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Next

Quickly about (decidable) reasoning

OWL and RDF
● OWL DL and OWL Full
● global restrictions

Modeling trickiness
● N-ary predicates
● meta-modeling
● OWA, UNA, and integrity constraints
● pain points: time and uncertainty



  

Why reasoning?

Important for:
● quality assurance during ontology design

– detects false entailments and non-entailments
– esp. in case of multiple authors

● semantic integrations
– errors during ontology re-use (remember imports)?
– errors during ontology mapping and alignment

● deployment
– any schema violations in my data?
– is my data under-described?



  

Reasoning

Typical reasoning problems given an ontology O:
● is O consistent?
● does O entail an axiom?
● classification: all class inclusions for named classes
● query answering

– DL query (querying with arbitrary class expressions)

ObjectIntersectionOf(:Person 

                                 ObjectSomeValue(:hasParent :Peter))
– conjunctive queries (tomorrow)

Reduces to consistency 

(as you know from DLs)



  

On decidability

OWL is based on 20+ years of DL research
● largely about finding practical decision procedures
● decidability means restrictions on the language
● do we care? 

Well, sort of yes
● optimizations are typically easier to develop
● semi-decidability insufficient!

– O entails α iff O ∪ {α} is inconsistent

– if consistency is semi-decidable, entailment is not



  

OWL and RDF

What does “OWL is based on RDF” mean?
● each OWL axiom maps to a set of RDF triples
● which require extra vocabulary (owl: namespace)



  

OWL and RDF

What does “OWL is based on RDF” mean?
● each OWL axiom maps to a set of RDF triples
● which require extra vocabulary (owl: namespace)

OWL ontology RDF graph

OWL2RDF
mapping



  

The OWL to RDF Mapping 

Entities are mapped to RDF resources

Data values become literals

Expressions and axioms are mapped to sets of triples



  

The OWL to RDF Mapping 

Entities are mapped to RDF resources

Data values become literals

Expressions and axioms are mapped to sets of triples

Class expression example:
● OWL: ObjectAllValuesFrom( :hasRelative :Griffins )
● RDF:

_:x rdf:type owl:Restriction 

_:x owl:onProperty :hasRelative

_:x owl:allValuesFrom :Griffins



  

What about semantics?

RDF(S) has its own model-theoretic semantics
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Interpretation
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What about semantics?

RDF(S) has its own model-theoretic semantics

:Stewie :hasParent:hasParent :Lois :hasParentrdf:type :Person

Person

ICEXT
IP

ISISISISIS

RDF graph

Interpretation

IP



  

Extra semantic conditions

For RDFS resources: 

(c1, c2)  IEXT(IS(∈ rdfs:subClassOf)), then

 c1, c2 are classes, ICEXT(c1)  ICEXT(c2)⊆



  

Extra semantic conditions

For RDFS resources: 

(c1, c2)  IEXT(IS(∈ rdfs:subClassOf)), then

 c1, c2 are classes, ICEXT(c1)  ICEXT(c2)⊆

Similar for all OWL resources

(z, c)  IEXT(IS(∈ owl:someValuesFrom)) and

(z, p)  IEXT(IS(∈ owl:onProperty)), then

ICEXT(z) = {x |  y : (x,y)  IEXT(p) and y  ICEXT(c)}∃ ∈ ∈

essentially encodes “z ⊑ ∃p.c”



  

Semantic correspondence

Ontology O can be interpreted in two ways:
● directly, via the DL model theory
● indirectly, as an RDF graph via the RDF model theory

Natural question: are the semantics equivalent?



  

Semantic correspondence

Ontology O can be interpreted in two ways:
● directly, via the DL model theory
● indirectly, as an RDF graph via the RDF model theory

Natural question: are the semantics equivalent?
● by means of entailment
● well, mostly yes: the OWL 2 correspondence theorem

let G1 and G2 be RDF graphs s.t.

F(G1) and F(G2) are corresponding ontologies in FS*

F(G1) entails F(G2) under the DL semantics, then

G1 entails G2 under the RDF semantics
* which meet the OWL 2 DL global restrictions



  

OWL 2 DL and OWL 2 Full

So every OWL ontology maps to an RDF graph

What about the other way?
● is every RDF graph an OWL ontology?

w.r.t. some canonical parsing?
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So every OWL ontology maps to an RDF graph

What about the other way?
● is every RDF graph an OWL ontology?

w.r.t. some canonical parsing?

● not in the DL sense
– can make statements about the standard vocabulary

<rdf:type rdf:type rdf:type> is a valid RDF triple!
– too expressive (not in a decidable fragment of FOL)



  

OWL 2 DL and OWL 2 Full

So every OWL ontology maps to an RDF graph

What about the other way?
● is every RDF graph an OWL ontology?

w.r.t. some canonical parsing?

