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Abstract—This work addresses the problem of track asso-
ciation in person tracking. We propose a probabilistic model,
based on Markov Logic Networks, that aims at associating the
individual tracks emerging from a person tracking algorithm to
the correct persons. For this purpose the continuous estimates
of the object positions acquired by the tracking algorithm
are mapped into discrete spatial regions, which are based on
a floor plan of the environment. Experiments show that the
described model is able to exploit the additional information
contained inside the provided floor plan, and deliver good
results compared to a state of the art person tracking algorithm
despite the lossy discretization step. We discuss the engineered
model in detail and give an empirical evaluation using an
indoor setting.

I. INTRODUCTION

This work is concerned with the problem of providing
background-knowledge to the specialized application of
person tracking using a first-order probabilistic model. We
demonstrate that a hand-crafted model, built using Markov
Logic Networks (MLN) [1], can help in solving the data
association problem in tracking during situations where high
occlusion prevents the correct association between past and
new tracks. By leveraging additional information in form of
a floor plan, we can resolve otherwise opaque situations.

In object tracking, a major problem lies in the task of
data association — telling which measurements emerge
from which object. Since this cannot be resolved perfectly,
tracking algorithms produce errors like track confusions,
where the same track ID is assigned to multiple real objects,
or interruptions of tracks, where the same object spawns
multiple, consecutive track IDs. This work is mainly con-
cerned at resolving the second problem by reassociating
track IDs with each other that originated from the same
physical object.

The usage of a first-order probabilistic model like MLNs
allows for an easier modeling task, because dependencies are
represented by weighted first-order logical formulas instead
of, e.g., conditional probability tables for the case of directed
models like Bayesian Networks. In addition, the model is
formulated in a lifted form and can be instantiated for
the desired number of concurrent tracks or persons within
the scene, which is not possible when using completely
propositional models or specialized template models like

dynamic Bayesian networks [2]. A model given in a lifted
representation also makes it possible to leverage structure
information contained within the lifted formulation for more
efficient inference [3]; although this approach is not inves-
tigated here.

We have pursued the presented work with the idea of
improving tracking results. But from a different point of
view, it also describes how uncertain measurements from a
laser range finder can be incorporated into a probabilistic
knowledge-base via a preprocessing step using an object
tracking algorithm. Extending this idea, the provided model
represents only one module within a larger technical system
that could be extended with additional information sources,
like audio, video, or user input. As an application of the
localization information, a technical system could display
information differently depending on whether a user is
within a certain range. Such information can be extracted
directly from the proposed model in form of marginal
probabilities or most probable explanations, depending on
whether probabilistic uncertainty shall be carried on or not,
respectively.

We evaluate our work in the context of an indoor sit-
uation, where multiple persons move in a two-room office,
containing the laser range finder and several areas of interest
like a printer or a coffee maker. We measure the quality of
our model by the extent to which it is able to correctly re-
associate object tracks emerging from the tracking algorithm
with the correct persons inside the scene. We compare the
quality of track association for six different hand-crafted
floor plans to the number of track losses and confusions
produced by a state of the art multi-object tracking algo-
rithm.

The rest of the paper is laid out as follows. After we
discuss related work, we give an overview of the applied
tracking algorithm and introduce the concept of Markov
Logic Networks. Then, we describe the investigated problem
in detail and discuss the used MLN model. We give an
empirical evaluation of the described setup and conclude
with some possible extensions to the model and an overall
discussion.



II. RELATED WORK

In multi-object tracking, state dependent detection prob-
abilities of objects are disregarded in most applications.
Thus, a track disappears shortly after entering an occluded
area and a new track is created when the object leaves the
occluded area again. Consequently, one object is represented
by different track IDs. Especially in scenarios where persons
interact several times with a system, changed track IDs
lead to the loss of the objects history. The multi-object
Bayes filter [4] allows to integrate state dependent detection
probabilities even if the scenario is characterized by a high
object density [5]. In case of short term occlusions, the
usage of state dependent detection probabilities leads to an
improved track continuity. A direct integration of goals into
the prediction of a persons’ state is crucial, since the persons’
action may be contradictory to the assigned goal.

