lit))) :Peter)

Definition 12. An extended ontology OSGP is constructed for a basic graph pattern

BGP and graph G using the parsing process for RDF graphs as defined in [23] with
three modifications:

1. variable identifiers are allowed in place of IRIs and literals in all parsing steps,

2. an ontology header may be added to BGP if not given, and

3. the type declarations given in BGP are augmented with the declarations in G and
those obtained from graphs imported by G (denoted AllDecl(G) in [23]).

The complete parsing process is detailed in the latest entailment regimes working draft.’
A basic graph pattern BGP satisfies the typing constraints of the entailment regime if

— no variable is declared as being of more than one type,

— variables without a type declaration occur either only in individual positions or
only in literal positions, and

— it is possible to disambiguate all types of IRIs and variables when parsing BGP
into extended OWL objects taking the typing information from Og and from BGP
into account;

A basic graph pattern BGP is well-formed for the OWL DS entailment regime and a
graph G if OSGP can be obtained in this way and is an extended OWL DL ontology.
An RDF graph G is well-formed for the OWL DS entailment regime if is mapping to
structural OWL objects [23], resulting in an ontology Og, is defined.

SPARQL Syntax Extensions for BGPs Considering the fact that each BGP has to
be mapped to structural OWL objects anyway in order to use the OWL DS, it seems
natural to directly allow for specifying BGPs in other OWL syntaxes, e.g., the FSS.
Such an extension has not been specified by the W3C as part of the entailment regimes
document, but it seems likely that implementations of the OWL DS regime might also
accept other syntaxes for the BGP.

4.4 Infinite Entailments in Datatype Reasoning

Shttp://www.w3.org/TR/2010/WD-sparqlll-entailment-20100601/

Example 38 In order to see how datatype reasoning in OWL can cause infinite entailments,
consider the graph and query in Table 13. The graph G states that all data values to which
Peter is related via :dp are in the singleton set of the integer 5. The BGP asks for all data
values to which :Peter cannot be related with :dp. Without suitable restrictions, all (infinitely
many) integers other than 5 could be used in solution mappings for ?x. Moreover, it is currently
unknown how to compute all mappings for literal variables even for cases where there number
is finite — testing all literals is clearly not an option.°

We will again use the vocabulary of the queried graph to include only literals that are
explicitly mentioned in the input graph for the OWL entailment regimes. Like for the
IRIs rdf;_i, this may lead to unexpected behavior, since mentioning a literal in the in-
put may lead to new query results even for queries not directly related to this literal.
Yet, this problem seems so rare in practice that a more detailed analysis of the prob-
lematic datatype expressions is not worthwhile, even if it could further limit unintuitive
behavior.

4.5 The OWL 2 Direct Semantics Entailment Regime

We now define the evaluation of graph patterns. For the Direct Semantics, Skolemiza-
tion is applied to Og, which ensures that only blank nodes that represent anonymous
OWL individuals are Skolemized, not blank nodes used for encoding complex OWL
syntax in RDF.

Definition 13. Let G be an RDF graph that is well-formed for the OWL 2 DS entailment
regime, BGP a basic graph pattern that is well-formed for DS and G, V(OSGP) the set

of variables in OSGP, B(OSGP) the set of blank nodes in OgGP, sk a Skolemization
function for the blank nodes in OSGP as in Definition 9 such that ran(sk) N (Voc(Og) U
Voc(Ogp)) = 0.

We write =ps for the OWL 2 Direct Semantics entailment relation and define the
evaluation of BGP over G under OWL 2 Direct Semantics entailment, [BGP]2S,, as

. . D.G’
the solution multiset

{(u, n) | dom(u) = V(BGP), and n is the maximal number of distinct RDF instance
mappings such that, for each 1 <i < n,
(i) dom(sigma;) = B(BGP),
(ii) y(O';(OSGP)) U OC is an OWL 2 DL ontology,
(iii) Sk(y(a'i(OgGP))) are ground RDF triples,
(iv) sk(Og) Fps sk(u(ci(Oggp)), and
(v) ran(u) € Voc(Og)}.

If Og is inconsistent, queries must be rejected with an error.
Restrictions on Solutions Since solutions can only bind to terms from a finite vo-

cabulary, clearly the solution multiset and each multiplicity is finite too. Although this
avoids infinite results as discussed in Section 4.4, reasoners may have to consider a large

number of literals as potential variable bindings and we expect that not all systems will
provide a complete implementation for queries with literal variables.

Note that for the OWL DS regime no vocabulary other than that of the graph itself is
required since there are no axiomatic triples and variables can only bind to built-in terms
that are also built-in entities. Built-in entities such as owl:Thing are, however, assumed
to be present in any ontology [21, Table 5], i.e., Og automatically includes declarations
for these built-in entities. Thus, we have omitted any OWL 2 specific vocabulary from
condition(v).

Compared to the RDFS regime, condition (ii) requires ,u(o'i(Og‘GP)) U O% to be an
OWL 2 DL ontology. Thus, the axioms from the instantiated BGP together with the ax-
ioms from the queried ontology must satisfy the restrictions for OWL 2 DL ontologies.
These restrictions are in place to guarantee that the key reasoning tasks in OWL 2 with
Direct Semantics are decidable. For example, for owltopDataProperty, the following
requirement has to be met in OWL 2 DL:

The owl:topDataProperty property occurs in a SubDataPropertyOf axiom only
in the position of the super-property.

The condition guarantees that these restrictions are equally applied to the query. Fur-
thermore, the condition prevents that the BGP uses a property in a number restriction
that is declared as transitive in the queried ontology since transitive properties cannot
occur in number restrictions in OWL 2 DL.

The complexity of standard reasoning problems in OWL are well-understood and
BGP evaluation can be implemented using the standard reasoning techniques. The com-
plexity of OWL reasoning usually outweighs that of the SPARQL algebra operations,
i.e., checking whether a solution mapping is a solution is complete for nondeterministic
double exponential time in OWL 2 DL.

Higher Order Queries The Direct Semantics entailment regime allows for certain (but
not all) forms of higher order queries.

