Improving Hierarchical Planning Performance by the Use of Landmarks

Mohamed Elkawkagy, Pascal Bercher, Bernd Schattenberg, and Susanne Biundo

Institute of Artificial Intelligence, Ulm University, Germany

AAAI-12: Twenty-Sixth Conference on Artificial Intelligence, 22-26 July 2012, Toronto, Canada

Abstract	Landmarks	Landmark-Aware Strategies
We present novel domain-independent planning stra- tegies based on hierarchical landmarks.	In HTN Planning, landmarks are tasks that occur in the plan sequence leading from a problem's initial plan P_{init}	Our strategies solely operate on the optional tasks. Definition 1 (Landmark Cardinality). <i>Given a landmark ta-</i>
 We ran our evaluations on four distinguished bench- mark domains. These domains are divided into two cat- egories: 	to any solution. The information about landmarks is stored in a so-called Landmark Table.	ble <i>LT</i> , we define the landmark cardinality of a set of tasks $o = \{t_1(\overline{\tau}_1), \dots, t_n(\overline{\tau}_n)\}$ to be
- Domains with a deep expansion hierarchy such as	Each landmark table entry is a 3-tuple	$ o _{LT} := \{t(\overline{\tau}) \in o \mid \langle t(\overline{\tau}), \ M(t(\overline{\tau})), \ O(t(\overline{\tau})) \rangle \in LT\} $
Um-Translog and SmartPhone, and – Domains with shallow expansion hierarchy such as	$LT = \langle t(\tau), \ M(t(\tau)), \ O(t(\tau)) \rangle$ • $t(\tau)$ is an abstract task,	Definition 2 (Closure of the Optional Set). The closure of the optional set for a given ground task $t(\overline{\tau})$ and a

- Satellite and WoodWorking.
- Our empirical evaluation shows that our landmark strategies outperform established search strategies.

Planning Framework

The introduced domain-independent planning strategies are used by our Hierarchical Task Network (HTN) Plan**ning** formalism.

Planning Problem

An HTN planning problem is a 3-tuple $\Pi = \langle D, S_{init}, P_{init} \rangle$

• $D = \langle T, M \rangle$ is a domain model, where T and M denote finite sets of tasks *(abstract and primitive)* and methods.

• S_{init} is an initial state.

• P_{init} is an initial plan. A plan $P = \langle S, C \rangle$ consists of a set S of plan steps and a set C of constraints such as ordering constraints and causal link constraints.

Note that the hierarchy abstraction is achieved through the methods M.

A method is a pair $\langle t(\tau), P \rangle$

• $t(\tau)$ is the abstract task, and

• *P* is the plan to achieve the task $t(\tau)$.

Solution Plan

A plan $P = \langle S, C \rangle$ is a solution to Π iff:

• P is a successor of the initial plan P_{init} in the induced search space.

- $M(t(\tau))$ are its mandatory tasks (tasks, which occur in all methods of $t(\tau)$), and
- $O(t(\tau))$ are the optional tasks (for each method, there is a set containing the remaining tasks).

Landmark extraction is done using a so-called task decomposition graph (TDG) of Π .

A TDG is a relaxed representation of how the initial plan P_{init} of a planning problem Π can be decomposed (cf. Figure 1).

Example

Let $\Pi = \langle D, S_{init}, P_{init} \rangle$ an HTN planning problem with $D = \langle \{t_1(\tau_1), \dots, t_5(\tau_5)\}, \{m_a, m'_a, m_b, m'_b\} \rangle,$ $P_{\text{init}} = \langle \{l_1:t_1(\tau_1)\}, \{\tau_1=c_1\} \rangle$, and constants c_1 and c_2 , where:

 $m_a := \langle t_1(\tau_1), \langle \{ l_1: t_3(\tau_1), l_2: t_3(\tau_2), l_3: t_2(\tau_1) \}, \{ \tau_1 \neq \tau_2 \} \rangle \rangle$ $m'_{a} := \langle t_{1}(\tau_{1}), \langle \{ l_{4}: t_{2}(\tau_{1}), l_{5}: t_{1}(\tau_{1}) \}, \emptyset \rangle \rangle$ $m_b := \langle t_3(\tau_1), \langle \{ l_6 : t_4(\tau_1), l_7 : t_5(\tau_1) \}, \emptyset \rangle \rangle$ $m_b' := \langle t_3(\tau_1), \langle \{ l_8 : t_4(\tau_1) \}, \emptyset \rangle \rangle$