Markov Logic Networks have been used by Sadilek and
Kautz [6] for multi-agent activity recognition based on GPS
data in a game of capture the flag. While their work can
leverage more expert knowledge (the rules of the game),
they do not encounter the data association problem present
in the tracking scenario, since each person was carrying a
personal GPS receiver. Tran and Davis [7] apply Markov
Logic Networks to a parking lot surveillance scene using
video data to recognize which person enters which car. They
also track pedestrians across a scene and face the problem of
data association. Sensory information emerges from image
data and their focus lies in integrating different information
sources that are all extracted from the same video stream.
Track association was not inferred by the MLN but calcu-
lated (e.g. by color matching). Markov Logic Networks are
also used by Singla and Domingos [8] for entity resolution
in text mining. This is the problem of inferring which
references refer to the same entity and it is similar to the
data association problem in tracking. The two latter works
use an equals predicate for identity maintenance, whereas
we approach the problem using an association mapping to
underlying entities. When grounding the model our approach
only creates associations between currently instantiated track
IDs and their corresponding entity, wheres using an equals
predicate will introduce relations between all objects, which
does not seem reasonable in a dynamic domain.

In a previous work we use an extension of the presented
model to integrate target information of persons with the
tracking data [9]. This work focuses on exploiting a discrete
floor plan and examines the sensitivity of the approach to
variations of the used plan.

III. MULTI-OBJECT TRACKING

Standard multi-object tracking algorithms often use ob-
ject individual single-object trackers like the Kalman filter.
The drawback of this multi-object tracking approach is the
need of a data association step which assigns the received

measurements to the trackers using hard decisions or prob-
abilistic methods [10]. Especially in scenarios characterized
by a high object density, the data association is error-prone
and degrades the performance of the tracking system, since
false associations are irreversible.

A rigorous approach to multi-object tracking is the multi-
object Bayes filter proposed by Mahler [4]. The multi-object
Bayes filter uses the random finite set statistics to represent
the complete environment by a single filter state. In the
innovation step of the multi-object Bayes filter, a multi-
object likelihood function calculates the affinity between the
predicted state set and the received measurement set. Thus,
no data association is necessary.

Further, the multi-object Bayes filter allows to integrate
state dependent detection probabilities into the filtering
algorithm. In Reuter and Dietmayer [5], an approach to
calculate state dependent detection probabilities based on the
occupancy grid mapping approach [11] is proposed. Thus,
it is possible to keep track of an object which is occluded
for the sensor for a short period of time. Using constant
detection probabilities would lead to a track loss, if an
object is not visible to the sensor for a few measurement
cycles. We use the state dependent tracking algorithm as a
comparison for our final results. But for input into the high-
level model, we use state independent object tracking. This
produces more track IDs for association, and in particular is
less prone to false association, which we cannot correct in
the upper stage.

An implementation of the multi-object Bayes filter is
possible using Sequential Monte Carlo (SMC) methods [4],
[5], [12]. In difference to well known SMC implementations
of the standard Bayes filter a particle set, which represents
a random finite set using a finite number of state vectors,
is used instead of a standard particle. Further, the number
of state vectors in the particle set may change at each time
step. In case of a SMC implementation, the integration of
the mentioned constraints is possible by reducing the weight
of a particle set.

Since the multi-object Bayes filter does not perform
a measurement to track association, an extraction of the
individual objects out of the multi-object posterior density
function is necessary, e.g. using the k-means algorithm [13].

IV. MARKOV LOGIC NETWORKS

Markov Logic Networks [1] are a member of the family of
first-order probabilistic languages [14] and their semantics
are based on undirected graphical models (Markov net-
works). In contrast to propositional models like Bayesian
networks and Markov Networks, where every random vari-
able has to be specified explicitly, in first-order models
the random variables are relations over objects and the
model can be scaled by providing the appropriate number
of object constants. Moreover, MLNs allow the specification
of dependencies as weighted first-order logical formulas.



Higher weights make those interpretations more likely, in
which more groundings of the formula evaluate to true. We
will now briefly cover the formal semantics of MLNs.

