
ELK: A Reasoner for OWL EL Ontologies
(Technical Report)

Yevgeny Kazakov1, Markus Krötzsch2, and František Simančík2

1 Institute of Artificial Intelligence, Ulm University, Germany
2 Department of Computer Science, University of Oxford, UK

Abstract. ELK is a specialized reasoner for the lightweight ontology
language OWL EL. The practical utility of ELK is in its combination of
high performance and comprehensive support for language features. At
its core, ELK employs a consequence-based reasoning engine that can
take advantage of multi-core and multi-processor systems. A modular
architecture allows ELK to be used as a stand-alone application, Protégé
plug-in, or programming library (either with or without the OWL API).
This system description presents the current state of ELK.

1 The System Overview

The logic-based ontology language OWL is becoming increasingly popular in
application areas, such as Biology and Medicine, which require dealing with a
large number of technical terms. For example, medical ontology SNOMED CT
provides formal description of over 300,000 medical terms covering various topics
such as diseases, anatomy, and clinical procedures. Terminological reasoning,
such as automatic classification of terms according to subclass (a.k.a. ‘is-a’)
relations, plays one of the central role in applications of biomedical ontologies.
To effectively deal with large ontologies, several profiles of the W3C standard
OWL 2 have been defined [7]. Among them, the OWL EL profile aims to provide
tractable terminological reasoning. Specialized OWL EL reasoners, such as CEL
[1], Snorocket [5], and jCEL [6], can offer a significant performance improvement
over general-purpose OWL reasoners.

This paper describes the ELK system (http://elk-reasoner.googlecode.com/).
ELK is developed to provide high performance reasoning support for OWL EL
ontologies. The main focus of the system is (i) extensive coverage of the OWL EL
features, (ii) high performance of reasoning, and (iii) easy extensibility and use.
In these regards, ELK can already offer advantages over other OWL EL reasoning
systems mentioned above. For example, as of today, ELK is the only system
that can utilize multiple processors/cores to speed up the reasoning process,
which makes it possible to classify SNOMED CT in as little as 5 seconds on a
commodity hardware [2]. This paper does not provide any new theoretical results
or experimental comparisons with other tools; those can be found in our earlier
works [2–4].

ELK is a flexible system that can be used in a variety of configurations. This
is supported by a modular program structure that is organized using the Apache

Command-line Client ReasonerOWL FSS Parser

Protégé Plugin OWL API Bindings

OWL
Object

Interfaces

Indexing

Saturation

Taxonomy

Job
Manager

Fig. 1. Main software modules of ELK and information flow during classification

Maven build manager for Java. Maven can be used to automatically download,
configure, and build ELK and its dependencies, but there are also pre-built
packages for the most common configurations. The modular structure also sep-
arates the consequence-based reasoning engine from the remaining components,
which facilitates extension of the system with new language features. The latest
stable release ELK 0.2.0 supports conjunction (ObjectIntersectionOf), existen-
tial restriction (ObjectSomeValuesFrom), the top class (owl:Thing), complex role
inclusions (property chains), and syntactic datatype matching. Support for nom-
inals (oneOf), ABox facts (assertions), and datatypes is under development.

The main software modules of ELK are shown in Fig. 1. The arrows illustrate
the information flow during classification. The two independent entry points are
the command-line client and the Protégé plug-in to the left. The former extracts
OWL ontologies from files in OWL Functional-Style Syntax (FSS), while the
latter uses ELK’s bindings to the OWL API3 to get this data from Protégé.4 All
further processing is based on ELK’s own representation of OWL objects (axioms
and expressions) that does not depend on the (more heavyweight) OWL API.
The core of ELK is its reasoning module, which will be discussed in detail.

Useful combinations of ELK’s modules are distributed in three pre-built pack-
ages, each of which includes the ELK reasoner. The standalone client includes
the command-line client and the FSS parser for reading OWL ontologies. The
Protégé plugin allows ELK to be used as a reasoner in Protégé and compatible
tools such as Snow Owl.5 The OWL API bindings package allows ELK to be
used as a software library that is controlled via the OWL API interfaces.

2 Preliminaries

The vocabulary of EL+ consists of countably infinite sets of (atomic) roles and
of atomic concepts. Complex concepts and axioms are defined recursively using
the constructors in Table 1. We use the letters R,S for roles, C,D,E for concepts
and A,B for atomic concepts. A concept equivalence C ≡ D abbreviates the two
inclusions C v D and D v C. An ontology is a finite set of axioms.

Given an ontology O, we write v∗O for the smallest reflexive transitive binary
relation over roles such that R v∗O S holds for all R v S ∈ O. We say that a

3 http://owlapi.sourceforge.net/
4 http://protege.stanford.edu/
5 http://www.b2international.com/portal/snow-owl

Table 1. Syntax and semantics of EL+

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top > ∆I

conjunction C uD CI ∩DI
existential restriction ∃R.C {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

Axioms:
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI
role composition R1 ◦R2 v S 〈x, y〉 ∈ RI1 ∧ 〈y, z〉 ∈ RI2 → 〈x, z〉 ∈ SI

concept C occurs negatively (resp. positively) in an ontology O, if C is a syntactic
subexpression of D (resp. E) for some axiom D v E ∈ O.
ELH has Tarski-style semantics. An interpretation I consists of a nonempty

set ∆I called the domain of I and an interpretation function ·I that assigns to
each R a binary relation RI ⊆ ∆I × ∆I and to each A a set AI ⊆ ∆I . The
interpretation function is extended to complex concepts as shown in Table 1.