The TDG for Π is given in Figure 1.

of the optional set for a given ground task $t(\overline{\tau})$ and a landmark table LT is the smallest set $O^*(t(\overline{\tau}))$, such that $O^*(t(\overline{\tau})) := \emptyset$ for primitive $t(\overline{\tau})$ and, otherwise:

 $O^*(t(\overline{\tau})) := O(t(\overline{\tau})) \cup \bigcup (\bigcup O^*(t'(\overline{\tau}')))$ $o \in O(t(\overline{\tau}))$ $t'(\overline{\tau}') \in o$

with $\langle t(\overline{\tau}), M(t(\overline{\tau})), O(t(\overline{\tau})) \rangle \in LT$

Definition 3 (Landmark Strategies). Let $P = \langle S, C \rangle$ be a plan and $t_i(\overline{\tau}_i)$ and $t_j(\overline{\tau}_j)$ be ground instances of two abstract tasks in S that are referenced by two abstract task flaws f_i and f_j , respectively, that are found in *P*. Let a given landmark table *LT* contain the corresponding entries

> $\langle t_i(\overline{\tau}_i), M(t_i(\overline{\tau}_i)), O(t_i(\overline{\tau}_i)) \rangle$ and $\langle t_j(\overline{\tau}_j), M(t_j(\overline{\tau}_j)), O(t_j(\overline{\tau}_j)) \rangle$

Then, the given modification ordering function orders a plan modification m_i before m_j if and only if m_i addresses f_i , m_j addresses f_j , and one of the four criteria hold:

 $\operatorname{lm}_1: \quad \sum \quad |o|_{LT} < \quad \sum \quad |o|_{LT}$ $o \in O(t_i(\overline{\tau}_i))$ $o \in O(t_i(\overline{\tau}_i))$

 $\operatorname{Im}_1^*: \quad \sum \quad |o|_{LT} < \quad \sum$ $|o|_{LT}$ $o \in O^*(t_i(\overline{\tau}_i))$ $o \in O^*(t_j(\overline{\tau}_j))$

• P contains only primitive plan steps, is executable in S_{init} and has consistent constraint sets.

Algorithm 1: Standard Refinement Algorithm

Input : The sequence $Fringe = \langle P_{init} \rangle$. **Output** : A solution or Fail.

while Fringe = $\langle P_1 \dots P_n \rangle \neq \varepsilon$ do $F \leftarrow f^{\mathsf{FlawDet}}(P_1)$

if $F = \emptyset$ then return P_1

 $\langle \mathtt{m}_1 \dots \mathtt{m}_k \rangle \leftarrow f^{\mathsf{ModOrd}} \left(\bigcup_{\mathtt{f} \in F} f^{\mathsf{ModGen}}(\mathtt{f}) \right)$ $\texttt{succ} \leftarrow \langle \texttt{app}(\texttt{m}_1, P_1) \dots \texttt{app}(\texttt{m}_k, P_1) \rangle$ Fringe $\leftarrow f^{\mathsf{PlanOrd}}(\mathsf{succ} \circ \langle P_2 \dots P_n \rangle)$ return fail

In our algorithm, the search strategy is a combination of the plan modification and plan ordering functions. For example, in order to perform a depth first search, the plan ordering is the identity function $(f^{\text{PlanOrd}}(\bar{P}) = \bar{P}$ for any sequence of P).

- The plan ordering function f^{PlanOrd} orders the updated search-space.
- The modification ordering function f^{ModOrd} determines

Figure 1: The TDG for the planning problem Π .

