
Wheat and Chaff – Practically Feasible Interactive
Ontology Revision

Nadeschda Nikitina1, Birte Glimm2, and Sebastian Rudolph1

1 Institute AIFB, Karlsruhe Institute of Technology, DE
2 Ulm University, Institute of Artificial Intelligence, DE

Abstract. When ontological knowledge is acquired automatically, quality con-
trol is essential. We consider the tightest possible approach – an exhaustive man-
ual inspection of the acquired data. By using automated reasoning, we partially
automate the process: after each expert decision, axioms that are entailed by the
already approved statements are automatically approved, whereas axioms that
would lead to an inconsistency are declined. Adequate axiom ranking strategies
are essential in this setting to minimize the amount of expert decisions.
In this paper, we present a generalization of the previously proposed ranking tech-
niques which works well for arbitrary validity ratios – the proportion of valid
statements within a dataset – whereas the previously described ranking functions
were either tailored towards validity ratios of exactly 100% and 0% or were op-
timizing the worst case. The validity ratio – generally not known a priori – is
continuously estimated over the course of the inspection process. We further em-
ploy partitioning techniques to significantly reduce the computational effort. We
provide an implementation supporting all these optimizations as well as featur-
ing a user front-end for successive axiom evaluation, thereby making our pro-
posed strategy applicable to practical scenarios. This is witnessed by our evalu-
ation showing that the novel parameterized ranking function almost achieves the
maximum possible automation and that the computation time needed for each
reasoning-based, automatic decision is reduced to less than one second on aver-
age for our test dataset of over 25,000 statements.

1 Introduction

Many real-world applications in the Semantic Web make use of ontologies in order
to enrich the semantics of the data on which the application is based. As a popular
example, consider DBpedia, which consists of structured information from Wikipedia.
DBpedia uses a background ontology, which defines the meaning of and relationships
between terms. For example, if two terms are related via the property river, the first one
can be inferred to be an instance of the class Place and the latter one of the class River.

In order to guarantee very high quality standards, the DBpedia background ontology
has been created manually. For many applications, however, the time requirements of a
completely manual knowledge acquisition process are too high. An additional applica-
tion of (semi-) automatic knowledge acquisition methods such as ontology learning or
matching is, therefore, often considered to be a reasonable way to reduce the expenses
of ontology development. The results produced by such automatic methods usually need

to be manually inspected either partially, to estimate the overall quality of the resulting
data, or to the full extent, to keep the quality of the developed ontology under control.

So far, the knowledge representation community has been focusing on restoring the
consistency of ontologies enriched with new axioms as done in various belief revision
and repair approaches, see, e.g., [1, 10]. Thereby, new axioms not causing inconsistency
are treated as valid facts, which do not require further inspection. Our goal is to sup-
port a more restrictive quality control process in which a domain expert inspects a set
of candidate axioms and decides for each of them whether it is a desired logical con-
sequence. Based on this decision, we automatically discard or include yet unevaluated
axioms depending on their logical relationships with the already evaluated axioms. In
the following, we call this interactive process ontology revision.

Throughout the paper, we use the following running example, which we write in
OWL’s functional-style syntax using an imaginary prefix ex to abbreviate IRIs:

Example 1. Let us assume that we have already confirmed that the axioms, which state
subclass relations between classes, belong to the desired consequences:

SubClassOf(ex:AluminiumNitrideNanotube ex:AluminiumNitride)
SubClassOf(ex:AluminiumNitride ex:NonOxideCeramics)
SubClassOf(ex:NonOxideCeramics ex:Ceramics)
SubClassOf(ex:Ceramics ex:MaterialByMaterialClass)
SubClassOf(ex:MaterialByMaterialClass ex:Material)
SubClassOf(ex:Material ex:PortionOfMaterial)
SubClassOf(ex:Material ex:TangibleObject)

We further assume that the following axioms, which define several different types for
the individual ex:nanotube1, are still to be evaluated:

ClassAssertion(ex:AluminiumNitrideNanotube ex:nanotube1) (1)
ClassAssertion(ex:AluminiumNitride ex:nanotube1) (2)
ClassAssertion(ex:NonOxideCeramics ex:nanotube1) (3)
ClassAssertion(ex:Ceramics ex:nanotube1) (4)
ClassAssertion(ex:MaterialByMaterialClass ex:nanotube1) (5)
ClassAssertion(ex:Material ex:nanotube1) (6)
ClassAssertion(ex:PortionOfMaterial ex:nanotube1) (7)
ClassAssertion(ex:TangibleObject ex:nanotube1) (8)

If Axiom (8) is declined, we can immediately also decline Axioms (1) to (6) assum-
ing OWL or RDFS reasoning since accepting the axioms would implicitly lead to the
undesired consequence (8). Note that no automatic decision is possible for Axiom (7)
since it is not a consequence of Axiom (8) and the already approved subsumption ax-
ioms. Similarly, if Axiom (1) is approved, Axioms (2) to (8) are implicit consequences,
which can be approved automatically. If we start, however, with declining Axiom (1),
no automatic evaluation can be performed. It can, therefore, be observed that

– a high grade of automation requires a good evaluation order, and
– approval and decline of an axiom has a different impact.