An interpretation I satisfies an axiom α (written I |= α) if the corresponding
condition in Table 1 holds. If an interpretation I satisfies all axioms in an on-
tology O, then I is a model of O (written I |= O). An axiom α is a consequence
of an ontology O (written O |= α) if every model of O satisfies α. A concept C
is subsumed by D w.r.t. O if O |= C v D.

For atomic concepts A and B, the subsumption O |= A v B is direct if there
exists no atomic concept C nonequivalent to A and B w.r.t. to O such that
O |= A v C and O |= C v B. Classification is the task of computing the class
taxonomy that represents the direct subsumptions between equivalence classes
of atomic concepts occurring in O.

3 Inference Rules

The ELK reasoning component works by deriving consequences of ontological
axioms under inference rules. The improvement and extension of these rules is
an important part of the ongoing development of ELK [2–4]. To simplify the
presentation, in this paper we focus on inference rules for EL+, a small yet non-
trivial fragment of OWL EL, which is sufficient to illustrate the work of the main
reasoning component of the ELK system.

Inference rules for EL+ are shown in Fig. 2. The rules operate with expres-
sions of the form C v D, C R→ D, and init(C). The axiom C R→ D has the same
semantics as C v ∃R.D, but is used differently in the inference rules. The ex-
pression init(C) is used to initialize the derivation of superconcepts for C. The
rules are sound, i.e., the conclusion subsumptions follow from the premise sub-

R0
init(C)

C v C R+
>

init(C)

C v > : > occurs negatively in O

R−u
C v D1 uD2

C v D1 C v D2
R+
u
C v D1 C v D2

C v D1 uD2
: D1 uD2 occurs negatively in O

R−∃
C v ∃R.D

init(D) C R
→ D

R+
∃
E R
→ C C v D
E v ∃S.D :

∃S.D occurs negatively in O
R v∗O S

Rv
C v D
C v E : D v E ∈ O R◦

E R1→ C C R2→ D

E S
→ D

:
S1 ◦ S2 v S ∈ O
R1 v∗O S1

R2 v∗O S2

Fig. 2. Inference rules for reasoning in EL+

sumptions and O. The rules are complete for classification in the sense that, for
each concept C and each atomic concept A occurring in O, if O |= C v A, then
C v A is derivable from init(C). Note that the axioms in O are never used as
premises of the rules, but only as side-conditions of the rule Rv.

Example 1. Consider the ontology O consisting of the following axioms.

A v ∃R.(C uD) (1)
B ≡ A u ∃S.D (2)

∃S.D v C (3)
R v S (4)

To compute all atomic superconcepts of A, we start with the goal init(A) and
compute all conclusions under the inference rules in Fig. 2.

init(A) initial assumption (5)
A v A by R0 to (5) (6)
A v ∃R.(C uD) by Rv to (6) using (1) (7)

init(C uD) by R−∃ to (7) (8)

A R→ C uD by R−∃ to (7) (9)
C uD v C uD by R0 to (8) (10)

C uD v C by R−u to (10) (11)

C uD v D by R−u to (10) (12)

A v ∃S.D by R+
∃ to (9) and (12) using (4) (13)

A v A u ∃S.D by R+
u to (6) and (13) (14)

init(D) by R−∃ to (13) (15)

A S→ D by R−∃ to (13) (16)

A v C by Rv to (13) using (3) (17)
A v B by Rv to (14) using (2) (18)
D v D by R0 to (15) (19)

Since A v B and A v C have been derived but not, say, A v D, we conclude
that B and C are superconcepts of A but D is not. Incidentally, since init(D) was
derived to satisfy the existential restriction in (13), we also computed all atomic
superconcepts of D; namely, D has no nontrivial superconcepts. The application
of rules R+

∃ and R+
u in lines (13) and (14) uses the fact that the concepts ∃S.D

and Au∃S.D occur negatively in Au∃S.D v B which is a part of (2). Intuitively,
these rules are used to “build up” the subsumption A v A u ∃S.C, so that rule
Rv with side condition (2) can be applied to derive A v B.

In order to classify an ontology O, it is sufficient to compute the deductive
closure of init(A) for every atomic concept A occurring in O using the rules in
Fig. 2. Note that in this case the rules can derive only subsumptions of the form
C v D and C R→ D where C, D, and R occur in O. Therefore, the deductive
closure can be computed in polynomial time.

The saturation algorithm used in ELK for computing the deductive closure
is closely related to the “given clause” algorithm for saturation-based theorem
proving and semi-naive (bottom-up) evaluation of logic programs. The algorithm
maintains two collections of axioms: the set of processed axioms between which
the rules have been already applied (initially empty) and the to-do queue of
the remaining axioms (initially containing the input axioms). The algorithm
repeatedly polls an axiom from the to-do queue; if the axiom is not yet in the
processed set, it is moved there and the conclusions of all inferences involving
this axiom and the processed axioms are added at the end of the to-do queue
(regardless of whether they have been already derived).