Example 39 The BGP
7% rdfs:subClassOf ?y

can be used to query for pairs of sub- and super-classes. This means that variables can bind to
classes (representing sets of individuals) and not just to individuals or data values.

Queries in which variables are used in positions of a First-Order Logic quantifier,
will, however, be illegal since such queries cannot be mapped to OWL objects as re-
quired.

Example 40 The following (illegal) query asks whether some or all brothers of Peter are per-
sons:

SELECT ?x
WHERE { :Peter a [
a owl:Restriction ;
owl:onProperty :hasBrother ;
?x :Person
]
}

In FSS the BGP of the query corresponds to the axiom:
ClassAssertion(?x(:hasBrother :Person) :Peter)

Here the variable occurs in the position of a quantifier (ObjectSomeValuesFrom or
ObjectAllValuesFrom, i.e., 3 and V in Description Logics) and not just in the position of OWL
entities such as class names or individual names.

4.6 The OWL 2 RDF-Based Semantics Entailment Regime

The OWL 2 RDF-Based Semantics is a direct extension of the RDFS semantics, which
means that it interprets RDF triples directly without the need of mapping an RDF graph
into structural objects. Compared to the Direct Semantics, the RDF-Based Semantics
treats classes as individuals that refer to elements of the domain. Each such element
is then associated with a subset of the domain, called the class extension. This means
that semantic conditions on class extensions are only applicable to those classes that are
actually represented by an element of the domain which can lead to less consequences
than expected. An example is given by the following graph and BGP:

G : :a rdfitype :C BGP : ?x rdfitype [rdfitype owl:Class ;
owl:unionOf (:C:D)]

G states that :a has type :C, while BGP asks for instances of the complex class denoting
the union of :C and :D. One might expect u: 7X — :ato be a solution, but this is not the
case under the OWL 2 RDF-Based Semantics (see also [29, Sec. 7.1]). It is guaranteed
that the union of the class extensions for :C and :D exists as a subset of the domain; no
statement in G implies, however, that this union is the class extension of any domain
element. Thus, u(BGP) is not entailed by G.

The entailment holds, however, when the statement :E owl:unionOf (:C :D) is
added to G. In the OWL Direct Semantics, in contrast, classes denote sets and not do-
main elements, so G entails u(BGP) under DS where, formally, G must first be extended
with an ontology header to become well-formed for DS. Note that a similar situation oc-
curs for Example 38, but the problem of infinitely many answers occurs if the necessary
expressions are introduced.

Summing up, the RBS handles blank nodes just like RDFS, even in cases where they
are needed for encoding OWL class expressions. This allows us to use Skolemization
just like in the case of RDFS in the next definition. The expressive datatype reasoning
is again addressed as for the DS using the answer domain.

Definition 14. Let G be an RDF graph, BGP a basic graph pattern, V(BGP) the set of
variables in BGP, B(BGP) the set of blank nodes in BGP, sk a Skolemization function
as in Definition 9 such that ran(sk) N (Voc(G) U Voc(BGP)) = 0. Ler Voc(OWL2RB)
be the OWL 2 RDF-Based vocabulary and Voc™ (OWL2RB) = Voc(OWL2RB) \ {rdf._i |
i € NJ.

We write =pgs for the OWL 2 RDF-Based Semantics entailment relation and de-
fine the evaluation of BGP over G under OWL 2 RDF-Based Semantics entailment,
[BGP] B%S, as the solution multiset

{(u, n) | dom(u) = V(BGP), and n is the maximal number of distinct RDF instance
mappings such that, for each 1 <i < n,
(i) dom(sigma;) = B(BGP),
(ii) u(o;(BGP)) are well-formed RDF triples,
(iii) sk(u(oy(BGP))) are ground RDF triples,
(iv) sk(G) Fres sku(oi(BGP))), and
(v) ran(u) € Voc(G) U Voc™(OWL2RB)}.

4.7 OWL 2 Profiles

OWL 2 DL is decidable, but computationally hard and not scalable enough for many
applications. OWL Full is not even decidable and, consequently, not many implementa-
tions that support all of OWL Full are available. Thus, OWL 2 identifies subsets of OWL
2, called profiles, which are sufficiently expressive, but of lower complexity (tractable)
and tailored to specific reasoning services (see also Figure 1):

— Terminological/schema reasoning: OWL 2 EL
— Query Answering via database engines: OWL 2 QL
— Assertional/data reasoning with rule engines: OWL 2 RL

The OWL 2 QL and EL profiles further restrict the allowed inputs compared to
OWL 2 DL, but equally use the Direct Semantics. The OWL 2 RL profile, in principle,
can be used with both semantics, but for the Direct Semantics the input RDF graph has
to satisfy some constrains. The RDF-Based semantics can be use with any RDF graph
but under the OWL 2 RL profile one derives only certain consequences.

OWL 2 DL is the largest subset of RDF graphs for which the OWL 2 Direct Semantics
is defined. Systems that support OWL 2 DL can also handle ontologies that satisfy the
restrictions of the OWL 2 EL and QL profiles because these profiles are even more
restrictive.

The OWL 2 EL Profile is particularly useful in applications employing ontologies
that contain very large numbers of properties and/or classes. The profile captures the
expressive power used by many ontologies and is a subset of OWL 2 DL for which the
basic reasoning problems can be performed in time that is polynomial with respect to
the size of the ontology. Worth mentioning is that the class hierarchy (all subclass re-
lations between classes) can be computed in “one pass”, whereas OWL 2 DL reasoner

OWL 2 Full (RDF-Based Semantics) undecidable

OWL 2 DL (Dlrect Semantics) igﬁ;relme_

/ /)WL 1DL NExpTime-
complete

PTime-
complete

[OWL2 RL | [OWLz EL |

OWL 2 QL

Fig. 1. An overview for the complexity of reasoning in OWL and its profiles

typically have to check each pair of classes separately. The one-pass classification ex-
ploits saturation-based techniques developed for &L Description Logics [2,1,7,3,7]
and can be extended to the Horn (non-disjunctive) fragment of OWL DL [16].