The method vertices are given as follows: $m_{t_1} = \langle t_1(c_1), m_a |_{\tau_1 = c_1, \tau_2 = c_2} \rangle, m'_{t_1} = \langle t_1(c_1), m'_a |_{\tau_1 = c_1} \rangle,$ $m_{t_3} = \langle t_3(c_2), m_b |_{\tau_1 = c_2} \rangle$, $m'_{t_3} = \langle t_3(c_2), m'_b |_{\tau_1 = c_2} \rangle$, $m_{t'_3} = \langle t_3(c_1), m_b |_{\tau_1 = c_1} \rangle, m'_{t'_3} = \langle t_3(c_1), m'_b |_{\tau_1 = c_2} \rangle$

The according landmark table is given as follows:

Abs. Task	Mandatory	Optional
$t_1(c_1)$	$\{t_2(c_1)\}$	$\{\{t_3(c_2), t_3(c_1)\}, \{t_1(c_1)\}\}$
$t_{3}(c_{2})$	$\{t_4(c_2)\}$	$\{ \emptyset, \{ t_5(c_2), t_2(c_2) \} \}$
$t_3(c_1)$	$\{t_4(c_1)\}$	$\{\emptyset, \{t_5(c_1), t_2(c_1)\}\}$

Example

Let a plan P contain two abstract tasks $t_1(c_1)$ and $t_3(c_2)$. Let the landmark table contain: $\langle t_1(c_1), \{t_2(c_1)\}, \{\{t_3(c_2), t_3(c_1)\}, \{t_1(c_1)\}\}\rangle$ $\langle t_3(c_1), \{t_4(c_1)\}, \{\emptyset, \{t_5(c_1), t_2(c_1)\}\} \rangle$ $\langle t_3(c_2), \{t_4(c_2)\}, \{\emptyset, \{t_5(c_2), t_2(c_2)\}\} \rangle$ $lm_1: \qquad \sum \quad |o|_{LT} < \quad \sum \quad |o|_{LT} \iff 0 < 2+1$ $o \in O(t_3(c_2))$ $o \in O(t_1(c_1))$ $\operatorname{Im}_{1}^{*}: \quad \sum \quad |o|_{LT} < \quad \sum \quad |o|_{LT} \Longleftrightarrow 0 < 3 + 0 + 1$ $o \in O^*(t_1(c_1))$ $o \in O^*(t_3(c_2))$

Evaluation

- Our novel landmark strategies are compared with standard HTN strategies.
- Our refinement algorithm (cf. Algorithm 1) can simulate behavior of any system when using the according modification f^{ModOrd} and plan ordering $f^{PlanOrd}$ functions.

	UM-Translog Domain.							WoodWorking domain.						SmartPhone domain.						Satellite domain.						
Mod. ordering		#1		#2	‡	#3	#	ŧ1	4	#2	#	¢3	Ŧ	#1	#	2	#	ŧ3		#1		#2	i	#3		
function f ^{ModOrd}	org	red	org	red	org	red	org	red	org	red	org	red	org	red	org	red	org	red	org	red	org	red	org	red		
UMCP	952	244	994	229	215	127	228	133	259	125	892	218	80	30	256	115	_	_	91	91	51	41	2035	1336		
ems	2056	1048	2199	1806	876	235	415	298	_	2457	_	512	107	52	235	148	_	—	74	60	62	53	2608	2856		
SHOP	1735	353	1911	274	911	190	—	_	_	_	_	3578	95	73	_	—	-	—	66	67	113	111	270	264		
lm_1	243	180	447	184	190	122	96	55	171	159	564	197	50	30	134	53	_	465	89	80	209	208	767	652		
lm_1^*	1772	212	370	205	1002	140	82	50	614	98	2109	1245	65	50	392	173	_	_	86	85	54	43	1024	969		
lm_2	3311	255	1670	248	925	151	881	433	_	362	_	—	60	50	181	53	_	680	132	86	151	140	_	5804		
lm_2^*	846	226	991	238	1755	122	1359	9 403	_	367	_	893	98	76	1632	327	-	697	102	80	191	99	-	—		
lcf	1878	225	3020	209	267	322	2067	7 350		_			63	40	_	159	8455	6827	95	93	154	77	1551	1338		
da-HotSpot	2414	1958	_	2030	578	352	113	85	355	110	_	_	45	43	_	203	1747	1041	69	67	85	78	2136	1131		
du-HotSpot	1319	775	987	1090	391	258	_	_	_	_	_	_	52	46	638	166	_	3421	107	49	270	150	_	_		
HotZone	473	196	498	224	171	137	_	_	_	418	_	_	65	33	490	212	_	_	76	64	142	62	—	4764		

Deutsche Forschungsgemeinschaft