Example 2. The derivation in Example 1 already presents the axioms in the or-
der they are processed by the saturation algorithm. For example, after processing
axiom (10), the processed set contains axioms (5)–(10), and the to-do queue con-
tains axioms (11) and (12). The algorithm then polls axiom (11) from the queue,
adds it to the processed set, and applies all inferences involving this axioms and
the previously processed axioms (5)–(10). In this case, no inference rules are
applicable. The algorithm then polls the next axiom (12) from the queue, adds
it to the processed set, and applies all inferences involving this axioms and the
previously processed axioms (5)–(11). In this case, rule R+

∃ is applicable to the
premises (9) and (10), so the conclusion (13) is added to the to-do queue.

4 Implementation of Reasoning

In this section, we give details of the three main phases of the classification
algorithm that is the core of ELK’s reasoning module (see Fig. 1): indexing,
saturation, and taxonomy construction.

IndexedRole

occurs : integer
uri : Uniform Resource Identifier

IndexedExistential

role : IndexedRole
filler : IndexedConcept

IndexedConjunction

firstConj : IndexedConcept
secondConj : IndexedConcept

IndexedAtomic

uri : Uniform Resource Identifier

IndexedConcept

negOccurs : integer
posOccurs : integer

Fig. 3. Classes for indexing objects

4.1 Indexing

The task of the indexing phase is to build an internal representation of the in-
put ontology O that is suitable for checking the side conditions of the inference
rules efficiently. As illustrated in Fig. 1, the input that is used for indexing is an
ontology in ELK’s lightweight representation of OWL expressions and axioms,
which may have been obtained from OWL FSS files, OWL API objects, or any
other source. While ELK’s representation of OWL faithfully captures the struc-
ture of the ontology in terms of OWL language features, the indexed ontology
represents only the description logic semantics that is essential for applying the
inference rules. For this purpose, a system of indexed objects is used to represent
DL (rather than OWL) role and concept expressions. These objects are the basis
for all further internal index structures.

The type hierarchy of indexed objects is shown in Fig. 3; it closely follows
the recursive definition of EL expressions. The top level classes IndexedRole and
IndexedConcept are used to represent roles and concepts respectively. For each
indexed role, the field occurs stores the number of times this role occurs in
the ontology O, and the field uri contains the URI that identifies the role. For
indexed concepts we separately keep track of the number of their negative and
positive occurrences in the fields negOccurs and posOccurs. The different types of
EL concepts are represented by the corresponding subclasses of IndexedConcept
from Fig. 3. For example, a conjunction CuD is represented by an object of type
IndexedConjunction, and its fields firstConj and secondConj point to the indexed
objects that represent the concepts C and D, respectively. In addition, there is
a distinguished instance top of IndexedConcept that represents the concept >.

Recall that OWL supports conjunctions of arbitrary arity. For efficient index-
ing, ELK converts these to series of nested binary conjunctions, e.g., the concept
AuBuCuD would be represented as ((AuB)uC)uD. A similar transformation
is used when restricting to binary role composition axioms below.

Apart from creating the indexed objects, indexing also constructs data struc-
tures for efficient look up of side conditions of the inference rules. Specifically,
the following tables (sets of tuples) of indexed objects are constructed. To sim-
plify the presentation, in the following we ignore the distinction between DL
expressions and their indexed representations.

negConjs = {〈C,D,C uD〉 | C uD occurs negatively in O}
negExis = {〈R,C, ∃R.C〉 | ∃R.C occurs negatively in O}

conceptIncs = {〈C,D〉 | C v D ∈ O}
roleIncs = {〈R,S〉 | R v S ∈ O}

roleComps = {〈R1, R2, S〉 | R1 ◦R2 v S ∈ O}

Example 3. Consider the ontology O from Example 1. Its index contains the
following indexed objects with occurrence counts as indicated.

IndexedRole R S
occurs 2 4

IndexedConcept > A B C D C uD ∃R.(C uD) ∃S.D A u ∃S.D
negOccurs 0 2 1 0 2 0 0 2 1
posOccurs 0 1 1 2 2 1 1 1 1

Recall that we treat the equivalence axiom (2) as two individual concept inclusion
axioms, so, e.g., the occurrence count of S is 4, not 3. The look-up tables contain
the following tuples.

negConjs = {〈A,∃S.D,A u ∃S.D〉}
negExis = {〈S,D, ∃S.D〉}

conceptIncs = {〈A,∃R.(C uD)〉, 〈B,A u ∃S.D〉, 〈A u ∃S.D,B〉, 〈∃S.D,C〉}
roleIncs = {〈R,S〉}

roleComps = ∅

To illustrate how the index is accessed during the saturation phase, consider
the point in the derivation from Example 1 when the saturation algorithm pro-
cesses the axiom A v ∃S.D in line (13). To apply rule R+

u to this axiom, the
algorithm iterates over those tuples in negConjs whose first or second component
is ∃S.D to find possible ways of satisfying the side condition. Since negConjs con-
tains 〈A,∃S.D,A u ∃S.D〉, the algorithm checks if the set of processed axioms
contains A v A, which can be used as the first premise of R+

u . Since this is
the case, the conclusion A v A u ∃S.D is added to the to-do queue. Note that
(a pointer to) the indexed conjunction A u ∃S.D used in the conclusion can be
taken directly from the table negConjs. This illustrates that conclusions of the
inference rules can be constructed by simply following the pointers in the index,
and no new indexed object need to be created during the saturation phase.