The OWL 2 QL Profile is aimed at applications that use very large volumes of
instance data, and where query answering is the most important reasoning task. In
OWL 2 QL, conjunctive query answering can be implemented using conventional rela-
tional database systems [9, 10, 25]. Using query rewriting techniques, sound and com-
plete conjunctive query answering can be performed in LoGSpace with respect to the
size of the data (assertions) using standard database management systems. Recently de-
veloped techniques prevent an exponential blowup from query rewriting [18,27]. As in
OWL 2 EL, polynomial time algorithms can be used to implement the ontology consis-
tency and class expression subsumption reasoning problems.

Note that OWL 2 QL implementations most commonly will only support conjunc-
tive queries, i.e., queries where the BGP consists only of axioms of the following type:

— ClassAssertion,
— ObjectPropertyAssertion, and
— DataPropertyAssertion.

With the additional restriction that variables can only occur in the position of individu-
als and literals (if datatype reasoning is supported). Future versions of SPARQL could
define further entailment regimes, e.g., one that defines a dedicated conjunctive query
regime. Since an implementations is, however, free to reject any unsupported query
anyway, the currently defined OWL regime can still be used.

The OWL 2 RL Profile defines a syntactic subset of OWL 2, which is amenable
to implementation using rule-based technologies. For RDF graphs that fall into this
syntactic subset, reasoning is sound and complete and both semantics of OWL can
be used yielding the same results. Outside of this syntactic fragment, the RDF-Based
Semantics can still be used, but reasoning can be incomplete. The main reasoning in the
RL profile are PTmMe-complete (ontology consistency, class expression satisfiability,
class expression subsumption, instance checking, and conjunctive query answering).
Reasoning can be implemented in a rule engine (with equality support) by materializing
schema inferences for facts.

4.8 Implementing the OWL 2 RL Profile via Rules

The OWL 2 RL specification provides a complete rule set that can be used to materialize
all OWL 2 RL inferences. Each RDF triple is encoded via a ternary predicate T(_, _,).
A given set of rules is then applied to the ternary predicates.

Example 41 Subproperty reasoning is, for example, handled via the rule prp-spol:
prp-spol: T(?p;, rdfs:subPropertyOf, 7p2) A T(?x, ?p1, ?y) = T(?X, 7p2, ?y)

Given the first two triples below (as ternary predicates), we can derive the third one by applying
the above rule:

T(:hasSister, rdfs:subPropertyOf, :hasSibling)
T(:Peter, :hasSister, :Mary)

= T(:Peter, :hasSibling, :Mary)
Functionality for properties is taken into account via the prp-£p rule:

prp-£fp: T(?p, rdftype, owl:FunctionalProperty) A T(?x, ?p, 7y1) A T(?X, ?p, ?y2)
— T(?y1, owl:sameAs, 7y,)

Given the first three triples, we can then apply the rule to derive the forth triple:

T(:hasMother, rdfitype, owl:FunctionalProperty)
T(:John, :hasMother, :Anna)
T(:John, :hasMother, :Ann)

= T(:Anna, owl:sameAs, :Ann)

We illustrate how subclass reasoning with complex class expressions can be performed using
the data from Table 14.

cax-sco: T(?cy, rdfs:subClassOf, ?c,) A T(?x, rdftype, 7cq) — T(?x, rdftype, ?¢c2)
cls-avf: T(?x, owlallValuesFrom, ?y) A T(?x, owlonProperty, 7p) A
T(?u, rdfitype, ?2x) A T(?u, ?p, ?2v) — T(?v, rdftype, ?y)

The rule cax-sco can be applied to the ternary form of triple (1a) and (3) to derive the first of
the two triples below. Then, the ternary form of triples (1c), (1d), (4), and (2) can be used to
satisfy the body of the rule cls-avf binding ?x to _:c, ?y to :Person, ?p to :hasChild, ?u to
:Anna, and ?v to :Mary, to derive triple (5).

Table 14. Data used to illustrate subclass reasoning with complex class expressions in OWL RL

Turtle: (1a) :Person rdfs:subClassOf _:c
(1b) _:c rdfitype owl:Restriction
(1c) _:c owl:allValuesFrom :Person
(1d) _:c owl:onProperty :hasChild
(2) :Anna :hasChild :Mary
(3) :Anna rdfitype :Person
FSS: (1) SubClassOf(:Person ObjectAllValuesFrom(:hasChild :Person))
(2) ObjectPropertyAssertion(:hasChild :Anna :Mary)
(3) ClassAssertion(:Person :Anna)
DL: (1) Person C YhasChild.Person
(2) hasChild(Anna, Mary)
(3) Person(Mary)

= (4) :Anna rdfitype _:c
= (5) :Mary rdftype :Person

Note that triple (4) has no representation in FSS or DL notation and would not be derived by a
non-rule-based OWL reasoner that uses the Direct Semantics. The triple is rather an intermedi-
ate consequence with the purpose of deriving the class assertion (5).

After exhaustively applying the OWL RL rules [20] to a set of RDF triples, the
resulting extended graph contains triples that state the (atomic) types for all individ-
uals as well as the relationships between individuals. Schema reasoning is, however,
not performed by applying the OWL 2 RL rules, i.e., we do not have all triples :C4
rdfs:subClassOf :c, for :cq a subclass of :co under the Direct or RDF-Based semantics.

In order to evaluate BGP over an active graph G using the OWL 2 RL profile one
can proceed as follows:

1. Saturate G using the OWL 2 RL rule to obtain G'.
2. Evaluate BGP over G’ using sub-graph matching (i.e., via any standard SPARQL
implementation).

More optimized implementation than via the fixed OWL 2 RL rule set are possible
[19]. It is further possible to implement the RL profile in any rule engine that supports
the RIF Core dialect [6, 8] either as fixed or ontology-specific rule set.

5 Exercises

We provide a couple of exercises in this section that can be used to test the understand-
ing of several aspects that have been presented in the previous sections. Solutions to the
exercises are provided in the following section.