Which axioms have the highest impact on decline or approval and which axioms can
be automatically evaluated once a particular decision has been made can be determined
with the help of algorithms for automated reasoning, e.g., for RDFS or OWL reasoning.
One of the difficulties is, however, that it is not known in advance, which of the two
decisions the user makes. In our previous work [8], we tackle this problem by showing
that, if the quality of the acquired axioms is known, a prediction about the decision of
the user can be made: if the quality is high, the user is likely to approve an axiom. Hence,
axioms that have a high impact on approval should be evaluated with higher priority.
For low quality data, the situation is reversed. We measure the quality by means of the
validity ratio, i.e., the percentage of accepted axioms, and show in [8] that, depending
on the validity ratio of a dataset, different impact measures used for axiom ranking are
beneficial. In this paper, we extend the previous results in several directions:

– First, we generalize the ranking functions proposed in [8], which are tailored to-
wards validity ratios of 100% and 0% by parametrizing the ranking function by
an estimated validity ratio. In our evaluation, we show that the revision based on
the novel ranking function almost achieves the maximum possible automation. The
gain is particularly important for datasets with a validity ratio close to 50%, since
the currently existing ranking function for those datasets only optimizes the worst
case and does not fully exploit the potential of automation.

– Second, since the expected validity ratio is not necessarily known in advance, we
suggest a ranking function where the validity ratio is learned on-the-fly during the
revision. We show that, even for small datasets (50-100 axioms), it is worthwhile
to rank axioms based on this learned validity ratio instead of evaluating them in
a random order. Furthermore, we show that, in case of larger datasets (e.g., 5,000
axioms and more) with an unknown validity ratio, learning the validity ratio is par-
ticularly effective due to the law of large numbers, thereby making the assumption
of a known or expected validity ratio unnecessary. For such datasets, our experi-
ments show that the proportion of automatically evaluated axioms when learning
the validity ratio is nearly the same (difference of 0.3%) as in case where the valid-
ity ratio is known in advance.

Even for not very expressive knowledge representation formalisms, reasoning is an ex-
pensive task and, in an interactive setting as described above, a crucial challenge is to
minimize the number of expensive reasoning tasks while maximizing the number of
automated decisions. In our previous work [8], we have developed decision spaces –
data structures, which exploit the characteristics of the logical entailment relation be-
tween axioms to maximize the amount of information gained by reasoning. Decision
spaces further allow for reading off the impact that an axiom will have in case of an ap-
proval or decline. In this paper, we extend the latter work by combining decision spaces
with a partitioning technique in order to further improve the efficiency of the revision
process. It is interesting to observe that partitioning intensifies the effectiveness of de-
cision spaces, since it increases the relative density of dependencies between axioms
considered together during the revision.

We further present revision helper: an interactive application supporting ontology
revision. We evaluate the proposed techniques and demonstrate that even for expressive
OWL reasoning, an interactive revision process is feasible with on average 0.84 seconds

(7.4 reasoning calls) per expert decision, where the automatic evaluation significantly
reduces the number of expert decisions.3

The remainder of this paper is organized as follows. Next, we describe relevant pre-
liminaries. Section 3 describes the proposed new ranking function and how the validity
ratio can be learned during the revision. Section 4 introduces partitioning as a way of
optimizing the efficiency of the revision process. We then evaluate the approach in Sec-
tion 5 and present the user front-end of revision helper in Section 6. In Section 7, we
discuss the existing related approaches and then conclude in Section 8.

2 Preliminaries

In this section, we introduce the basic notions that are relevant to the revision of an
ontology. The ontologies that are to be revised can be written in standard semantic web
languages such as RDFS or OWL. We focus, however, on OWL 2 DL ontologies.

The revision of an ontology O aims at a separation of its axioms (i.e., logical state-
ments) into two disjoint sets: the set of intended consequences O |= and the set of unin-
tended consequences O 6|=. This motivates the following definitions.

Definition 1 (Revision State). A revision state is defined as a tuple (O,O |=,O 6|=) of on-
tologies with O |= ⊆ O,O 6|= ⊆ O, and O |= ∩ O 6|= = ∅. Given two revision states (O,O |=1 ,O

6|=

1)
and (O,O |=2 ,O

6|=

2), we call (O,O |=2 ,O
6|=

2) a refinement of (O,O |=1 ,O
6|=

1), if O |=1 ⊆ O
|=

2 and
O
6|=

1 ⊆ O
6|=

2 . A revision state is complete, if O = O |= ∪ O 6|=, and incomplete otherwise.
An incomplete revision state (O,O |=,O 6|=) can be refined by evaluating a further axiom
α ∈ O\ (O |=∪O 6|=), obtaining (O,O |=∪{α},O 6|=) or (O,O |=,O 6|=∪{α}). We call the resulting
revision state an elementary refinement of (O,O |=,O 6|=).

Since we expect that the deductive closure of the intended consequences in O |= must not
contain unintended consequences, we introduce the notion of consistency for revision
states. If we want to maintain consistency, a single evaluation decision can predeter-
mine the decision for several yet unevaluated axioms. These implicit consequences of
a refinement are captured in the revision closure.

Definition 2 (Revision State Consistency and Closure). A (complete or incomplete)
revision state (O,O |=,O 6|=) is consistent if there is no α ∈ O 6|= such that O |= |= α. The
revision closure clos(O,O |=,O 6|=) of (O,O |=,O 6|=) is (O,O |=c ,O

6|=

c) with O |=c := {α ∈ O | O |= |=
α} and O 6|=c := {α ∈ O | O |= ∪ {α} |= β for some β ∈ O 6|=}.