Indexing is a lightweight task that can be performed by a single recursive
traversal through the structure of each axiom in the ontology. Since it can con-
sider one axiom at a time, it can be started even before the whole ontology is
known to the reasoner. In ELK, indexing is executed in a second thread in par-
allel to loading of axioms. Moreover, if new axioms are added to the ontology, it

is sufficient to index the new axioms without having to reload the whole ontol-
ogy. Since we keep the exact counts of negative and positive the occurrences of
concepts, the same also applies to deletions of axioms.

Example 4. Consider a deletion of the axiom B ≡ A u ∃S.D from the ontology
in Example 1. Firstly, the tuples 〈B,A u ∃S.D〉 and 〈A u ∃S.D,B〉 are removed
from the table conceptIncs. Secondly, both the negative and the positive occur-
rence counts of B, Au∃S.D, A, and ∃S.D are decremented, and the occurrence
count of S is decreased by 2. Since the negative occurrence count of A u ∃S.D
drops to zero, the tuple 〈A,∃S.D,A u ∃S.D〉 is removed from the table negConjs.
On the other hand, the negative occurrence count of ∃S.D remains nonzero (the
concept still occurs negatively in (3)), so the table negExis remains unchanged.
Finally, since there are no more occurrences of B and Au∃S.D, the correspond-
ing indexed objects are deleted.

4.2 Saturation of Roles

In this phase we precompute the reflexive transitive closure v∗O of the role in-
clusion axioms of O, which is needed for efficient application of rules R+

∃ and
R◦, and store it in a table called hier (for role hierarchy).

hier = {〈R,S〉 | R v∗O S}.

Since the number of roles in real-world ontologies is usually much smaller than
the number of concepts, any reasonable algorithm for computing the transitive
closure can be used with no significant impact on the overall performance.

Example 5. For the ontology O from Example 1, we have

hier = {〈R,R〉, 〈R,S〉, 〈S, S〉}.

4.3 Saturation of Concepts

In this phase we compute the deductive closure under the inference rules in
Fig. 2. Recall that the inference rule operate with three types of axioms init(C),
C v D, and C R→ D. We store such axioms in three separate tables init, subs,
links as follows.

axiom internal representation
init(C) C ∈ init
C v D 〈C,D〉 ∈ subs
C R→ D 〈C,R,D〉 ∈ links

Before we present the details of the saturation algorithm, we first compile
the inference rule from Fig. 2 to operate directly with tables and indexed objects
instead of DL expressions. The compiled rules are shown in Fig. 4, where, for a
table T and a tuple x, we use the notation T (x) as a shorthand for x ∈ T .

R0: If init(C),
then subs(C,C).

R+
>: If init(C) ∧ top.negOccurs > 0,

then subs(C, top).

R−u : If subs(C,D) ∧ D instanceOf IndexedConjunction,
then subs(C,D.firstConj) and subs(C,D.secondConj).

R+
u : If subs(C,D1) ∧ subs(C,D2) ∧ negConjs(D1, D2, D),

then subs(C,D).

R−∃ : If subs(C,D) ∧ D instanceOf IndexedExistential,
then init(D.filler) and links(C,D.role, D.filler).

R+
∃ : If links(E,R,C) ∧ subs(C,D) ∧ negExis(S,D, F) ∧ hier(R,S),

then subs(E,F).

Rv: If subs(C,D) ∧ conceptIncs(D,E),
then subs(C,E).

R◦: If links(E,R1, C) ∧ links(C,R2, D) ∧ roleComps(S1, S2, S) ∧
hier(R1, S1) ∧ hier(R2, S2),

then links(E,S,D).

Fig. 4. Compiled inference rules

As explained in Section 3, the algorithm does not actually put the conclusions
of the inference rules directly into the corresponding tables. Instead, it maintains
a queue todo of newly derived axioms for which the inference rules are yet to
be applied, repeatedly polls an axiom from todo, stores it in the corresponding
table if not already present, and applies all inferences involving this axiom and
the earlier processed axioms, whose conclusions are put to todo.

The main body of the saturation algorithm is shown in Algorithm 1: for
classification, it initializes the computation with init(A) for all atomic concepts
occurring in the ontology, and then repeatedly processes axioms from todo until
the queue is empty. The implementation of the function process(axiom) for
each of the three axiom types is shown in Algorithm 2.