5.1 Mapping to the SPARQL Algebra

Exercise 1 Translate the following SPARQL query into an abstract query:

SELECT ?mbox
WHERE { ?x foaf:mbox ?mbox }

Exercise 2 Translate the following SPARQL query into an abstract query:

SELECT DISTINCT ?name
WHERE { 7x foaf.:name ?name FILTER regex(?name, "ian”) }

Exercise 3 Translate the following SPARQL query into an abstract query:

SELECT ?mbox
WHERE { { 7x foaf:.name "Birte Glimm". ?x foaf:mbox ?mbox }
UNION
{ ?x foaf:name ?name . ?x foaf:mbox ?mbox
FILTER regex(?name, “ian”) }

Exercise 4 Translate the following SPARQL query into an abstract query:

SELECT ?name ?id
WHERE { { 7x foaf:name ?name OPTIONAL { ?x foaficqChatID ?id } }
UNION { ?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph @kit.edu> }
} ORDER BY ?name

5.2 Query Evaluation

For the query evaluation in this section we assume simple entailment, i.e., subgraph
matching.

Exercise 5 Illustrate the evaluation of the query from Exercise 3 including its intermediate
results assuming the default graph contains the triples from Table 1.

Exercise 6 Illlustrate the evaluation of the query from Exercise 4 including its intermediate
results assuming the default graph contains the triples from Table 1.

5.3 RDFS Semantics Queries

In this section we assume RDFS entailment, i.e., we use the RDFS entailment regime.

Table 15. RDF triples for Exercise 7

@prefix : <http://example.org/> .
@prefix w3c: <http://www.w3.0org/> .
@prefix iswc2010: <http://data.semanticweb.org/conference/iswc/2010/> .

(1) iswc2010:paper/280 rdf:type :ConferencePaper.
(2) iswc2010:paper/280 :authors _:.

3) _:N rdf:type rdf:Seq.

@ _:N rdf:_1 "Birte Glimm".

b)) N rdf:_2 "Markus Krétzsch".
(6) w3c:TR/rdf-spargl-query rdftype :‘W3CStandard.
(7) w3c:TR/rdf-spargl-query :writtenBy 2.

®) _:12 rdf:type rdf:Seq.

9 _:2 rdf:_1 "Eric Prud’hommeaux".
(10) _:12 rdf:_2 "Andy Seaborne".
(11) :ConferencePaper rdfs:subClassOf :Publication.

(12) :W3CStandard rdfs:subClassOf :Publication.

(13) :writtenBy rdfs:subPropertyOf :authors.

Exercise 7 We assume a graph with the triples from Table 15 and the query:

SELECT ?auth ?pub
WHERE { ?pub rdftype :Publication . ?pub :authors ?seq . ?seq ?ind ?auth }

List the query results under the RDFS entailment regime and argue, for each solution, why the
solution follows.

Exercise 8 You might have noticed that the query from Exercise 7 has two answers in which the
binding for ?auth is not an author name. How can we modify the query to query for solutions
in which ?auth binds to an author name?

Exercise 9 We again assume a graph with the triples from Table 15 and the query:

SELECT ?type
WHERE { iswc2010:paper/280 rdf:type ?type }

Which answers does the query have under RDFS entailment and why?

Exercise 10 We again assume a graph with the triples from Table 15. Is the triple
iswc2010:paper/280 :authors _:X entailed under RDFS entailment? What is then the answer
to the following query?

ASK { iswc2010:paper/280 :authors _:x }

5.4 OWL Direct Semantics Queries

Exercise 11 We assume that the queried ontology contains the axioms from Table 9. Map the
following BGP into an extended OWL axiom, list the results of evaluating the BGP under OWL
Direct Semantics, and explain, for each solution, why the solution is entailed:

?mp rdftype :MilkProduct

Exercise 12 Map the query pattern of the following query into extended OWL objects and
illustrate the evaluation of the query over the ontology from Table 9:

SELECT ?sup
WHERE { :MilkProduct rdfs:subClassOf ?sup. ?sup rdf:type owl:Class }

Exercise 13 We consider the ontology from Table 9. Why is the query

SELECT ?rel
WHERE { :Vegetarian ?rel :Vegan }

not a well-formed query under the OWL 2 Direct Semantics?

Exercise 14 What query can one use to retrieve a list of all classes tat occur in the ontology?

Exercise 15 A typical reasoning tasks in OWL is the classification of classes, i.e., the compu-
tation of all pairs (C, D) such that C is a direct sub-class of D or C is equivalent to D. Can a
SPARQL query be used to retrieve the subsumption hierarchy?

Exercise 16 Can the OWL Direct Semantics entailment regime be implemented via material-
ization, as sketched for the RDFS regime? If so, sketch what one would have to do. If not, why
is it no possible and would it possible for subsets of the language?

6 Solutions to the Exercises

In this section, we provide the solution for the exercises from the previous section.

6.1 Mapping to the SPARQL Algebra

Solution 1 We start with the query pattern, which is, as every query pattern, a group graph
pattern here consisting of one element, which is a TriplesBlock. Since Definition 3 defines
the translation for GroupGraphPattern according to Algorithm 1 (we have no filter, but one
other element, which is the BGP), we get Join(Z, algbr(bgp)) with bgp the BGP of the query.

Going back to Definition 3 for the translation of the BGP, we can now use the first case for
TriplesBlock and we obtain Join(Z, Bgp(?x foaf:mbox ?mbox)). The object can be simplified
to just Bgp(?x foaf:mbox ?mbox).

Now that we have the algebra translation for the query pattern, which we denote with E, we
can obtain the algebra translation for the whole query and then the abstract query as described
in Definition 8. We first obtain ToList(E), then go on to Project(ToList(E), {?mbox}). Finally,
we obtain the abstract query (assuming D is the dataset):

(Project(ToList(E), {?mbox}), D, SELECT)

Solution 2 We start again with the query pattern, which is again a group graph pattern
this time consisting of an element (a TriplesBlock) with a filter. We translate accord-
ing to Algorithm 1 and then according to the case for GroupGraphPattern with one fil-
ter and one element. We have to apply TranslateGroup and obtain, as in the previous ex-
ercise, Join(Z, Bgp(?x foaf:name ?name)), which we simplify to Bgp(?x foaf:name ?name).
Together with the filter translation, this results in

Filter(regex(?name, “ian”), Bgp(?x foaf:name ?name)).

