
Reasoning over Dynamic Data in Expressive
Knowledge Bases with Rscale

Thorsten Liebig1 and Michael Opitz2

1 derivo GmbH, Ulm, Germany, liebig@derivo.de
2 Ulm University, Ulm, Germany, michael.opitz@uni-ulm.de

Abstract. We introduce Rscale, a secondary storage-aware OWL 2 RL
reasoning system capable of dealing with incremental additions and dele-
tions of facts. Our initial evaluation indicates that Rscale is suitable for
stream reasoning scenarios characterized by expressive reasoning tasks
triggered by a moderate change frequency.

Keywords: OWL 2 RL, stream reasoning, incremental updates

1 Motivation

Streaming data is supposed to occur at varying volume and granularity. For in-
stance, sensor data or stock quotations come at high frequency and as numerical
data as opposed to streams for qualitative facility monitoring that also consists
of states at a moderate frequency. Our work on Rscale is targeting at the latter
scenario where numeric and symbolic data has to be processed while consider-
ing expressive background knowledge at the same time. Consider a power plant
scenario where certain key parameters need to be constantly monitored. Within
such a setting it is important to take sophisticated domain knowledge into ac-
count when interpreting the data and system states. As an example, a high tank
pressure may be normal in case of certain open valves and a low temperature
history. Additionally, in case of an abnormal state detection engineers might be
interested in the particular fraction of the streaming data that caused this effect.

This kind of scenario needs a streaming-aware reasoning back-end that is
capable of dealing with expressive knowledge as well as non-standard inference
services such as providing justifications. In this paper we present Rscale, a rule-
based OWL 2 RL reasoning engine that suits this requirements.

2 Fast OWL 2 RL Reasoning with Updates

Rscale3 is an industrially approved system for scalable reasoning over dynamic
ontologies within the expressive OWL 2 RL language profile. The system utilizes
a relational database as secondary storage component and adopts the incremen-
tal maintenance of materializations idea [2, 4]. The Java-based Rscale reasoner
implements the OWL API4 and also comes as an OWLlink5 server.

3 http://www.rscale.de/ 4http://owlapi.sourceforge.net/
5 http://www.w3.org/Submission/2010/04/



.

.

.

R4

R2

Rm

T1

.

.

.

.

.

.

∅

rule application alignment & mergeinitial & result
tables

ΔT1

ΔTn

H

Tn

ΔT1

Fig. 1. Reasoning procedure of Rscale

The system design is different from a triplestore in that it abstracts from the
triple storage model and applies a meta modeling approach inspired from our
previous work [5] and maintains dedicated storage schemas for the various RL
statements such as SubClassOf, ObjectPropertyDomain, ClassAssertion, etc.

Rscale implements the complete set of OWL 2 RL rules [3] which are known
to be sound and complete under Direct Semantics for OWL 2 RL ABox inference
tasks. The system incorporates a set of optimizations such as delta iteration and
rule triggers.

Figure 1 illustrates the basic reasoning procedure. After initial storing of the
ontology in its corresponding base tables T1, ...,Tn the rule engine triggers the
applicable rules R1, ...,Rm as SQL queries for execution at the DB back-end. The
execution results are written in delta tables ∆Ti. The subsequent alignment and
merge phase will prune all already asserted base table facts from each delta table.
The resulting deltas are the rule trigger for the next round and are finally added
to the base tables as the inferred fact of the first round. These two-phase rounds
are repeated until all delta tables are empty after alignment with the base tables
(i.e. there are no new inferences).

In case of incremental additions Rscale writes new statements into new delta
tables and re-activates its rule execution mechanism to materialize all successive
inferences. A history table (H) optionally keeps book of all consequence depen-
dencies and is updated after each processing round. This allows to prune all
direct and indirect consequences of a deleted fact for efficient retraction. When
deleting a statement the history table is used to identify the derived facts from
the deleted sources. All derived facts will then be removed from the correspond-
ing base tables. A triggering mechanism will then activate all those rules which
populate these tables to re-establish those deleted consequences that are also
inferable from the remaining facts. The history also provides justification for
inferences in terms of streaming facts and background axioms.