Algorithm 1: Main body of the saturation algorithm
1 for each IndexedAtomic A do
2 todo.add(init(A));

3 while todo 6= ∅ do
4 axiom ← todo.poll();
5 process(axiom);

Algorithm 2: process(axiom)

1 process(init(C)):
2 if init.add(C) then
3 todo.add(C v C); // rule R0

4 if top.negOccurs > 0 then
5 todo.add(C v top); // rule R+

>

6 process(C v D):
7 if subs.add(〈C,D〉) then
8 if D instanceOf IndexedConjunction then
9 todo.add(C v D.firstConj);

10 todo.add(C v D.secondConj); // rule R−u

11 if D instanceOf IndexedExistential then
12 todo.add(init(D.filler));
13 todo.add(C D.role

→ D.filler); // rule R−∃

14 for each D2, E with subs(C,D2) ∧ negConjs(D,D2, E) do
15 todo.add(C v E); // rule R+

u

16 for each D1, E with subs(C,D1) ∧ negConjs(D1, D,E) do
17 todo.add(C v E); // rule R+

u

18 for each E,F,R, S with links(E,R,C) ∧ negExis(S,D, F) ∧ hier(R,S) do
19 todo.add(E v F); // rule R+

∃

20 for each E with conceptIncs(D,E) do
21 todo.add(C v E); // rule Rv

22 process(E R
→ C):

23 if links.add(〈E,R,C〉) then
24 for each D,F, S with subs(C,D) ∧ negExis(S,D, F) ∧ hier(R,S) do
25 todo.add(E v F); // rule R+

∃

26 for each D,R2, S1, S2, S with links(C,R2, D) ∧ roleComps(S1, S2, S) ∧
hier(R,S1) ∧ hier(R2, S2) do

27 todo.add(E S
→ D); // rule R◦

28 for each D,R1, S1, S2, S with links(D,R1, E) ∧ roleComps(S1, S2, S) ∧
hier(R1, S1) ∧ hier(R,S2) do

29 todo.add(D S
→ C); // rule R◦

Note that Algorithm 2 often iterates over joins of tables; optimizing such
iterations is essential for achieving efficiency of the algorithm. We will discuss
several possible optimizations in Section 5.1.

Example 6. Here we show the result of applying the saturation algorithm to the
ontology from Example 1. The saturation includes (a representation of) all the
axioms that were derived in Example 1, together with those that are derivable
from init(B) and init(C).

init = {A,B,C,D,C uD}
subs = {〈A,A〉, 〈A,∃R.(C uD)〉, 〈A,∃S.D〉, 〈A,A u ∃S.D〉, 〈A,C〉, 〈A,B〉

〈B,B〉, 〈B,A u ∃S.D〉, 〈B,A〉, 〈B, ∃S.D〉, 〈B, ∃R.(C uD)〉, 〈B,C〉
〈C,C〉, 〈D,D〉, 〈C uD,C uD〉, 〈C uD,C〉, 〈C uD,D〉}

links = {〈A,R,C uD〉, 〈A,S,D〉, 〈B,S,D〉, 〈B,R,C uD〉}

4.4 Taxonomy Construction

The concept saturation phase computes the full transitively closed subsumption
relation. However, the expected output of classification is a taxonomy which only
contains direct subsumptions between nodes representing equivalence classes of
atomic concepts. Therefore, the computed subsumptions between atomic con-
cepts must be transitively reduced.

In the first step, we discard all subsumptions derived by the saturation algo-
rithm that involve non-atomic concepts. Thus, in the remainder of this section,
we can assume that all concepts are atomic.

Algorithm 3: Naive Transitive Reduction
1 for each C with subs(A,C) do
2 isDirect ← true;
3 for each B with subs(A,B) do
4 if B 6= C and subs(B,C) then
5 isDirect ← false;

6 if isDirect then
7 A.directSuperConcepts.add(C)

A naive solution for computing the direct superconcepts of A is shown in
Algorithm 3. The algorithm iterates over all superconcepts C of A, and for each
of them checks if another superconcept B of A exists with A v B v C. If no such
B exists, then C is a direct superconcept of A. Apart from the fact this approach
does not work as expected when A has two equivalent superconcepts, in which
case none of them would be found as direct, the algorithm is inefficient because

it performs two nested iterations over the superconcepts of A. In realistic on-
tologies, the number of all superconcepts of A can be sizeable, while the number
of direct superconcepts is usually much smaller, often just one. A more efficient
algorithm would take advantage of this and perform the inner iteration only
over the set of direct superconcepts of A that have been found so far, as shown
in Algorithm 4. Given A, the algorithm computes two sets A.equivalentConcepts
and A.directSuperConcepts. The first set contains all concepts that are equivalent
to A, including A itself. The second set contains exactly one element from each
equivalence class of direct superconcepts of A. Note that it is safe to execute
Algorithm 4 in parallel for multiple concepts A.

Algorithm 4: Better Transitive Reduction
1 for each C with subs(A,C) do
2 if subs(C,A) then
3 A.equivalentConcepts.add(C);

4 else
5 isDirect ← true;
6 for B ∈ A.directSuperConcepts do
7 if subs(B,C) then
8 isDirect ← false;
9 break;

10 if subs(C,B) then
11 A.directSuperConcepts.remove(B);

12 if isDirect then
13 A.directSuperConcepts.add(C);

Having computed A.equivalentConcepts and A.directSuperConcepts for each
A, the construction of the taxonomy is straightforward. We introduce one tax-
onomy node for each distinct class of equivalent concepts, and connect the nodes
according to the direct superconcepts relation. Care has to be taken to put the
top and the bottom node in their proper positions, even if > or ⊥ do not occur
in the ontology.