We observe that, for a consistent revision state (O,O |=,O 6|=), the closure clos(O,O |=,O 6|=)
is again consistent and that every further elementary refinement of clos(O,O |=,O 6|=) is
also consistent; furthermore, any consistent and complete refinement of (O,O |=,O 6|=) is
a refinement of clos(O,O |=,O 6|=) [8, Lemma 1]. Algorithm 1 employs these properties
to implement a general methodology for interactive ontology revision. Instead of ini-
tializing O |=0 and O 6|=0 with the empty set, one can initialize O |=0 with already approved
axioms, e.g., from a previous revision, and O 6|=0 with declined axioms from a previous
revision and with axioms that express inconsistency and unsatisfiability of classes (or
properties), which we assume to be unintended consequences.

3 Anonymized versions of the used ontologies and the revision helper tool can be downloaded
from http://people.aifb.kit.edu/nni/or2010/Interactive_Ontology_Revision/.

Algorithm 1: Interactive Ontology Revision
Data: (O,O |=0 ,O

6|=

0) a consistent revision state
Result: (O,O |=,O 6|=) a complete and consistent revision state

1 (O,O |=,O 6|=)← clos(O,O |=0 ,O
6|=

0);
2 while O |= ∪ O 6|= , O do
3 choose α ∈ O \ (O |= ∪ O 6|=);
4 if expert confirms α then
5 (O,O |=,O 6|=)← clos(O,O |= ∪ {α},O 6|=);
6 else
7 (O,O |=,O 6|=)← clos(O,O |=,O 6|= ∪ {α}) ;

In line 3, an axiom is chosen that is evaluated next. As motivated in the introduction,
a random decision can have a detrimental effect on the amount of manual decisions.
Ideally, we want to rank the axioms and choose one that allows for a high number
of consequential automatic decisions. The notion of axiom impact captures how many
axioms can be automatically evaluated when the user approves or declines an axiom.
Note that after an approval, the closure might extend both O |= and O 6|=, whereas after a
decline only O 6|= can be extended. We further define ?(O,O |=,O 6|=) as the number of yet
unevaluated axioms and write |S | to denote the cardinality of a set S :

Definition 3 (Impact). Let (O,O |=,O 6|=) be a consistent revision state with α ∈ O and
let ?(O,O |=,O 6|=) := |O \ (O |= ∪ O 6|=)|. For an axiom α, we define

the approval impact impact+(α) = ?(O,O |=,O 6|=) − ?(clos(O,O |= ∪ {α},O 6|=)),
the decline impact impact−(α) = ?(O,O |=,O 6|=) − ?(clos(O,O |=,O 6|= ∪ {α})),

the guaranteed impact guaranteed(α) = min(impact+(α), impact−(α)).

We further separate impact+(α) into the number of automatic approvals, impact+a(α),
and the number of automatic declines, impact+d(α):

impact+a(α) = |{β ∈ O | O |= ∪ {α} |= β}|,

impact+d(α) = |{β ∈ O | O |= ∪ {α, β} |= γ, γ ∈ O 6|=}|.

Note that impact+(α) = impact+a(α) + impact+d(α). The function impact+ privileges
axioms, for which the number of automatically evaluated axioms in case of an accept
is high. Going back to our running example, Axiom (1), which yields 7 automatically
accepted axioms in case it is accepted, will be ranked highest. The situation is the oppo-
site for impact−. It privileges axioms, for which the number of automatically evaluated
axioms in case of a decline is high (Axioms (7) and (8)). The function guaranteed priv-
ileges axioms with the highest guaranteed impact, i.e., axioms with the highest number
of automatically evaluated axioms in the worst-case (Axioms (4) and (5)). Table 1 lists
the values for all ranking functions for the axioms from Example 1.

Which ranking function should be chosen for an ontology revision in order to max-
imize the amount of automatic decisions depends on the expected validity ratio within
the axiom set under revision. For a validity ratio of 100% the function impact+ is the
most effective, whereas for a validity ratio of 0%, impact− clearly performs best. In

Table 1. Example axiom dependency graph and the corresponding ranking values

(1)impact+ →

(2)

(3)

(4)guaranteed→

(5)guaranteed→

(6)

(7)impact− → (8)

Axiom impact+a impact+d impact− guaranteed
(1) 7 0 0 0
(2) 6 0 1 1
(3) 5 0 2 2
(4) 4 0 3 3
(5) 3 0 4 3
(6) 2 0 5 2
(7) 0 0 6 0
(8) 0 0 6 0

cases when the expected validity ratio is close to 50%, the guaranteed impact can be
used to get a reasonable compromise between impact+ and impact−. The ranking func-
tions do, however, not adapt to validity ratios that divert from these extremes. We ad-
dress this in the next section, by introducing a parametrized ranking function.