● not in the DL sense
– can make statements about the standard vocabulary

<rdf:type rdf:type rdf:type> is a valid RDF triple!
– too expressive (not in a decidable fragment of FOL)

The decidable fragment is called OWL 2 DL

What's beyond is OWL 2 Full – the dark sidethe dark side,            
an undecidable, very expressive ontology language



  

OWL 2 DL syntactic restrictions

Can't use terms from owl:, rdf: etc. as entities
SubObjectPropertyOf (rdf:type :typeOf)



  

OWL 2 DL syntactic restrictions

Can't use terms from owl:, rdf: etc. as entities
SubObjectPropertyOf (rdf:type :typeOf)

Restrictions on datatypes
● no datatype occurs on LHS of two or more definitions
● datatype definitions are acyclic

(all value spaces are exact, datatypes are unfoldable)

DatatypeDefinition( :TaxNumber

                  DatatypeRestriction( xsd:string xsd:pattern "[0-9]{11}")

DatatypeDefinition( :AlternativeTaxNumber

                  DatatypeRestriction( xsd:string xsd:pattern "[0-9]{3}-[0-9]{7}")

DatatypeDefinition( :ID 

                  DataUnionOf( :TaxNumber :AlternativeTaxNumber ) )



  

Complex object properties

Property is complex if its assertions can be derived 
from other property assertions
● this includes owl:topObjectProperty
● properties on the RHS of a chain

Otherwise it is simple
● Examples

SubObjectPropertyOf(ObjectPropertyChain(

                                 :hasParent :hasBrother) :hasUncle)

SubObjectPropertyOf(:hasUncle :hasRelative)



  

Restrictions on complex properties

Complex properties can't occur in cardinality 
restrictions
● ObjectMinCardinality
● ObjectMaxCardinality
● ObjectExactCardinality
● ObjectHasSelf

What we can't say:
● ObjectMinCardinality(2 :hasRelative owl:Thing)
● TranstitiveObjectProperty(:loves)

ObjectHasSelf(:loves)



  

Restrictions on property hierarchies

Object property hierarchies must be regular
● let  * be the reflexive-transitive closure on properties→
● must exist strict linear order < on properties

s.t. :p1 < :p2 means :p2  * :p→ 1 doesn't hold



  

Restrictions on property hierarchies

Object property hierarchies must be regular
● let  * be the reflexive-transitive closure on properties→
● must exist strict linear order < on properties

s.t. :p1 < :p2 means :p2  * :p→ 1 doesn't hold

● each SubObjectPropertyOf ( ObjectPropertyChain( :p1 ... :pn) :p) 
axiom meets the following
– SubObjectPropertyOf(ObjectPropertyChain(:p :p) :p ), or
– :p is owl:topObjectProperty, or
– :pi < :p for all i = 1 … n, or
– SubObjectPropertyOf(ObjectPropertyChain(:p :p1 ... :pn) :p), or
– SubObjectPropertyOf(ObjectPropertyChain(:p1 ... :pn :p) :p)



  

Regular and irregular hierarchies

SubObjectPropertyOf ( 

        ObjectPropertyChain( :hasFather :hasBrother ) :hasUncle )

SubObjectPropertyOf ( 

        ObjectPropertyChain( :hasUncle :hasWife ) :hasAuntInLaw )

:hasFather < :hasBrother < :hasUncle < :hasWife < :hasAuntInLaw



  

Regular and irregular hierarchies

SubObjectPropertyOf ( ObjectPropertyChain 

         (:hasParent :hasSpouse :hasParent ) :hasGrandparent )

:hasParent < :hasSpouse < :hasGrandparent



  

Regular and irregular hierarchies

SubObjectPropertyOf ( ObjectPropertyChain

         (:hasFather :hasBrother ) :hasUncle )

SubObjectPropertyOf ( ObjectPropertyChain

         ( :hasChild :hasUncle ) :hasBrother )

no linear order between :hasUncle and :hasBrother

SubObjectPropertyOf ( ObjectPropertyChain (:p :s :r) :s)

(:s, :s) can't be in <



  

How're you feeling?

The OWL 2 DL vs. OWL 2 Full is tricky
● the OWL API will check the profile!
● and point to where you violate it

The rest is easier
● modeling issues
● where the Full stuff matters  



  

OWL can't represent everything

It can't represent what FOL can't (naturally) represent
● temporal knowledge
● various sorts of uncertainty
● higher-order knowledge

It has troubles with knowledge beyond the 2-var FOL
● n-ary relationships of sorts



  

N-ary stuff is problematic

OWL (and RDF) are 2-variable logics
● schema restrictions and properties are binary

ObjectExactCardinalityFrom(2 :hasParent :Person)

ObjectAllValuesFrom(:hasChild :Person)

● assertions are binary

How do we say:
● Stewie has a high (but falling) temperature?
● Megan bought a book A from store B?
● Lois visited LAX, JFK, and BOS on a single trip?