Example 7. Consider the ontology from Example 1 and its saturation from Ex-
ample 6. Projecting the subsumptions to atomic concepts leaves us with

Subs = {〈A,A〉, 〈A,B〉, 〈A,C〉, 〈B,A〉, 〈B,B〉, 〈B,C〉, 〈C,C〉, 〈D,D〉},

from which Algorithm 4 computes

A.equivalentConcepts = {A,B}, A.directSuperConcepts = {C},
B.equivalentConcepts = {A,B}, B.directSuperConcepts = {C},
C.equivalentConcepts = {C}, C.directSuperConcepts = ∅,
D.equivalentConcepts = {D}, D.directSuperConcepts = ∅.

The resulting taxonomy is shown in Fig. 5.

>

C

A,B

D

⊥

Fig. 5. Taxonomy for the ontology from Example 1

5 Further Optimizations

5.1 Join Iteration

Iterations over joins of tables are used extensively in Algorithm 2 to retrieve all
matching side-conditions (and second premises) of inference rules. We optimize
such retrievals by iterating over smaller tables and caching partial joins.

We illustrate the main ideas on the conjunction rule R+
u implemented in

Algorithm 2 in lines 14–17. To apply R+
u with the given axiom C v D as the

first premise, the for loop in line 14 iterates over all indexed concepts D2 and
E such that subs(C,D2) ∧ negConjs(D,D2, E), i.e., such that the subsumption
C v D2 has already been processed and the conjunction E = D u D2 occurs
negatively in the ontology.

A simple solution would be to first retrieve all D2 with subs(C,D2) and then
for each of them retrieve all (if any) E with negConjs(D,D2, E). With suitable
hash indexes over the tables, such retrievals can be executed efficiently. Another
possibility is to perform the retrievals in the opposite order: first retrieve all
pairs of D2 and E with negConjs(D,D2, E) and then for each of them check
if subs(C,D2). Since most concepts occur only in very few negative conjunc-
tions, this order often requires fewer retrievals than the former. Of course, a
better solution is to analyse the number of required retrievals upfront and then
dynamically select the order which requires fewer retrievals.

The above approach already performs reasonably well in practice, but it
can be optimized further. Although most concepts occur only in few negative
conjunctions, it is common that an ontology contains a small number of (usually
very general) concepts that occur in many conjunctions. For example, there is one
concept in SNOMED CT that occurs in about 1,400 negative conjunctions. For
definitiveness, let us consider a situation where one general concept A occurs in
conjunctions A uBi for many specific concepts Bi. Whenever C v A is derived
for some C, which happens often because A is general, for the application of
rule R+

u the algorithm needs to retrieve all D2 (and the corresponding E) from
the intersection of the set of previously derived superconcepts of C and the set
{Bi}. While both of these sets can be large, their intersection is likely to be small
because all Bi are specific and therefore do not occur often as superconcepts. In
such case, iterating over either of the two sets is inefficient, and a better solution
might be to have the intersection precomputed and update it whenever some
axiom C v Bi is derived. More specifically, the algorithm will work as follows.
When processing an axiom C v Bi, the algorithm checks if C v A has already
been derived. If yes, C v A u Bi is derived as usual. If no, however, then the
partially matched implication axiom C v (A → A u Bi) is stored for future
reference (in practice, the implication is stored as a triple 〈C,A,A u Ci〉 in a
new table impl). When processing an axiom C v A, the algorithm implements
rule R+

u simply by retrieving all implications of the form C v (A→ E) (i.e., all
E with impl(C,A,E)) and derives the conclusions C v E.

Note that deriving implication axioms is most useful when there is an asym-
metry between the conjuncts as above: the Ci’s occur rarely, therefore the al-
gorithm derives few implications C v (A → A u Ci), and the algorithm saves
many long iterations when applying rule R+

u to axioms C v A. On the other
hand, when processing axioms C v A, it is wasteful to derive the implications
C v (Ci → A u Ci). Since A occurs often and there are many Ci’s, this would
derive a large number of implication axioms, but because Ci’s occur rarely, only
few of these implications will be fire.

Similar consideration apply to rule R+
∃ . Let us ignore the role hierarchy for

the moment. In that case, to apply rule R+
∃ to an axiom E R→ C as the first

premise, the for loop in line 24 in Algorithm 2 iterates over all D and F such
that subs(C,D) and negExis(R,D,F), i.e., such that the subsumption C v D has
already been processed and the existential F = ∃R.D occurs negatively in the
ontology. This is analogous to the previously discussed application of rule R+

u ,
only using table negExis instead of negConjs. Here the asymmetry between roles
and concepts is much more common than in the case of conjuncts: it is usually
the case that for a role R there are many negative existentials ∃R.Ci, but for a
concept C there are only few negative existentials ∃Ri.C. Therefore, this suggests
that it might be better to precompute the join subs(C,D) onD negExis(R,D,F).
The algorithm works as follows. When processing an axiom C v D, the algorithm
derives the propagation axiom C v (R → F) for each R and F such that
negExis(R,D,F) (the propagation will be stored as the triple 〈C,R, F 〉 in a new
table prop). When processing an axiom E R→ C, the algorithm implements rule

R+
∃ by retrieving all propagations of the form C v (R → F) (i.e., all F with

prop(C,R, F)), for which it derives the conclusions E v F . This corresponds
essentially to the inference rule RH from [2], which can be stated as follows:

RH
E R→ C C v (R→ F)

E v F
.