Since computing such an impact as well as computing the closure after each eval-
uation (lines 1, 5, and 7) can be considered very expensive due to the high worst-case
complexity of reasoning, we developed decision spaces [8] as auxiliary data structures
which significantly reduce the cost of computing the closure upon elementary revisions
and provide an elegant way of determining high impact axioms. Intuitively, a decision
space keeps track of the dependencies between the axioms, i.e., if an axiom β is entailed
by the approved axioms together with an unevaluated axiom α, then an “entails” rela-
tionship is added linking α to β. Similarly, if adding β to the approved axioms together
with an unevaluated axiom α would yield an inconsistency, then a “conflicts” relation-
ship is established between α to β. We show a simplified graph capturing the entails
relation for our running example on the left-hand side of Table 1 (the conflicts relation
for the example is empty). Note that the entails relation is transitive and reflexive, but
for a clearer presentation, we show a transitively reduced version of the graph. From this
graph we can see, for example, that if we approve Axiom (5), then we can automatically
approve Axioms (6) to (8) as indicated by the (entails) edges in the graph. Thus, deci-
sion spaces allow for simply reading-off the consequences of revision state refinements
upon an approval or a decline of an axiom, thereby reducing the required reasoning
operations. Furthermore, updating a decision space after an approval or a decline can
be performed more efficiently compared to a recomputation of all dependencies.

3 Parametrized Ranking

In order to motivate the introduction of the parametrized ranking and to clarify its dif-
ference to the three previously proposed ranking functions, we now consider so-called
key axioms for a path in the entails-graph of the decision space: an axiom α on a path p
is a key axiom for p if

1. any axiom β on p such that α entails β is correct and
2. any axiom γ on p such that γ entails α is incorrect.

It can be observed that each path is such that there is at least one and there are at most
two key axioms (one axiom in case all axioms on the path are correct or incorrect).
Intuitively, by making a decision about the key axioms of a path first, we can auto-
matically make a decision for all remaining axioms on the path. While these decisions
are made, we might also automatically find conflicts and perform further automatic de-
clines. Conflicts allow, however, for fewer automatic decisions. Hence we focus on the
entails paths in the decision space. From this perspective, the behavior of impact+ in a
tree-shaped structure corresponds to the search for such a key axiom starting from the
source axioms with only outgoing entails edges, while the behavior of impact− corre-
sponds to the search from the sink axioms with only incoming entails edges. On the
other hand, the behavior of guaranteed corresponds to binary search. For instance, if
we assume that in our example, Axioms (1) and (2) are incorrect and we choose Ax-
iom (4) among the two highest ranked axioms under the guaranteed ranking function,
then Axioms (5) to (8) will be automatically evaluated, leaving us with Axioms (1)
to (3). This time, Axiom (2) will receive the highest ranking value (1 in contrast to 0
for Axioms (1) and (3)). After another expert decision, Axiom (1) will remain, which
is ranked with 0. Therefore, after each expert decision, the remaining axioms are again
divided into more or less equally large sets until the set of unevaluated axioms is empty.
The improvement achieved by guaranteed in comparison to a revision in random order
becomes more and more visible with the growing size of the set of unevaluated axioms
forming a connected decision space graph, since, in this scenario, the probability of
incidentally choosing an axiom with the above specified property becomes lower.

Under the assumption that the dataset in the example has a validity ratio of 75%, the
ranking technique guaranteed will (theoretically) require 2.8 expert decisions. This is
an average for the different possible choices among the highest ranked axioms assuming
that these have the same probability of being chosen. In contrast to that, impact+ will
require 3 expert decisions, while impact− will require even 7 decisions. It is obvious
that if the expected validity ratio would have been taken into account, the correspond-
ing ranking strategy would choose Axioms (2) and (3) and require only two expert
decisions. In the following, we generalize the ranking techniques impact+ and impact−,
which assume the expected validity ratio to be 100% and 0%, respectively, to a ranking
technique, which is parametrized by the actual expected validity ratio. The new ranking
technique then chooses axioms based on the expected validity ratio for the dataset.

The goal of the parametrized ranking is to privilege axioms that are most probably
key axioms under the assumption that the validity ratio is R. While in Example 1, Ax-
ioms (2) and (3) would be the clear choice, in an arbitrary graph, more than two axioms
can have such a property. Interestingly, the examination of decision space structures
computed within our experiments indicates that the number of possible axioms with
such a property is close to two within the connected components of such graphs.

3.1 The Ranking Function norm

We now define the ranking function normR according to the above set goals. We first
normalize the number of automatic approvals and declines to values between 0 and 1.
Since in the case of an approval we can possibly accept and decline axioms, we split the
approval impact accordingly. We can then normalize the obtained values with respect

Table 2. The values for norm0.75 and the intermediate functions (shown in percentage)

(1)

(2)

(3)

(4)

(5)

(6)

(7) (8)

Axiom impact+a
N impact+d

N impact−N norm+a
0.75 norm+d

0.75 norm−0.75 norm0.75

(1) 100.0% 0.0% 12.5% -25.0% -25.0% -12.5% -12.5%
(2) 87.5% 0.0% 25.0% -12.5% -25.0% 0.0% 0.0%
(3) 75.0% 0.0% 37.5% 0.0% -25.0% -12.5% 0.0%
(4) 62.5% 0.0% 50.0% -12.5% -25.0% -25.0% -12.5%
(5) 50.0% 0.0% 62.5% -25.0% -25.0% -37.5% -25.0%
(6) 37.5% 0.0% 75.0% -37.5% -25.0% -50.0% -25.0%
(7) 12.5% 0.0% 87.5% -62.5% -25.0% -62.5% -25.0%
(8) 12.5% 0.0% 87.5% -62.5% -25.0% -62.5% -25.0%

to the expected validity ratio which allows for choosing an axiom that behaves best
according to our expectation.

Definition 4. Let O ? be a connected component of the decision space and R the ex-
pected validity ratio. The normalized impact functions are:

impact+a
N =

1 + impact+a

|O ?|
, impact+d

N =
impact+d

|O ?|
, impact−N =

1 + impact−

|O ?|
.