Now that we have the algebra translation for the query pattern, which we denote with E, we
can obtain the algebra translation for the whole query according to Definition 8. After applying
ToList(E) and Project(ToList(E), {?7name}) as above, we further translate the DISTINCT key-
word and obtain:

(Distinct(Project(ToList(Filter(regex(?name, “ian”), Bgp(?x foaf:name ?name)))
{?mbox})), D, SELECT)

Solution 3 We start with the query pattern, which is, as every query pattern, a group graph
pattern consisting of one element, which is a GroupOrUnionGraphPattern of the form

GroupGraphPattern UNION GroupGraphPattern

as can be seen from the grammar in Table 2. Thus, we start with a translation according to Al-
gorithm 1 and then according to the case for GroupOrUnionGraphPattern from Definition 3
obtaining: Join(Z, Union(algbr(Gy), algbr(G,))) with G; andG, denoting the first and the sec-
ond group of the union, respectively. For Gy we again use Algorithm 1 followed by the case for
TriplesBlock from Definition 3, leading to

Join(Z, Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox)).
Since Gy has a filter, we obtain

Filter(regex(?name, ian”),
Join(Z, Bgp(?x foaf.:name ?name . ?x foaf:mbox ?mbox))).

Putting all together, we get:

Join(Z, Union(Join(Z, Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox)),
Filter(regex(?name, ian”),
Join(Z, Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox)))))

which can be simplified to

Union(Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox),
Filter(regex(?name, “ian”), Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox)))

Now that we have the algebra translation for the query pattern, which we denote with E, we can
obtain the algebra translation for the whole query and then the abstract query as described in
Definition 8:

(Project(ToList(E), {?mbox}), D, SELECT)

Solution 4 We again translate the query pattern first obtaining:

Union(LeftJoin(Join(Z, Bgp(?x foaf:name ?name)), Bgp(?x foaficqChatID ?id), true),
Bgp(?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph @kit.edu>))

The expression can be simplified to:

Union(LeftJoin(Bgp(?x foaf:name ?name), Bgp(?x foaficqChatID ?id), true),
Bgp(?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph @kit.edu>))

We refer to the simplified expression as E and obtain the abstract query:

(Project(OrderBy(ToList(E), (ASC(?name)), {?name, ?id}))

6.2 Query Evaluation

Solution 5 We evaluate the algebra expression inside out, starting with the BGPs. The evalua-

tion of Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox) yields Q; = {u,} with
H1: X > _:a, Imbox — "b.glimm@googlemail.com".

The evaluation of Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox) yields £, = {u,, u3} with

Mo X > _:a, 7name — "Birte Glimm", ?mbox — "b.glimm@googlemail.com",
M3 @ X _:b, 7name — "Sebastian Rudolph”, ?mbox +— <mailto:rudolph @kit.edu>.
We next evaluate Filter(regex(?name, “ian”), Q,) obtaining Q' = {13}. We can now evaluate

the union operator, which yields © = {u;, s}, which is then turned into a list by the ToList
operator. Applying the projection operator yields the final solution sequence: (i, u}) with

u7 : ?mbox - "b.glimm@googlemail.com”,
(5 : mbox — <mailto:rudolph @kit.edu>.

Solution 6 We again evaluate the algebra expression inside out, starting with the BGPs. The
evaluation of Bgp(?x foafname name) yields Q; = {u}, u3, 113} with

i) @ X _:a, Iname - "Birte Glimm",
2 2 ™ _:b, Iname — "Sebastian Rudolph",
3 2 > _:c, 7name — "Pascal Hitzler".
The evaluation of Bgp(?x foaficqChatID ?id) yields £, = {,u;} with
My X > _:a, %id - "b.glimm”.

For Bgp(?x foaf:name name . ?x foaf:mbox <mailto:rudolph@kit.edu>) we obtain Q5 = {u!}
with
i X _b, Iname - "Sebastian Rudolph".
In order to evaluate LeftJoin(Qq, Q,,true), we first compute Filter(true, Join(Q;, Q,)) which
yields Q4 = {,ui} with
pi: X > _:a, 7name +— "Birte Glimm", ?id — "b.glimm".
The mappings 43 and yf cannot be joined with g} since they are not compatible. Due to the
incompatibility, both these mapping participate, however, in the union and are part of the so-
Iution for LeftJoin(Qy, Q,, true) due to the second part of the LeftJoin definition. Evaluating
Leftdoin(Qy, Q, true) yields Qs = {ul} U {13, 13} = {pl, 12, 113} with
us =py @ X _:a, Iname — "Birte Glimm", %id — "b.glimm",
p2 =3 X _:b, Iname — "Sebastian Rudolph",
= : ™ _:c, ’name — "Pascal Hitzler".
We can now evaluate Union(Qs, Qs), which yields Q¢ = {1, 12, 13, it} with
,ué : 2X > _:a, 7name — "Birte Glimm", ?id — "b.glimm",
,ué : 2 — _:b, 7name — "Sebastian Rudolph",
10 X > _:c, ’name - "Pascal Hitzler",
He @ 2 > _b, 7name - "Sebastian Rudolph"
The multiset Q¢ is then turned into a list by the ToList operator. Applying the OrderBy opera-
tor yields the list (i}, i3, p2, 1¢). Finally, applying the projection operator yields: (u}, u2, 13, 1)
with
,u% : 7name +— "Birte Glimm", ?id — "b.glimm",
(3 : Mame — "Pascal Hitzler",
15 : Iname — "Sebastian Rudolph”,
45 @ Iname — "Sebastian Rudolph".