A Markov Logic Network L = {(f1, w1), . . . , (fn, wn)}
for n ∈ N is a set of first-order formulas f1, . . . , fn with
given weights w1, . . . , wn ∈ R. Together with a finite set
of constants C, they define a probability distribution over
all interpretations (or possible worlds). An interpretation
maps each grounding of each predicate to a truth value.
The interpretation of functions must be fixed. Probabilistic
functions can be emulated using predicates. Let gC(f) be
the set of groundings of formula f obtained by replacing
the free variables in f by all combinations of constants
from C. Given an interpretation x, then nC,i(x)

def
= |{g | g ∈

gC(fi) and x |= g}| is the number of groundings of formula
fi that are true under x. Then, the probability distribution
PL,C that is defined by the MLN L with constants C is
given as

PL,C(X = x)
def
=

1

Z

∏
i

exp
(
winC,i(x)

)
, (1)

where i ranges over all formulas in L, and Z is a normalizing
constant.

Given a set of constants, a MLN can be converted to a
Markov network, where nodes correspond to atoms and each
ground formula induces a clique over all nodes whose atoms
appear inside this formula. For practical reasons, a sorted (or
typed) logical language is used to describe MLNs. Using
sorted terms, we can limit the size of the grounded network.
Also, in their basic form, MLNs do only allow restricted
usage of logical functions. Usually functions are simulated
by specially marked predicates, which enforce a functional
dependency of one or more arguments on the remaining
arguments. We notate functional arguments of predicates by
underlining them. Such a predicate can be translated to a
multi-valued random variable.

V. PROBLEM DESCRIPTION

We consider an indoor scene which resembles an office
setting. The corresponding floor plan is depicted in Figure
1a. A laser range finder is placed in one corner of the main
room and provides distance information in a plane about one
meter above ground. The beam almost completely covers the
main room, but there exists a second room that has virtually
no sensor coverage. There is only one entrance to the room
complex and the separate room has only a single exit, which
is the door to the main room.

There are one to three persons inside the scene simultane-
ously. Major occlusion caused by static objects, like walls,
occurs when people enter the second room. Minor static
occlusion can occur near the coffee maker. During the scenes
with more than one person, dynamic occlusion occurs when
persons are covered by other persons standing between them
and the sensor.

Using only the particle filter-based tracking algorithm to
process the output of the laser range finder, problems arise
when people produce no measures for an extended period of
time because they are inside the separate room or because
they are hidden by another person. For shorter occlusion
durations it is possible to keep the track of a single occluded
person alive for long enough for the person to reappear
and re-association is completely handled by the tracking
algorithm. If two persons enter the same occlusion area,
their estimated positions begin to mix spatially and once
they emerge again, re-association becomes more and more
arbitrary with increasing occlusion duration. In these scenar-
ios, a direct integration of the Social Force model [15] into
the prediction of the persons state of the tracking algorithm
may increase the performance of the system [16]. Since the
social force model heavily depends on the destinations of
the person, a tight integration with a high-level knowledge
base, as described in this work, seems promising for such
an approach.

Figure 1b shows an example of the tracking results for
one of the sequences with three persons. The trajectories
are illustrated by solid lines. Since the results are generated
without the usage of the state dependent detection probabil-
ity, the trajectories are interrupted quite often in the area
corresponding to region RA, where a dynamic occlusion
occurs.

VI. DESCRIPTION OF THE MODEL

In this section, we describe the used MLN model and
discuss some of the difficulties and design choices we
have encountered in its engineering. The complete model is
factored into three modules. We begin with a discussion of
two concepts that cannot be associated with distinct model
parts but influence nearly every aspect – the representation
of space and time.