The ranking functions norm+a
R , norm+d

R and norm−R are then defined by

norm+a
R = −|R−impact+a

N |, norm+d
R = −|1−R−impact+d

N |, norm−R = −|1−R−impact−N |.
Finally, the ranking function normR is:

normR = max(norm+a
R , norm+d

R , norm−R).

Note that we do not add 1 for impact+d
N since the axiom itself is not declined, i.e., we

capture just the “side-effect” of accepting another axiom. Table 2 shows the compu-
tation of norm0.75 for Example 1. The function norm+a

R captures how the fraction of
automatically accepted axioms deviates from the expected overall ratio of wanted con-
sequences, e.g., accepting Axiom (2) or (4) deviates by 12.5%: for the former axiom
we have automatically accepted too many axioms, while for the latter we do not yet
have accepted enough under the premise that the validity ratio is indeed 75%. Since
Example 1 does not allow for automatic declines after an approval, the function norm+d

R
shows that for each accept, we still deviate 25% from the expected ratio of invalid
axioms, which is 1 − R. The function norm−R works analogously for declines. Hence,
normR is defined in a way that it takes the greatest value if the chance that all wanted
(unwanted) axioms are accepted (declined) at once becomes maximal.

Note that the expected validity ratio needs to be adjusted after each expert decision,
to reflect the expected validity ratio of the remaining axioms. For instance, after Ax-
iom (2) has been declined, norm1.00 needs to be applied to rank the remaining axioms.
If, however, Axiom (3) has been accepted, norm0.00 is required. Note that employing
norm0.00 for ranking yields the same behavior as impact−. On the other hand, norm1.00
corresponds to impact+ in case no conflicting axioms are involved.

3.2 Learning the Validity Ratio

Users might only have a rough idea of the validity ratio of a dataset in advance of the
revision or the validity ratio might not be known at all. Hence, it might be difficult
or impossible to decide upfront which R should be used for normR. To address this
problem, we investigate how efficient we can “learn” the validity ratio on-the-fly. In
this setting, the user gives an estimate for R (or we use 50% as default) and with each
revision step, R is adjusted based on the number of accepted and declined axioms. Thus,
the algorithm tunes itself towards an optimal ranking function, which relieves the user
from choosing a validity ratio. We call the according ranking function dynnorm as it
dynamically adapts the estimated validity ratio over the course of the revision.

In our experiments, we show that, already for small datasets, dynnorm outperforms
random ordering and, in case of sufficiently large datasets, the estimate converges to-
wards the actual validity ratio, thereby making the assumption of a known validity ratio
unnecessary.

4 Partitioning

Since reasoning operations are very expensive (the reasoner methods take 99.2% of
the computation time in our experiments according to our profiling measurements), we
combine the optimization using decision spaces with a straight-forward partitioning
approach for ABox axioms (i.e., class and property assertions):

Definition 5. Let A be a set of ABox axioms, ind(A) the set of individual names used
in A, then A is connected if, for all pairs of individuals a, a′ ∈ ind(A), there exists a
sequence a1, . . . , an such that a = a1, a′ = an, and, for all 1 ≤ i < n, there exists a
property assertion in A containing ai and ai+1. A collection of ABoxes A1, . . . ,Ak is a
partitioning of A if A = A1 ∪ . . . ∪ Ak, ind(Ai) ∩ ind(A j) = ∅ for 1 ≤ i < j ≤ k, and
eachAi is connected.

In the absence of nominals (OWL’s oneOf constructor), the above described partitions
or clusters of an ABox are indeed independent. Thus, we take each partition separately,
join the partition with the TBox/schema axioms and perform the revision. In order to
also partition TBox axioms or to properly take axioms with nominals into account, the
signature decomposition approach by Konev et al.[6] could be applied. This approach
partitions the signature of an ontology (i.e., the set of occurring class, property, and
individual names) into subsets that are independent regarding their meaning. The re-
sulting independent subsets of the ontology can then be reviewed independently from
each other analogously to the clusters of ABox axioms used in our evaluation. We show
in our experiments that:

– In particular in case of large datasets containing several partitions, the additional
optimization based on partitioning significantly reduces the computational effort.

– Partitioning intensifies the effectiveness of decision spaces, since the density of
entailment and contradiction relations are significantly higher within each partition
than the density within a set of independent partitions.

5 Experimental Results

We evaluate our revision support methodology within the project NanOn4 aiming at
ontology-supported literature search. During this project, a hand-crafted ontology mod-
eling the scientific domain of nano technology has been developed, including sub-
stances, structures, and procedures used in that domain. The ontology, denoted here
with O, is specified in the Web Ontology Language OWL 2 DL [11] and comprises
2,289 logical axioms. This ontology is used as the core resource to automatically an-
alyze scientific documents for the occurrence of NanOn classes and properties by the
means of lexical patterns. When such classes and properties are found, the document
is automatically annotated with those classes and properties to facilitate topic-specific
information retrieval on a fine-grained level. In this way, one of the project outputs is a
large amount of class and property assertions associated with the NanOn ontology. In
order to estimate the accuracy of such automatically added annotations, they need to
be inspected by human experts, which provides a natural application scenario for our
approach. The manual inspection of annotations provided us with sets of valid and in-
valid annotation assertions (denoted by A+ and A−, respectively). To investigate how
the quality and the size of each axiom set influences the results, we created several dis-
tinct annotation sets with different validity ratios |A+|/(|A+| + |A−|). As the annotation
tools provided rather reliable data, we manually created additional frequently occurring
wrong patterns and applied them for annotating texts to obtain datasets with a lower
validity ratio.