6.3 RDFS Semantics Queries

Solution 7 We first list triples that are entailed under RDF semantics that are contributing so-
lutions. The entailment follows from the RDFES entailment rules [14]. The relevant rule and the
triples to which the rule is applied are indicated in the left-hand side column.

rdfs9 + (1) + (11) » (14) iswc2010:paper/280 rdftype :Publication.
rdfs9 + (6) + (11) —» (15) w3c:TR/rdf-spargl-query rdf:type :Publication.
rdfs7 + (7) + (13) - (15) w3c:TR/rdf-sparql-query :authors _:I2.

If we were to materialize all RDFS-entailed triples, there would be several additional triples, but
we focus here on the relevant ones. Although the above RDFS-entailed triples do not contain
freshly generated blank nodes, we want to point out that sometimes blank nodes have to be
introduced in the rule application process, but such freshly introduced blank nodes cannot be
returned in a solution since they are not part of the answer domain. We obtain the following
solutions from evaluating the BGP:

7pub 7seq ?ind ?auth
4 = iswc2010:paper/280 _:I1 rdftype rdf:Seq
o - iswc2010:paper/280 _:I1 rdf_1 "Birte Glimm"
(3 @ iswc2010:paper/280 _:I1 rdf:_ 2 "Markus Krétzsch"
1q » w3crdf-spargl-query _:12 rdfitype rdf:Seq
us - w3crdf-spargl-query _:12 rdf_1 "Andy Seaborne"
He = wW3crdf-spargl-query _:12 rdf:_2 "Eric Prud’hommeaux"

Computing the projection is then straightforward.

Solution 8 One possibility would be to apply a filter to ?auth that only permits literals as
binding:

SELECT ?auth ?pub
WHERE { ?pub rdfitype :Publication . ?pub :authors ?seq . ?seq ?ind ?auth
FILTER isLiteral(?auth) }

Other solutions with different filters are equally possible.

Solution 9 We first list triples that are entailed under RDF semantics that are contributing so-
lutions. The entailment follows from the RDFS entailment rules [14]. The relevant rule and the
triples to which the rule is applied are indicated in the left-hand side column.

rdfsd4a + (1) —» (14) iswc2010:paper/280 rdftype rdfs:Resource.
rdfs9 + (1) + (11) —» (15) iswc2010:paper/280 rdf:type :Publication.

thus, the query has two answers. The first inference might be surprising, but under RDFS en-
tailment, we derive several such triples. If such triples are not desired, a filter can again be used
to filter them out.

Solution 10 The triple iswc2010:paper/280 :authors _:x is indeed entailed under RDFS se-
mantics since entailment treats black nodes as existential variables. According to triple (2),
iswc2010:paper/280 is related via the property :authors to some element, witnessed by the
blank node _:l1 in the data. Since the actual names of variables do not matter, i.e., the only
question to decide is whether there is some element such that iswc2010:paper/280 is related to
this element with the property :authors, which is the case.

Regarding the Boolean query (here we only have a blank node, no variable), we have two
possible outcomes: there is a solution sequence containing a mapping (¢) where u has an
empty domain (it does not map any variable to anything) or there is only an empty solution
sequence (). In the first case, the query answer is yes (true), whereas in the second case the
query answer is no (false).

For the RDFS entailment regime, we work with a Skolem function that maps blank nodes
from the active graph to constants, i.e., to fresh terms that occur neither in the query nor in the
active graph. Let us assume that _:|1 is mapped to sk(I1). Since the query contains a blank node,
we have to find an RDF instance mapping such that when we apply the mapping and then use
the same Skolem function, the triples are entailed and ground. Thus, let be the mapping with
an empty domain and o: _:x — _:I1, then

u(o(iswec2010:paper/280 :authors _:x)) = iswc2010:paper/280 :authors sk(l1),

which is a ground triple that is entailed by sk(G) (even contained in sk(G)). Thus, the query
answer is true.

6.4 OWL Direct Semantics Queries

Solution 11 The BGP is mapped into
FSS: ClassAssertion(:MilkProduct ?mp) DL: MilkProduct(?mp)
using the declaration axiom (6). Evaluating the BGP yields two solutions:

M1 : Imp - :Yoghurt
Mo Imp - :Milk

where y, is a direct consequence of Axiom (10) and y; follows from Axiom (9) and (11).

Solution 12 The BGP of the query pattern is mapped into SubClassOf(:MilkProduct ?sup)

(DL: MilkProduct C ?sup). Evaluating the mapped BGP yields ©Q = {u, uo} with

1 2sup — :MilkProduct

Mo Imp — owl:Thing.
The solution y; follows since each class is a subclass of itself under the DS (the subclass relation
is reflexive) and u, follows since owl:Thing is a superclass of every class. Applying ToList and
Project yields the solution sequence (i1,).

Solution 13 The first problem is that ?rel is not typed. This makes it difficult to map the query
pattern into an extended OWL object. Even worse, no matter what type we could add, the query
cannot be fixed. Two classes, such as :Vegetarian and :Vegan, can only be related with terms
from the special vocabulary, e.g., by saying that :Vegan is a subclass of :Vegetarian (in Turtle:
:Vegan rdfs:subClassOf :Vegetarian) or by saying that the two classes are disjoint (in Turtle:
:Vegetarian owldisjointWith :Vegan). However, since terms of the special vocabulary do not
have any of the types that variables can take, the query pattern cannot be fixed.

Solution 14 The query

SELECT ?class
WHERE { ?class rdfs:subClassOf owl:Thing . ?class rdf:itype owl:Class }

would retrieve all classes of the ontology since any class is a subclass of owl:Thing (in DL:
T) under OWL’s semantics. The typing triple is not necessary in this case since the parsing is
unambiguous given that owl:Thing assumed to be declared as a class in any ontology even if
such a declaration is not explicitly present.

Solution 15 A SPARQL query cannot distinguish between direct and indirect subclasses. Thus,
a single query can, in general, not be used to retrieve all and only the required pairs. One would
also get the indirect subclasses and it would be difficult to filter them out, at least in a single

query.