Adding the role hierarchy introduces another join in the application of rule
R+
∃ as in Fig. 4. There are several possible of ways dealing with the additional

join, we mention a few of them. One possibility (which is currently implemented
in ELK) is to add an intermediate iteration over the role hierarchy when exe-
cuting rule RH as follows:

RH
E R→ C C v (S → F)

E v F
: R v∗O S.

Another possibility it to precompute the join links on hier, which essentially
corresponds to expanding the axioms E R→ C under the role hierarchy as follows:

E R→ C

E S→ C
: R v∗O S.

Yet another possibility is to precompute the join of prop on hier, which corre-
sponds to expanding propagation axioms under the role hierarchy as follows:

C v (S → F)

C v (R→ F)
: R v∗O S.

There is a trade-off between time and space in the above approaches: expan-
sion of axioms under the role hierarchy requires more space, but it eliminates
the need to iterate over the role hierarchy in the application of rule RH.

5.2 Concurrent Saturation

The saturation phase can be further sped up by processing multiple axioms
concurrently. The basic idea is to employ several workers (running in different
threads) to execute the loop in lines 3–5 of Algorithm 1 at the same time. To
make this possible, the to-do queue has to support concurrent insertions and
retrievals of elements from different threads. Fortunately, standard Java libraries
already provide efficient implementations of such concurrent queues.

More problematically, the shared tables accessed from process(axiom) of
Algorithm 2 must be thread-safe. For example, several workers might try to
insert subsumptions into the table subs line 7 at the same time, and, moreover,
other workers might already be iterating over subs in lines 14 or 24 at this time.
The procedure must behave correctly in all such cases.

A simple solution would be to use locks on the three tables init, subs, and
links that are written to during the saturation phase. This would ensure that
there is always at most one worker accessing these tables at one time, but it

would largely defeat the purpose of concurrent computation since the workers
will have to wait for each other in order to proceed.

We propose a solution which does not use locks. Instead of having just three
tables init, subs, and links, the idea is to implement each of these tables as a
collection of a large number of subtables, and ensure that no two workers need
to access the same subtable at the same time.

To this end, we assign the axioms that are derived during the saturation
phase into contexts. We have one context for each initialized concept C (for which
init(C) has been derived). An axiom of the form init(C), C v D, or E R→ C is
assigned to the context of C. Additionally, in the presence of role composition
axioms, the axiom E R→ C is also assigned to the context of E. The assignment
of axioms to contexts satisfies the important property that whenever a binary
inference rule (R+

u , R
+
∃ , and R◦) is applicable to a pair of premises, the two

premises belong to the same context. Therefore, when a worker processes an
axiom in one context, it only needs to access those processed axioms that are
in the same context, so multiple workers can independently process axioms in
different contexts at the same time

To ensure that no two workers are concurrently processing axioms in the
same context, the to-do queue is split into a two-level hierarchy of queues: each
context of C maintains a local queue C.todo of to-do axioms that are assigned
to the context of C, and there is a global queue of active contexts whose to-
do queues are nonempty. Using concurrency techniques, such as Boolean flags
with atomic compare-and-set operations, the queue of active contexts is kept
duplicate free. Each worker then repeatedly polls an active context C from the
queue and processes all axioms in C.todo. More details can be found in [2].

The following table shows the internal representation of the different types of
derivable axioms in the refined saturation algorithm with contexts. For example,
instead of representing a processed subsumption C v D by the pair 〈C,D〉 in the
global table subs, the indexed conceptD will be stored in the set C.superConcepts
which is local to the context of C. The second column of the table shows how the
axioms are stored in the to-do queues. Instead of actually deriving axioms of the
form init(C), the algorithm uses a method initializeContext(C) to initialize
the context of C and apply rules R0 and R+

>. See Algorithm 5 for details.

axiom to-do representation processed representation
init(C) C.isInitialized == true
C v D SuperConcept(D) ∈ C.todo D ∈ C.superConcepts
E R→ C Predecessor(R,E) ∈ C.todo 〈R,E〉 ∈ C.predecessors

Successor(R,C) ∈ E.todo 〈R,C〉 ∈ E.successors

Note that storing an axiom E R→ C in the table E.successors is only needed
in the presence of role compositions for the execution of rule R◦ in line 27.

5.3 Composition-Decomposition Optimizations

In this section we present an optimization of the inference system that allows us
to omit certain applications of rules R−u and R−∃ without losing completeness.