For each set, we applied our methodology starting from the revision state (O∪O−∪
A+ ∪ A−,O,O−) with O containing the axioms of the NanOn ontology and with O−

containing axioms expressing inconsistency and class unsatisfiability. We obtained a
complete revision state (O∪O− ∪A+ ∪A−,O∪A+,O− ∪A−) where on-the-fly expert
decisions about approval or decline were simulated according to the membership inA+

orA−. For computing the entailments, we used the OWL reasoner HermiT.5

For each set, our baseline is the reduction of expert decisions when axioms are
evaluated in random order, i.e., no ranking is applied and only the revision closure is
used to automatically evaluate axioms. For this purpose, we repeat the experiments 10
times and compute the average values of effort reduction. The upper bound for the in
principle possible reduction of expert decisions is obtained by applying the optimal
ranking as suggested by the“impact oracle” for each axiom α that is to be evaluated:

KnownImpact(α) =

impact+(α) if α ∈ A+,

impact−(α) if α ∈ A−.

5.1 Evaluation of norm

To compare the effectiveness of the three previously proposed impact measures and the
new impact measure, we created five sets of annotations L1 to L5, each comprising
5,000 axioms and validity ratios varying from 10% to 90%.

4 http://www.aifb.kit.edu/web/NanOn
5 http://www.hermit-reasoner.com

Table 3. Revision results of norm in comparison with other ranking functions for the sets L1-L5

validity ratio optimal norm best previous random
L1 90% 65.6% 65.4% (impact+) 65.4% 41.7%
L2 76% 59.8% 55.8% (impact+) 59.9% 35.8%
L3 50% 47.8% 47.6% (guaranteed) 36.5% 24.4%
L4 25% 59.9% 59.8% (impact−) 54.9% 37.6%
L5 10% 63.9% 63.9% (impact−) 63.9% 40.3%

Table 3 shows the results for the different ranking techniques: the column optimal
shows the upper bound achieved by using the impact oracle, norm shows the reduc-
tion for our novel ranking parametrized with the actual validity ratio, best previous
shows the best possible value achievable with the previously introduced ranking func-
tions impact+, guaranteed and impact−, and, finally, the column random states the effort
reduction already achieved by presenting the axioms in random order.

The results show that norm consistently achieves almost the maximum effort reduc-
tion with an average difference of 0.1%. The previously introduced ranking functions
only work well for the high and low quality datasets, as expected. For the dataset with
the validity ratio of 50%, norm achieves an additional 11.1% of automation by using
the parametrized ranking.

In general, the actual difference in performance achieved by the more precise pa-
rametrized ranking increases with the increasing average maximum path length within
connected decision space graphs. To see this, consider again the decision space shown
in Table 1 and 2. It is clear that the distance between the highest ranked axioms for
different ranking functions increases with the increasing height of the presented tree.

5.2 Evaluation of dynnorm

In order to evaluate our solution for situations where the validity ratio is unknown or
only very rough estimates can be given upfront, we now analyze the effectiveness of
the dynamically learning ranking function dynnorm. For this, we created the following
annotation sets in addition to the datasets L1 − L5:

– small datasets S 1 to S 5 with the size constantly growing from 29 to 102 axioms and
validity ratios varying from 10% to 90%,

– medium-sized datasets M1 to M5 with 500 axioms each and validity ratios varying
from 10% to 91%.

Table 4 shows the results of the revision: the columns optimal and random are as
described above, the column norm shows the results that we would obtain if we were
to assume that the validity ratio is known and given as parameter to the norm ranking
function, the columns dynnorm0.50, dynnorm1.00 and dynnorm0.00 show the results for
starting the revision with a validity ratio of 50%, 100%, and 0%, respectively, where
over the course of the revision, we update the validity ratio estimate.

We observe that, in case of small datasets (S i), the deviation from norm (on average
5%) as well as the dependency of the results on the initial value of the validity ratio are

Table 4. Revision results for datasets S 1 to S 5, M1 to M5, and L1 to L5

validity ratio optimal norm dynnorm0.50 dynnorm1.00 dynnorm0.00 random
S 1 90% 72.4% 72.4% 58.6% 72.4% 65.5% 40.8%
S 2 77% 68.6% 65.7% 57.1% 62.9% 48.6% 38.2%
S 3 48% 65.1% 65.1% 65.1% 60.3% 61.9% 22.0%
S 4 25% 68.3% 68.3% 64.6% 63.4% 67.1% 37.6%
S 5 10% 72.5% 72.5% 71.6% 67.6% 72.5% 29.2%
M1 91% 66.4% 66.0% 66.2% 66.4% 65.6% 40.8%
M2 77% 60.0% 60.0% 59.6% 59.8% 59.2% 38.2%
M3 44% 40.8% 40.6% 40.4% 40.6% 40.4% 22.0%
M4 25% 60.0% 60.0% 59.6% 59.2% 59.8% 37.6%
M5 10% 53.2% 53.0% 52.8% 52.8% 53.2% 29.2%
L1 90% 65.6% 65.4% 65.4% 65.4% 65.3% 41.7%
L2 76% 59.8% 59.8% 59.8% 59.8% 59.9% 35.8%
L3 50% 47.8% 47.6% 47.4% 47.2% 47.3% 24.4%
L4 25% 59.9% 59.8% 59.8% 59.8% 59.8% 37.6%
L5 10% 63.9% 63.9% 63.9% 63.8% 63.9% 40.3%

clearly visible. However, the results of dynnorm are significantly better (45.0%) than
those of a revision in random order. It is also interesting to observe that the average
deviation from norm decreases with the size of a dataset (6.9%, 10.5%, 2.7%, 3.3%,
1.9% for S 1 to S 5, respectively) and that the probability of a strong deviation is lower
for datasets with an extreme validity ratio (close to 100% or 0%).