The basic MLN can only represent discrete random vari-
ables. There exists an extension of MLNs to continuous
variables [17], but no working implementation is available.
For this work, we reduce the continuous spatial estimates ob-
tained from the tracking algorithm to a few discrete regions.
For ease of modeling and processing of data, we choose a
rectangular shape. We do not create a uniform grid, but try
to respect functional aspects of the environment concerning
the problem. For example, it does not make sense to further
split the office into smaller areas if there is no distinction
for the sensor (everything is one connected occluded area).
In an initial model, we have defined a total of eight regions,
which are depicted in Figure 1a and correspond to floor
plan D in the evaluation section. For evaluation purposes
we have defined a further five region layouts to examine
how sensitive the approach is to the choice of discretization.
Sticking with a low number of regions also made an exact
evaluation of the final model feasible. Depending on the
inference approach, there might be no significant overhead



(a) Floor plan (b) Example trajectories

Figure 1: (a) Floor plan of the location used for the experiments. In addition the picture shows the eight discrete regions that
are used for the MLN model and how they are connected via the handles. The depicted floor plan omits a static occlusion
in the lower right that served as a simulated entrance. The door in the lower right was not opened during the experiments.
(b) Example trajectories of a three person sequence: trajectories are illustrated by solid lines in different colors. The black
stars are measurements of static objects like walls.

RF

Figure 2: A radial layout of regions that respects functional
aspects of the sensor – a laser range finder.

when using a larger state space for the spatial component,
e.g. when using sequential Monte Carlo methods. Although,
the model engineering may become more intricate when
opting for more fine grained regions, the evaluation section
shows that the approach is rather insensitive to the concrete
layout chosen. Taking the characteristics of the sensor into
account, a radial layout as depicted in Figure 2 seems like
a promising approach, but this was not investigated.

In order to model dynamic domains, we assign a dedicated
time sort, whose constants are elements from the natural
numbers. One usually aims to construct a model that fulfills
the Markov property, i.e., the state at time t+1 only depends
on the state at time t. This means that formulas may only
contain predicates of at most two different times, which
then must be successive. But in the described model, the

predicates that represent the association of tracks to persons
are not time-indexed, which makes them static. This makes
it difficult to apply standard dynamic inference algorithms,
which usually assume the Markov property. But a static
variable can be considered as a dynamic variable, for which
the same value is deterministically enforced in every time
step. Fortunately, these static variables are only referenced
over a limited period of time — the life-time of a track — so
they do not pile up over the course of the complete sequence.
For time resolution we have settled for the duration of about
one second, which seems like a good compromise between
inference complexity and accuracy for the given problem.

The tracking model: The basic functionality for inter-
facing with the tracking algorithm is provided by a MLN
module that contains objects of the sorts Track and Person.
To notate variables of some sort, we use the initial letter
of the sort name in lower case. For the sort Track, the
letter ’m’ is used because of the ambiguity with sort Time.
For both sorts Track and Time, there exist time-dependent
predicates atT : Time × Track × Region and atP :
Time×Person×Region that give the current location of a
track or person, respectively. The time-independent predicate
a : Track × Person associates Track objects to Person

objects. The correspondence of tracks to persons inside the
MLN is similar to the correspondence of measurements
to tracks inside the tracking algorithm. The output of the
tracking algorithm is converted to observations of the atT



function and an additional completely observed predicate
act : Time× Track, whose technical purpose is to indicate
the life span of track IDs. The usage of this predicate is
sometimes omitted for clarity. The core tracking model then
consists of the following three formulas.

5 atT (t,m, l) ∧ a(m, p)⇒ atP (t, p, l) (2)
−3 a(m1, p) ∧ a(m2, p) ∧m1 6= m2 (3)
2 atP (t, p, l) ∧ atP (t+ q, p, l) (4)

Formula 2 probabilistically forces a person to be in the
same region as its associated track. By design a track can
only be associated to one person at a time because the last
parameter of the predicate a is declared functional. Formula
3 probabilistically enforces the association to also be a
one-to-one relation. This formula is limited to concurrently
instantiated tracks using the act predicate (not listed). And
finally Formula 4 puts a bias on people standing still instead
of moving every time step.

The floor plan: We use the static predicate adj :
Region × Region to encode the connectedness of the
regions. All instances are fully observed and adhere to the
given floor plan as indicated in the figures. A single formula
forces persons to move between regions only according to
the given layout:

∞ atP (t, p, l1) ∧ atP (t+ 1, p, l2)⇒ adj(l1, l2) (5)

This formula is deterministic to prevent persons from
“teleporting” through the scene, traversing an arbitrary dis-
tance in one step. If regions allow for a traversal in less than
a second (or one time step), this rule becomes invalid. But
since the association of tracks to persons allows for some
slack, a person in the model can “catch up” to the location
of its real counterpart after some time steps, only violating
Formula 2.