Algorithm 5: C.process(axiom)

1 initializeContext(C):
2 if C.isInitialized == false then
3 C.isInitialized← true;
4 C.todo.add(SuperConcept(C)); // rule R0

5 if top.negOccurs > 0 then
6 C.todo.add(SuperConcept(top)); // rule R+

>

7 process(SuperConcept(D)):
8 if C.superConcepts.add(D) then
9 if D instanceOf IndexedConjunction then

10 C.todo.add(SuperConcept(D.firstConj));
11 C.todo.add(SuperConcept(D.secondConj)); // rule R−u

12 if D instanceOf IndexedExistential then
13 initializeContext(D.filler);
14 D.filler.todo.add(Predecessor(D.role, C)); // rule R−∃

15 for each D2, E with C.superConcepts(D2) ∧ negConjs(D,D2, E) do
16 C.todo.add(SuperConcept(E)); // rule R+

u

17 for each D1, E with C.superConcepts(D1) ∧ negConjs(D1, D,E) do
18 C.todo.add(SuperConcept(E)); // rule R+

u

19 for each E,F,R, S with C.predecessors(R,E) ∧ negExis(S,D, F) ∧
hier(R,S) do

20 E.todo.add(SuperConcept(F)); // rule R+
∃

21 for each E with conceptIncs(D,E) do
22 C.todo.add(SuperConcept(E)); // rule Rv

23 C.process(Predecessor(R,E)):
24 if C.predecessors.add(〈R,E〉) then
25 for each D,F, S with C.superConcepts(D) ∧ negExis(S,D, F) ∧ hier(R,S)

do
26 E.todo.add(SuperConcept(F)); // rule R+

∃

27 for each D,R2, S1, S2, S with C.successors(R2, D) ∧ roleComps(S1, S2, S)
∧ hier(R,S1) ∧ hier(R2, S2) do

28 D.todo.add(predecessors(S,E)); // rule R◦

/* the following line is only needed in the presence of role
composition axioms */

29 E.todo.add(Successor(R,C));

30 C.process(Successor(R,D)):
31 if C.successors.add(〈R,D〉) then
32 for each E,R1, S1, S2, S with C.predecessors(R1, E) ∧ roleComps(S1, S2, S)

∧ hier(R1, S1) ∧ hier(R,S2) do
33 D.todo.add(Predecessor(S,E)); // rule R◦

Consider again the derivation in Example 1. Rules R+
∃ in step (13) and R+

u in
step (14) are used to explicitly “build up” the complex subsumption A v Au∃S.C
from the already known facts A v A, A v ∃R.(CuD), R v∗O S, and (CuD) v C,
so that rule Rv can be applied in step (18) to this subsumption to derive the
new consequence A v B.

The above example illustrates the general behaviour of the inference system.
Rules R+

u and R+
∃ are applied to compose already derived facts into complex sub-

sumptions C v D with D occurring negatively in O. When the point is reached
that D is the entire left-hand side of some axiom D v E in O, then rule Rv is
applied to derive the subsumption C v E. If E is a complex concept, then rules
R−u and R−∃ are applied to repeatedly decompose the newly found subsumption
C v E into parts, and the whole process repeats. This motivates that it is not
necessary to apply the decomposition rules to decompose the subsumptions that
were composed by the composition rules.

In practice, this amounts to the following two optimizations.

Ou It is not necessary to apply rule R−u to a subsumption C v D1 u D2 that
was derived by rule R+

u .
O∃ It is not necessary to apply rule R−∃ to a subsumption C v ∃S.E that was

derived by rule R+
∃ .

OptimizationOu is rather trivial: if C v D1uD2 was derived by rule R+
u , then

both C v D1 and C v D2 must have been derived earlier, so it is not necessary
to derive them again in rule R−u . Even then, avoiding the actual application of
the rule can still offer some speedup of the algorithm.

Optimization O∃ is more interesting: if C v ∃S.E was derived by rule R+
∃ ,

then some C R→ D with R v∗O S and D v E must have been derived earlier, but
not necessary the conclusion C S→ E of rule R−∃ .

Correctness of optimization O∃ can perhaps be understood better by con-
sidering the standard construction of canonical models, where an axiom C R→ D
indicates that the canonical instance of C is connected by the role R to the
canonical instance of D. Given C v ∃S.E, rule R−∃ is used to satisfy the exis-
tential restriction: deriving C S→ E ensures that the canonical instance of C has
an S-successor of type E. However, this is also guaranteed to hold if we already
have C R→ D with R v∗O S and D v E, in which case the canonical instance of
D will be the required S-successor of type E. Therefore, the conclusion C S→ E
of rule R∃− is redundant.

Example 8. Using optimization O∃, the application of rule R−∃ to axiom (13) in
Example 1 is redundant. This avoids deriving axioms (15), (16), and (19), and,
in particular, even avoids the need to introduce the context of D.

References

1. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Proc. 3rd Int. Joint Conf. on Automated Reasoning (IJ-
CAR’06). LNCS, vol. 4130, pp. 287–291. Springer (2006)

2. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontologies.
In: Proc. 10th Int. Semantic Web Conf. (ISWC’11). LNCS, vol. 7032. Springer (2011)

3. Kazakov, Y., Krötzsch, M., Simančík, F.: Practical reasoning with nominals in the
EL family of description logics. Tech. rep., University of Oxford (2011), available
from http://code.google.com/p/elk-reasoner/wiki/Publications

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Unchain my EL reasoner. In: Proc. 23rd
Int. Workshop on Description Logics (DL’10). CEUR Workshop Proceedings, vol.
745. CEUR-WS.org (2011)

5. Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2
EL reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA’10). pp. 45–49.
Australian Computer Society Inc. (2010)

6. Mendez, J., Ecke, A., Turhan, A.Y.: Implementing completion-based inferences for
the EL-family. In: Proc. 23rd Int. Workshop on Description Logics (DL’10). CEUR
Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

7. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009), avail-
able at http://www.w3.org/TR/owl2-profiles/