For medium-sized and large datasets (Mi and Li), the deviation from norm (on av-
erage 0.3% for both) as well as the dependency on the initial value of the validity ratio
are significantly lower. We conclude that

– ranking based on learning validity ratio is already useful for small datasets (30-
100 axioms), and improves significantly with the growing size of the dataset under
revision;

– in case of large datasets, the performance difference between the results with a va-
lidity ratio known in advance and a learned validity ratio almost disappears, thereby
making the assumption of a known average validity ratio not necessary for axiom
ranking.

5.3 Computational Effort

During our experiments, we measured the average number of seconds after each ex-
pert decision required for the automatic evaluation and ranking as well as the average
number of reasoning calls. If we compute the average values for the revision based on
dynnorm ranking for all 15 datasets, the revision takes on average 0.84 seconds (7.4 rea-
soning calls) after each expert decision. In the case of small datasets, partitioning yields
additionally an improvement by an order of magnitude in terms of reasoning calls. For
medium-sized datasets, the first step out of on average 153 evaluation steps took al-
ready 101,101 reasoning calls (ca. 3 hours) even when using decision spaces. Without
the decision spaces, the required number of reasoning calls would be more than 500,000

Fig. 1. Revision Helper GUI

judging from the required reasoning calls to build the corresponding decision space in
the worst case. For this reason, we did not try to run the experiment for large datasets,
which would require more than 50 million reasoning calls without decision spaces. In
contrast to that, the average number of required reasoning calls for a complete revision
of the sets M1 to M5 amounts to 3,380. The revision of datasets L1 to L5 required over-
all on average 16,175 reasoning calls, which corresponds to between 6 and 7 reasoning
calls per evaluation decision. We can summarize the evaluation results as follows:

– The proposed reasoning-based support performs well in an interactive revision pro-
cess with on average 0.84 seconds per expert decision.

– In particular in case of large datasets containing several partitions, the additional
optimization based on partitioning significantly reduces the computational effort.

– Decision spaces save in our experiments on average 75% of reasoner calls. As mea-
sured in case of small datasets, partitioning further intensifies the effect of decision
spaces and we save even 80% of reasoner calls.

6 User Front-End

Figure 1 shows the user front-end of the revision helper tool. It allows the user to load
the set O of axioms under revision and save or load an evaluation state for the currently
loaded set O. Thereby, the user can interrupt the revision at any time and proceed later
on. If partitioning is activated, revision helper shows the partitions one after another and
the revision of each partition is independent from the revision of all other partitions.

By default, revision helper initializes the set O 6|= of undesired statements with the
minimal set of statements expressing the inconsistency of the ontology or unsatisfia-
bility of its classes. The set of desired statements O |= can be initialized by loading an
arbitrary ontology. A statement can be evaluated by choosing one of the values Accept

or Decline, and it can be excluded from the revision process by choosing Exclude. The
latter option should be used if the meaning of a statement is not clear and the user can-
not decide whether to accept or to decline it. After the statement has been evaluated, it
disappears from the revision list as well as all statements that could be evaluated auto-
matically, unless the checkbox Propagate Decisions is deactivated. The ranking strategy
used for sorting the statements can be selected or deactivated at any time and is taken
into account after the next evaluation decision. At any stage of the revision, it is possible
to export the current set O |= of accepted statements as an ontology. For the export, we
exclude, however, axioms with which O |= has been initialized at the beginning of the
revision.

7 Related Work

We are aware of two approaches for supporting the revision of ontological data based
on logical appropriateness: an approach by Meilicke et al.[7] and another one called
ContentMap by Jiménez-Ruiz et al.[5]. Both approaches are applied in the context of
mapping revision. An extension of ContentMap called ContentCVS [4] supports an in-
tegration of changes into an evolving ontology.

In all of these approaches, dependencies between evaluation decisions are deter-
mined based on a set of logical criteria each of which is a subset of the criteria that can
be derived from the notion of revision state consistency introduced in Def. 1.

In contrast to our approach, the focus of ContentMap and ContentCVS lies within
the visualization of consequences and user guidance in case of difficult evaluation
decisions. These approaches selectively materialize and visualize the logical conse-
quences caused by the axioms under investigation and support the revision of those
consequences. Subsequently, the approved and declined axioms are determined in cor-
respondence with the revision of the consequences. The minimization of the manual
and computational effort required for the revision is out of scope. In contrast to our ap-
proach, which requires at most a polynomial number of entailment checks, ContentMap
and ContentCVS require an exponential number of reasoning operations compared to
the size of the ontology under revision. The reason for this is that ContentMap is based
on the computation of justifications, i.e., sets of axioms causing an entailment, and, in
the worst-case, there can be exponentially many justifications for a particular statement.