The occlusion model: To prevent persons without an
associated track from wandering across the scene (since no
track influences their current location), we need to express
that persons usually have a track unless they are indeed
occluded. In our setting both static and dynamic occlusions
occur, being caused by walls or other persons, respectively.
In the presented approach, only static occlusion information
is modeled. This is done by assigning a certain probability
to each region that it may contain untracked persons. The
probability is larger for areas of high static occlusion, like
the separate room. We also assign a higher occlusion to
regions that are more likely to be dynamically covered,
like the region around the coffee maker. By assigning low
occlusion probabilities to central regions that have a good
sensor coverage we penalize persons silently slipping past
the sensor. Formula 6 is provided once for each region r.
The weight wr is the occlusion value given in the depicted
floor plans in Figure 3.

wr atP (t, p, r) ∧ ¬∃m : (act(t,m) ∧ a(m, p)) (6)

There exist two major ways to determine the weights of
the probabilistic formulas: Learning from data and elicitation
from experts; where for common sense domains, like the one
we are dealing with, everyone is usually an expert. Both the
learning of weights and the direct specification approaches
have been followed in the literature. For the case of our
related work, [6] and [8] are employing learning and [7]
specify the weights by hand. Due to the limited size and the
common sense nature of our dataset we decided to specify
the weights ourself.

The approximation to consider the weight as the loga-
rithmic odds of the formula being true [1] can serve as a
good starting point, but it only holds as long as formulas do
not share predicates. After assigning some reasonable initial
values, we iteratively looked at predictions of the model for
selected sequences and adjusted the weights if the predic-
tions did not conform with our expectations. For example did
we look at the marginal trajectories of persons and compared
those with the true trajectories, judging which amount of
uncertainty or even wrong prediction is reasonable given the
sensor data. This can only be done with automatic parameter
training by using some kind of probabilistic ground truth.
We worked beginning with the sequences containing fewer
persons. It turned out that once we got to the sequences
with three persons, the weights did not need much more
tweaking.

VII. PREPROCESSING OF TRACKING INFORMATION

We go on and describe how tracking data is processed for
input to the MLN model. After extraction of the individual
objects in the multi-object Bayes filter, we obtain a set of
single object particles Xt

m for each track ID m and time
step t. We then apply two data reduction steps. First, the
MLN model works on a coarser time scale of 1.25 steps per
second, while the tracking algorithm runs with 12.5 steps
per second. We drop the intermediate steps without further
processing. A different approach might aggregate them, e.g.,
by averaging, but this would also distort the meaning of
the data, because it cannot be considered a snapshot of the
situation anymore.

Depending on the quality of the tracking algorithm and
the used object model, there can be many false positive
tracks, e.g., when people spread their arms away from their
body, crossing the plane of laser beams. To reduce these
false tracks, we use the existence probability to eliminate
insignificant tracks. It is given by |Xt

m|/N ; the number of
particles for track ID m divided by the total number of
particles N . We drop all tracks from a time step whose
existence probability is below 0.5. For our test sequences,
the output of the tracking algorithm usually contains about
thirty tracks per sequence, but only less than ten remain after
applying both reduction processes.

For each time step t and each track ID m that survive the
described process we add the track as active to our MLN



model via observation of the act predicate. We then bin the
single object particles into the discrete regions. Most of the
time all particles are contained in a single region and we
create an observation of the atT function. In cases where
the particles of a track m spread over several regions we
reflect this as probabilistic evidence by adding a formula
(wl, atT (t,m, l)) for each location l and calculating the
weight as the logarithmic odds wl = log pl

1−pl
, where pl

is the relative frequency of a particle of track m being in
region l.

VIII. THE INFERENCE PROBLEM

Markov Logic Networks can be seen as template models
for undirected graphical models [18]. Their semantics are
defined using the ground version of these networks. As such
the described MLN represents an undirected version of a
dynamic Bayesian network [2]. The effort for exact inference
in such models is usually exponential in the number of
variables within one time slice, because most variables
within one time step become dependent on each other after
some steps in most models.