Solution 16 If completeness is required, i.e., we want to return all solutions that are solutions,
then materialization cannot be used as a general implementation technique. One of the problems
are disjunctions, i.e., there is not just one canonical model of an OWL ontology that represents
all relevant possible states of the world. One could argue that we could just include facts that
hold in every model, e.g., if we have

:a rdfitype :C .
‘b rdf:type [rdf:type owl:Class ; owl:unionOf (:D :E :F)].
:F rdfs:subClassOf owl:Nothing .

which is

C(a)
(DU E U F)(b)
FCl

in DL notation, then we could argue that we add
‘b rdfitype [rdf:itype owl:Class ; owlunionOf (:D :E)]
which is
(DU E)Db)

in DL notation to obtain a “canonical” model (since :F is a subclass of owl:Nothing it cannot
have any instances). However, a BGP such as

?%ind rdf:type [rdf:type owl:Class ; owl:unionOf (:C :D :F)]

would still have :a and :b as solutions (:a since it belongs to :C and :b as it belongs to the union
of :D and :E). It would be impossible to foresee all such queries and materialize the required
axioms in a finite ontology.

This is different for the OWL RL profile. The semantics of OWL 2 RL is defined such that
certain consequences have to be derived, e.g., one materializes only (named) classes to which
an individual belongs. The OWL 2 RL specification includes a set of rules that materialize all
such consequences. Under certain restrictions for the ontology, the OWL RL rules derive all
consequences that one would derive under the Direct Semantics. If the ontology violates the
restrictions, then one might miss some answers that a tool that implements OWL 2 with its
Direct Semantics could derive.

7 Links and Further Reading

The following list of references is not meant to be complete and is a subjective selection
by the author. References that are not listed can equally be relevant and students are
encouraged to look for references that most closely fit with their interests.

A text book covering the topics relevant for this summer school is: Foundations of
Semantic Web Technologies Hitzler, P., Krotzsch, M., Rudolph, S. CRC Press 2009

7.1 Public SPARQL Endpoints

data.gov.uk The UK Government makes over 5,400 datasets publicly available, from
all central government departments and a number of other public sector bodies and local
authorities. The site also includes links to SPARQL tutorials and examples:
http://data.gov.uk/sparql

DBPedia contains structured information from Wikipedia (> 100 million triples):
http://dbpedia.org/sparql, see http://www.dbpedia.com for further informa-
tion and documentation

DBTune provides access to music-related structured data with more than 14 billion
RDF triples. The interface also allows for selecting an entailment regime that is to be
used (RDF, RDFS, plus the non-standardized RDFSLite and p2r) :
http://dbtune.org/jamendo/store/user/query

CKAN is a platform to share, use, and find data that is publicly available
http://semantic.ckan.net/sparql/

Linked Movie Database A semantic web database for movies, including a large number
of interlinks to several datasets on the open data cloud and references to related web-
pages

http://data.linkedmdb.org/ and http://data.linkedmdb.org/sparql

SPARQL Editor Talis hosts a SPARQI Editor with Examples for Space Data http:
//api.talis.com/stores/space/items/tutorial/spared.html

Semantic Web Dog Food contains data about authors and publications for several con-
ferences:
http://data.semanticweb.org/snorql

SPARQL Endpoint Status collects uptime information for SPARQL endpoints from
CKAN
http://labs.mondeca.com/sparglEndpointsStatus/index.html

7.2 RDFS

Completeness, decidability and complexity of entailment for RDF Schema and a seman-
tic extension involving the OWL vocabulary ter Horst, H.J.: Journal of Web Semantics
3(2-3), 79-115 (2005)

7.3 OWL & OWL Reasoning

OWL 2 Web Ontology Language: Primer Hitzler, P., Krotzsch, M., Parsia, B., Patel-
Schneider, P.F., Rudolph, S. (eds.). W3C Recommendation (2009), available at http:
//www.w3.org/TR/owl2-primer/

OWL 2: The next step for OWL Cuenca Grau, B. Horrocks, 1., Motik, B., Parsia, B.,
Patel-Schneider, P., and Sattler, U.: Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):309-322, 2008.

From SHIQ and RDF to OWL: The Making of a Web Ontology Language Horrocks,
1., Patel-Schneider, P.F., van Harmelen, F.: Journal of Web Semantics 1(1), 7-26 (2003)

The Description Logic Handbook Baader, F., Calvanese, D., McGuinness, D.L., Nardi,
D., Patel-Schneider, P.F. Cambridge University Press (2003)

Hypertableau Reasoning for Description Logics Motik, B., Shearer, R., Horrocks, I.:
Journal of Artificial Intelligence Research 173(14), 1275-1309 (2009)

The even more irresistible SROIQ Horrocks,l., Kutz,0., Sattler,U.: Proceedings of
the 10th International Conference on the Principles of Knowledge Representation and
Reasoning (KR 2006). pp. 57-67 (2006)

RIQ and SROIQ are harder than SHOIQ Kazakov, Y.: Proceedings of the 11th In-
ternational Conference on the Principles of Knowledge Representation and Reasoning
(KR 2008). AAAI Press/The MIT Press (2008)

A Tableau Decision Procedure for SHOIQ Horrocks, 1., Sattler, U.: Journal of Auto-
mated Reasoning 39(3), 249-276 (2007)

Reasoning in Description Logics using Resolution and Deductive Databases Motik,
B.: Ph.D. thesis, Univesitit Karlsruhe (TH), Karlsruhe, Germany (2006)

A practical OWL-DL Reasoner Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A.,
Katz, Y.: Pelle. Journal of Web Semantics 5(2) (2007)

Reducing OWL Entailment to Description Logic Satisfiability Horrocks, 1., Patel-Schneider,
P.: Journal of Web Semantics 1(4), 345-357 (2004)

Rules and Ontologies for the Semantic Web Eiter, T., lanni, G., Krennwallner, T.,
Polleres, A. Reasoning Web, Fourth International Summer School 2008 Springer, 2008.

Scalable Authoritative OWL Reasoning for the Web Hogan, A., Harth, A., Polleres, A.:
IJSWIS “Semantic Services, Interoperability and Web Applications: Emerging Con-
cepts”. Journal Summation Volume. To appear, 2011.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
Tanni, G., Krennwallner, K., Martello, A., Polleres, A.: Proceedings of the 8th Interna-
tional Semantic Web Conference (ISWC 2009), LNCS, Springer-Verlag 2009.