Similarly to our approach, Meilicke et al. aim at reducing the manual effort of map-
ping revision. However, their results are difficult to generalize to the revision of on-
tologies, since the notion of impact is defined based on specific properties of mapping
axioms. For every mapping axiom possible between the entities of the two mapped on-
tologies O1 and O2, they define the impact as the corresponding number of possible
entailed and contradicting mapping axioms. The assumption is that the set of possi-
ble mapping axioms and the set of possible axioms in O1 and O2 are mostly disjoint,
since axioms in O1 and O2 usually refer only to entities from the same ontology, while
mapping axioms are assumed to map only entities from different ontologies. In case
of ontology revision in general, no such natural distinction criteria for axioms under
revision can be defined. Moreover, in contrast to our approach, Meilicke et al. abstract
from the interactions between more than one mapping axiom.

Another strand of work is related to the overall motivation of enriching ontologies
with additional expert-curated knowledge in a way that minimizes the workload of the
human expert: based on the attribute exploration algorithm from formal concept analy-
sis (FCA) [3], several works have proposed structured interactive enumeration strategies
of inclusion dependencies or axioms of certain fragments of description logics which
then are to be evaluated by the expert [9, 2]. While similar in terms of the workflow,
the major difference of these approaches to ours is that the axioms are not pre-specified
but created on the fly and therefore, the exploration may require (in the worst case
exponentially) many human decisions.

8 Summary

In our previous work [8], we established the theoretical ground for partially automated
interactive revision of ontologies. In this paper, we present the implementation of the
approach including an optimization based on partitioning, which significantly reduces
the required computational effort. We further define a generalization of the previously
proposed ranking techniques, called norm, which is parametrized by the expected va-
lidity ratio. The ranking function norm works well for any validity ratio, whereas the
previous functions were tailored towards validity ratios of 100% or 0%. We define a
variant of norm, called dynnorm, which can be used without knowing the validity ratio
beforehand: starting with an initial estimate, e.g., 50%, the estimate is more and more
refined over the course of the revision. We evaluate our implementation in a revision
of ontology-based annotations of scientific publications comprising over 25,000 state-
ments and show that

– All claims made in [8] hold also in case of large datasets under revision; on average,
we were able to reduce the number of required evaluation decisions by 36% when
the statements were reviewed in an arbitrary order, and by 55.4% when the ranking
techniques suggested in [8] were used.

– The proposed reasoning-based support is feasible for an interactive revision pro-
cess requiring on average less than one second after each expert decision in our
evaluation.

– The parametrized ranking technique proposed in this paper almost achieved the
maximum possible automation (59.4% of evaluation decisions) thereby reducing
the manual effort of revision by 59.3%. The gain is particularly important for
datasets with a validity ratio close to 50%, since for those datasets the potential of
automation was not fully exploited by the other ranking techniques. In our exper-
iments, we managed to achieve an additional 11.1% of automation for the dataset
with the validity ratio of 50% by using the parametrized ranking.

– In case of large datasets with an unknown validity ratio, learning the validity ratio
is particularly effective due to the law of large numbers. In our experiments, the
proportion of automatically evaluated statements is nearly the same as in case where
the validity ratio is known a priori and is used as a fixed parameter of norm, thereby
making the assumption of known average validity ratio not necessary for axiom
ranking.

As part of our future work, we intend to study more general partitioning methods, e.g.,
[6], to increase the applicability of the partitioning optimization. Another interesting
approach in this direction would also be to study the effects of separating the ontology
into parts that are not logically independent. In such a case, we might miss automatic
decisions, but the potential performance gain, due to the reasoning with smaller subsets
of the ontology, might compensate for this drawback.

Acknowledgments

This work is supported by the German Federal Ministry of Education and Research
(BMBF) under the SAW-project NanOn.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

2. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge
bases using formal concept analysis. In: Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2007). pp. 230–235 (2007)

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer-Verlag
(1997)

4. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Llavori, R.B.: Building ontologies collabora-
tively using ContentCVS. In: Proceedings of the 22nd International Workshop on Descrip-
tion Logics (DL 2009). CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009)

5. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Llavori, R.B.: Ontology integration using map-
pings: Towards getting the right logical consequences. In: Proceedings of the 6th European
Semantic Web Conference (ESWC 2009). LNCS, vol. 5554, pp. 173–187. Springer-Verlag
(2009)

6. Konev, B., Lutz, C., Ponomaryov, D., Wolter, F.: Decomposing description logic ontologies.
In: Proceedings of the 12th International Confonference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2010) (2010)

7. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Supporting manual mapping revision using
logical reasoning. In: Proceedings of the 23rd Conference on Artificial Intelligence (AAAI
2008). pp. 1213–1218. AAAI Press (2008)

8. Nikitina, N., Rudolph, S., Glimm, B.: Reasoning-supported interactive revision of knowledge
bases. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI 2011) (2011)

9. Rudolph, S.: Exploring relational structures via FLE. In: Conceptual Structures at Work:
12th International Conference on Conceptual Structures. LNCS, vol. 3127, pp. 196–212.
Springer-Verlag (2004)

10. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 2003). pp. 355–362. Morgan Kaufman (2003)

11. W3C OWL Working Group: OWL 2 Web Ontology Language: Doc-
ument Overview. W3C Recommendation (October 2009), available at
http://www.w3.org/TR/owl2-overview/