The model described in this work also suffers from this
problem. The cause that all variables of a time slice become
dependent lies in the probabilistic data association; which
is a hard problem at its core. In our case the problem of
exact inference is exponential in mT + nP , where mT is
the maximum number of simultaneous tracks and nP is the
total number of persons in the model. Here mT stems from
the association predicates and nP are the instantiations of
the atP predicate for one time step.

For our evaluation we perform exact inference on the
model by exploiting context-specific independence [18,
pp. 171]. Given an assignment to all association variables,
the model factorizes into components for each person and
thus becomes tractable. Our largest sequence contained 10
tracks, which results in 37 possible associations to three
persons after observing the correct association for three
initial tracks. After conditioning on the association variables
we calculate the partition function for each association using
variable elimination along a min-degree variable ordering.
This approach is not suited for online filtering. Although
there exist generic approaches for filtering in dynamic MLNs
[19], [20], for the problem at hand a rao-blackwellized par-
ticle filter, which collapses all but the association variables,
seems like a good solution [18, pp. 526]. Evaluating the
performance of this inference approach on the presented
model and comparison to the general approaches is open
for future work.

IX. EVALUATION

We recorded nine sequences in total; three sequences
with one, two and three persons each. The duration of each
sequence is about one minute. The course of events is the
same among sequences with the same number of persons;

the sequences vary during the part where multiple persons
walk around the main room in an improvised way.

The setups with one person only feature static occlusion
caused by the single person staying inside the office for
several seconds. This results in its track being reinvented
upon entering the main room again. With two persons there
is dynamic occlusion, where one person covers the other
person. Both persons enter the office together and thus can-
not be distinguished once they reappear. Goal information
for one person can resolve this issue and we can obtain
a good association again. In the scenes with three persons,
one person enters the office while the two remaining persons
stay inside the main room. Dynamic occlusion occurs while
all three persons are walking around the area in front of
the sensor. Tracks are lost and recreated often, which can
also be observed in Figure 1b inside the area corresponding
to region RA. When two persons are simultaneously inside
the same occluded area, it is not possible to associate the
reappearing tracks to the correct persons just by means of
the laser range finder. So we cannot expect perfect scores.

We have created six different floor plan. The fitting of the
three core model parameters (Formula 2 - 4) was performed
using map D, which was the initial map we used in the
experiments. Then five variations of this map, with more and
less regions, have been created and the parameters estimated
by hand without further fitting. To evaluate the performance
of the models, the MLN is instantiated for five persons in
every setup, regardless of the number of persons appearing
in the scene. For each map and each sequence, we observe
the correct association for the first track of each person
and evaluate how well we can associate new tracks. In our
dataset, the number of tracks that remain unassigned after
labeling the starter tracks varies between one and seven.

The results of our evaluation are given in Table I. For each
sequence, we compute the most probable association and
give the number of false track assignments it performs. In
addition, we provide the log-likelihood, which is the natural
logarithm of the probability of the true association.

In order to provide a baseline, the number of track
confusions and losses of a multi-object Bayes filter with state
dependent detection probability (pD(x)) and the ones using a
filter with constant detection probability (pD = c) are given.
For both filters, the number of persons inside the scene is
subtracted from the total number of significant tracks and
the result is given in the table. If the tracking algorithm
works perfectly, this number will be zero. Remember that
the output of the pD = c filter is used as input for the MLN
stage; so this number equates to the number of associations
made by the high-level model and thus equals the possible
maximum number of false associations.

We compare our results to a multi-object Bayes filter
using the set representation, which delivers state of the art
performance in domains with high occlusion rates [5]. We
observe that the algorithm with the state dependent detec-
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Figure 3: The region layouts used for evaluation. The numerical values are the occlusion values that are used in Formula 6.
The region in the lower right contains the exit and thus has an occlusion value of zero, which means that untracked persons
may be inside this region without reducing probability.

Table I: For each of the nine sequences used for evaluation, we give the number of invented tracks minus the number of
persons for tracking with constant detection probability (pD = c, maximum number of possible confusions) and with state
dependent detection probability (pD(x)), which functions as baseline. For the six floor plans, we give the number of false
associations (a−) of the most probable association and the log-likelihood (lnL).