From SPARQL to Rules (and back) Polleres, A.: Proceedings of the 16th International
World Wide Web Conference, 2007.

Scalable Authoritative OWL Reasoning on a Billion Triples Hogan, A., Harth, A.,
Polleres, A.: Proceedings of Billion Triple Semantic Web Challenge Workshop at 7th
International Semantic Web Conference, 2008.

7.4 SPARQL

Semantics and complexity of SPARQL Pérez, J., Arenas, M., Gutierrez, C. ACM Trans-
actions on Database Systems 34(3), 1-45 (2009)

Search RDF data with SPARQL McCarthy, P.: http://www.ibm.com/developerworks/
xml/library/j-sparql/

SPARQL Tutorial —Jena/ARQ http://jena.sourceforge.net/ARQ/Tutorial/

SPARQL by Example — Cambridge Semantics http://www.cambridgesemantics.
com/2008/09/sparql-by-example/

Data Extraction & Exploration with SPARQL & the Talis platform http://www.
slideshare.net/ldodds/sparql-tutorial

Introducing SPARQL: Querying the Semantic Web Dodds, L.: http://www.xml .com/
pub/a/2005/11/16/introducing-spargl-querying-semantic-web-tutorial.
html

7.5 SPARQL over OWL Ontologies

SPARQL Beyond Subgraph Matching Glimm, B., Krotzsch, M.: In: Proceedings of
the 9th International Semantic Web Conference (ISWC 2010). vol. 6496, pp. 241-256.
Springer-Verlag (2010)

SPARQL-DL: SPARQL Query for OWL-DL Sirin,E., Parsia,B.: Proceedings of the 3rd
OWL Experiences and Directions Workshop (OWLED 2007) (2007)

Optimizations for Answering Conjunctive ABox Queries Sirin, E., Parsia, B.: Proceed-
ings of the 2006 Description Logic Workshop (DL 2006) (2006)

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IICAI 2003).
pp- 325-330 (2003)

2. Baader, F,, Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2005). vol. 19, pp. 364-369
(2005)

3. Baader, F, Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL". In: Proceedings of the
2006 Description Logic Workshop (DL 2006). CEUR Workshop Proceedings (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Beckett, D., Berners-Lee, T.: Turtle — Terse RDF Triple Language. W3C Team Submission

(14 January 2008), available at http://www.w3.org/TeamSubmission/turtle/

. Beckett, D., Broekstra, J. (eds.): SPARQL Query Results XML Format. W3C Recommen-

dation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-XMLres/

. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.): RIF Core

Dialect. W3C Recommendation (2010), available at http: //www.w3.0org/TR/rif-core/

. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions,

GCI axioms, and—what else? In: de Mantdras, R.L., Saitta, L. (eds.) Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004). pp. 298-302. IOS Press (2004)

. de Bruijn, J. (ed.): RIF RDF and OWL Compatibility. W3C Recommendation (2010), avail-

able at http://www.w3.org/TR/rif-rdf-owl/

. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable

description logics for ontologies. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI 2005). pp. 602-607. AAAI
Press/The MIT Press (2005)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated Reasoning 39(3), 385-429 (2007)

Charboneau, D., Feigenbaum, L. (eds.): SPARQL 1.1 Protocol for RDF. W3C Working Draft
(26 January 2010), available at http://www.w3.0rg/TR/sparqll1l-protocol/

Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C Working Draft (14
October 2010), available at http://www.w3.org/TR/sparqlll-entailment/

Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Working Draft (14
October 2010), available at http://www.w3.0org/TR/sparql1l1l-query/

Hayes, P.: RDF semantics. URL (2004), http://www.w3.org/TR/rdf-mt/

ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. Journal of Web Semantics 3(2-3),
79-115 (2005)

Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009). pp. 2040-
2045 (2009)

Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (2010), available at
http://www.w3.org/TR/rif-overview/

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: Proceedings of the 12th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press/The MIT
Press (2010)

Krotzsch, M.: Efficient inferencing for OWL EL. In: Proceedings of Logics in Artificial
Intelligence, European Workshop (JELIA 2010). Lecture Notes in Artificial Intelligence,
vol. 6341, pp. 234-246. Springer-Verlag (2010)

Motik, B., Cuenca Grau, B., Horrocks, 1., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web
Ontology Language: Profiles. W3C Recommendation (2009), available at http://www.w3.
org/TR/owl2-profiles/

Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Recommendation (2009), available at
http://www.w3.0org/TR/owl2-syntax/

Ogbuji, C. (ed.): SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs.
W3C Working Draft (14 October 2010), available at http://www.w3.org/TR/
sparqlll-http-rdf-update/

23.

24,

25.

26.

217.

28.

29.

30.

Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping to
RDF Graphs. W3C Recommendation (2009), available at http://www.w3.org/TR/
owl2-mapping-to-rdf/

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transac-
tions on Database Systems 34(3), 1-45 (2009)

Pérez-Urbina, H., Horrocks, 1., Motik, B.: Efficient query answering for OWL 2. In: Pro-
ceedings of the 8th International Semantic Web Conference (ISWC 2009). Lecture Notes in
Computer Science, vol. 5823, pp. 489-504. Springer-Verlag (2009)

Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (15 January 2008), available athttp: //www.w3.0org/TR/rdf-sparql-query/
Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proceed-
ings of the 12th International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2010). AAAI Press/The MIT Press (2010)

Schenk, S., Gearon, P., Passant, A. (eds.): SPARQL 1.1 Update. W3C Working Draft (14
October 2010), available at http://www.w3.org/TR/sparqll1l-update/

Schneider, M. (ed.): OWL 2 Web Ontology Language: RDF-Based Semantics. W3C Recom-
mendation (2009), available at http://www.w3.0org/TR/owl2-rdf-based-semantics/
Williams, G.T. (ed.): SPARQL 1.1 Service Description. W3C Working Draft (14 October
2010), available at http://www.w3.0org/TR/sparqlll-service-description/