Fig. 2. Timings of streaming scenario (left) and precomputation of inferences (right)

3 Evaluation

Our evaluation aims at providing some performance data from available OWL
2 RL reasoning systems within a streaming setting of sequentially KB updates
and queries. According to our focussed scenario we assume an OWL 2 RL TBox,
a medium sized ABox and mostly ABox changes

Potential benchmark candidates are dedicated OWL 2 RL reasoning systems,
such as OREL6, DLEJena7, Elly8, or BaseVisor9. Surprisingly, non of these
systems could be used for our evaluation. OREL, DLEJena, and Elly were not
able to load and process our initial KB’s within 10 minutes and 1 GB of RAM.
BaseVisor could, but we could not manage to run incremental updates with this
system. Therefore, we had to switch to more expressive, main memory reasoning
systems such as FaCT++ 1.5.210, HermiT 1.3.411, and Pellet 2.2.212.

The KB for our spot test was a ALCHOIF RL ontology with 117 classes, 93
object properties, and 1259 individuals. The test procedure was made of a set of
simple queries, successive ABox assertions (object property assertion), a TBox
change (subClassOf removal and addition), and successive ABox removals (all
in all 22 change-query cycles). The test was carried out on a standard Core2Duo
Linux computer. The left hand side of Figure 2 shows the timing results divided
into fixed processing time (below the dark zero line) and variable processing time
caused by the consecutive queries and updates (above zero line). Since Rscale
is an incremental materialization approach it does most of the work just once,
namely when precomputing the ontology after loading. Consequently, updates
require some incremental maintenance whereas querying time is negligible and
just consist of DB lookups. The corresponding times for Pellet and HermiT
utilize a non-buffering, non-precomputing mode, where reasoners can use their
own minimal effort strategy. Figure 2 shows that they require more time on
queries because they have to compute results in an on-demand fashion (FaCT++

6 http://code.google.com/p/orel/ 7http://lpis.csd.auth.gr/systems/DLEJena/
8 http://elly.sourceforge.net/ 9http://www.vistology.com/basevisor/basevisor.html

10 http://code.google.com/p/factplusplus/ 11http://www.hermit-reasoner.com/
12 http://clarkparsia.com/pellet



failed to handle incremental updates). Concerning stream frequency this reveals
a frequency of 3.2 updates for Rscale and Pellet as well as 1.7 updates per second
for HermiT with respect to this test case.

For comparison the complete preprocessing time for all systems is depicted
in the right hand side of Figure 2. This shows that preprocessing all inferences
is costly for Pellet, HermiT, and FaCT++ and therefore not a feasible option
within a dynamic scenario.

Results from tests with other KB’s where often roughly comparable with the
one above but also revealed some exceptions. For instance, larger KB’s often
caused an out of memory exception (here 1GB) or practical non-termination
(here 10 min) for either FaCT++, Pellet, or HermiT. Rscale seems to scale
fairly well with large KB’s and never hit the main memory limit. On the other
hand we also discovered test cases where Rscale ran eight times longer than the
fastest main memory reasoner. To sum up, Rscale shows its main advantage
when KB’s are large, queries require expressive reasoning, and updates come at
moderate frequency.

4 Future Work

The evaluation indicates that Rscale is a suitable approach for dealing with a
streaming scenario that requires rich reasoning techniques, something that is not
possible in pure RDFS-based systems and are not supported by Stream Reason-
ing techniques such as C-SPARQL [1]. The latter, however, provides a highly
efficient approach for dealing with chronologically expiring data from streams –
which, on the other hand, is not possible with Rscale yet. Therefore, potential
future work includes the integration of C-SPARQL into Rscale – something for
which we see no conceptual barrier.

We currently work on parallelizing the reasoning process of Rscale for more
performance in multi-core environments. Other work aims at further optimizing
updates and removals in Rscale as well as support for more complex queries.

References

1. Barbierie, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
Reasoning on Streams and Rich Background Knowledge. In: Proc. of the Extended
Semantic Web Conference (ESWC 2010). Springer-Verlag (2010)

2. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining Views Incrementally.
In: Proc. of SIGMOD Conference. pp. 157 – 166. ACM Press, New York (1993)

3. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web On-
tology Language: Profiles. Recommendation, World Wide Web Consortium (2009)

4. Volz, R., Staab, S., Motik, B.: Incrementally maintaining materializations of ontolo-
gies stored in logic databases. Journal of Data Semantics II 3360, 1 – 34 (2005)

5. Weithöner, T., Liebig, T., Specht, G.: Efficient Processing of Huge Ontologies in
Logic and Relational Databases. In: Poster Proc. of ODBASE 2004. pp. 28–29.
Springer Verlag (2004)