Unassigned Tracks A B C D E F
Seq Persons ↓pD = c ↓pD(x) ↓a− ↑lnL ↓a− ↑lnL ↓a− ↑lnL ↓a− ↑lnL ↓a− ↑lnL ↓a− ↑lnL
1532 1 1 1 0 -1.61 0 -0.00 0 -0.00 0 -0.00 0 -0.00 0 -0.00
1640 1 1 1 1 -1.61 0 -0.00 0 -0.00 0 -0.00 0 -0.00 0 -0.00
1737 1 1 1 0 -1.61 0 -0.00 0 -0.00 0 -0.00 0 -0.00 0 -0.00
2056 2 3 2 2 -4.30 2 -2.08 2 -2.08 2 -1.45 0 -0.88 2 -1.58
2207 2 4 4 3 -6.24 1 -3.22 1 -3.22 3 -2.84 3 -2.84 3 -2.85
2329 2 3 3 2 -4.30 2 -2.08 2 -2.08 2 -1.94 2 -1.55 2 -1.73
4628 3 5 1 4 -4.91 0 -1.63 0 -1.61 0 -1.01 0 -1.00 0 -1.00
4734 3 5 3 1 -4.26 2 -4.61 2 -4.62 1 -6.86 2 -7.66 2 -7.42
5306 3 7 4 6 -7.76 4 -8.50 4 -8.50 4 -7.13 4 -7.12 4 -7.11

tion probability reduces the number of unassigned tracks
dramatically in the scenarios with three persons, where a
lot of short term occlusions occur. In the scenarios with
one or two persons, where the long-term occlusions due to
static objects dominate, the usage of the state dependent
detection probability has nearly no influence on the number
of unassigned tracks. We note, that the performance of the
MLN model is largely independent of choice of map layout.
It is also able to consistently outperform the results achieved
by the filter algorithm with state-dependent detection proba-
bility on all but the simplest map layouts. Even with map A,
the re-association performance of the MLN model is quite
good, sometimes surpassing that of more detailed maps. In
general the approach is more likely to correctly associate
a new track ID to the correct person, if the person’s track
was lost and recovered inside the same region, since staying
still is the most probable behaviour of a person. If a more
detailed map places a region boundary between those two
points of a person track, the corresponding model receives
a penalty.

When interpreting the results one has to think about two
further points that are relevant if one was to transfer the

model to a real application. First, the inference is done in an
exact way, which cannot be sustained for longer sequences
containing more track IDs. The used method of inference
achieved real-time performance for about 4-5 unassigned
tracks (meaning inference took as long as sequence du-
ration). We expect that a properly designed approximate
algorithm should be able to deliver comparable performance
in an online setting. Secondly, the track-assignment was
taken at the end of the sequence, accounting for all evidence.
This means that early track associations benefit from a
smoothing effect, taking into account later observations.
Overall the results do look encouraging and suggest that
layering a high-level probabilistic model on top of a tracking
filter is a possible way to improve association performance.

X. CONCLUSION

We have described an approach to solving the data asso-
ciation problem for person tracking with a first-order proba-
bilistic model described using Markov Logic Networks. We
showed how to map the output of a regular tracking algo-
rithm into a discrete spatial representation with additional
rules describing occlusion properties of the environment.



Especially in scenarios with long-term occlusions, where
even the multi-object Bayes filter is not able to continue to
track hidden objects, the association using MLN outperforms
the solely tracking-based approach when using exact evalu-
ation. On the other hand, a sophisticated tracking algorithm
is adequate in scenarios with occlusions of no more than
one second and might be able to scale more easily to larger
domains.

In future, we plan to integrate additional information,
like observations of interactions with static devices or video
data, into the first-order model in order to further improve
the association performance. It is planned to develop a
specialized particle filter algorithm that exploits the context-
specific independence present within the described model
and is able to scale to larger problem sizes, both in terms
of richness of the model and number of concurrent tracks.
An application will be the selection of appropriate output
devices for human-computer interaction, where it is neces-
sary to be able to estimate the distance of users to computer
screens or speakers.
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