  

Workarounds

Via classes that work like reified properties

In OWL 2 property chains help

:has-temperature ∘ :has-trend ⊑ :has-temperature-trend

:Stewie

:has-value :High

:Falling

Temperature
Observation

:has-trend

:has-
temperature



  

Meta-modeling

:Bird

:Eagle

:BaldEagle

subclass of

instance of

:Harry



  

Meta-modeling

:BaldEagle subclass of :Endangered would imply :Harry is a :Species

:Species and :Endangered are meta-classes

:Bird

:Eagle

:BaldEagle

:Species

:Endangered
???

subclass of

instance of

subclass of

:Harry



  

Meta-modeling in DL and Full

OWL 2 Full
● supports meta-modeling!

ClassAssertion(:BaldEagle :EndangeredSpecies)

OWL 2 DL
● limited support of meta-modeling

In contrast to DL, OWL 2 Full:

i.   can use the built-in vocabulary

ii.  don't separate out classes, properties, and individuals

iii. has no decidability restrictions

  



  

Can it work in OWL 2 DL?

OWL Full is trivially undecidable due to iii.

which isn't very useful for meta-modeling

Is OWL 2 DL with i. and ii. decidable?



  

Can it work in OWL 2 DL?

OWL Full is trivially undecidable due to iii.

which isn't very useful for meta-modeling

Is OWL 2 DL with i. and ii. decidable?
● bad news: no
● good news: it's due to i. while we really want ii.

who wants ClassAssertion(owl:allValuesFrom :X)?!

Main question: how to allow ii. and still be first-order?
● semantic extensions (B. Motik, 2007)
● axiomatization (S. Rudolph and B. Glimm, 2010)



  

Semantic extensions to OWL 2 DL

Contextual semantics (or punning with entities)
● each name :n treated as :nclass, :nind, :nobj, :ndata 

depending on syntactic occurrence
● simple: ClassAssertion(:BaldEagle :EndangeredSpecies)
● no interaction between :BaldEagleclass, :BaldEagleind

 → no useful entailments

How about something more in the OWL 2 Full spirit?



  

Semantic extensions to OWL 2 DL

HiLog semantics 
● Δ - the domain
● I – maps all entities to elements of Δ
● CI: Δ  2→ Δ atomic class extension
● RI: Δ  2→ Δ x Δ

Each entity has its identity, a dedicated domain element

which is then extended to interpret the entity

Can be encoded in FOL



  

Contextual vs. HiLog

:BaldEagle

syntax HiLog modelcontextual
model



  

Direct axiomatization in OWL 2 DL

Extend the vocabulary
● classes: :Inst, :Class
● properties: :type, :subClassOf, :Rinst
● individuals: :oc for each normal class C 



  

Direct axiomatization in OWL 2 DL

Extend the vocabulary
● classes: :Inst, :Class
● properties: :type, :subClassOf, :Rinst
● individuals: :oc for each normal class C 

And restrict it
● DisjointClasses(:Inst :Class)

● ClassAssertion(oc :C), ClassAssertion(:i :Inst) for each :i, :C

● EquivalentClasses(:C ObjectSomeValuesFrom(:type :C))

● ObjectPropertyDomain(:R :Inst) for each :R

ObjectPropertyDomain(:R :Inst)

● etc.-etc.



  

Direct encoding in OWL 2 DL

So we
● conceptualize the meta-layer
● make sure it doesn't interfere with ontology layer
● no unwanted entailments due to the extra stuff

(could be hidden behind a reasonable API/GUI)



  
:Eagle

Direct encoding in OWL 2 DL

So we
● conceptualize the meta-layer
● make sure it doesn't interfere with ontology layer
● no unwanted entailments due to the extra stuff

(could be hidden behind a reasonable API/GUI)

:oBaldEagle

:BaldEagle

:oEagle
:subClassOf :Class

:Inst

:type :type



  

Meta-reasoning

Endangered  cannot → be hunted, don't hunt Harry!



  

Meta-reasoning

Endangered  cannot → be hunted, don't hunt Harry!

Contextual semantics: can't do within logic 



  

Meta-reasoning

Endangered  cannot → be hunted, don't hunt Harry!

Contextual semantics: can't do within logic 

HiLog semantics
● need language extensions:

Endangered(P) Λ P(i)  CantHunt(i)→
● entails cantHunt(:Harry)



  

Meta-reasoning

Endangered  cannot → be hunted, don't hunt Harry!

Contextual semantics: can't do logically 

HiLog semantics
● need language extensions:

Endangered(P) Λ P(i)  CantHunt(i)→
● entails cantHunt(:Harry)

Axiomatization

ObjectPropertyAssertion(:subClassOf :oBaldEagle :oEndangered)

SubClassOf(ObjectSomeValue(:type :oEndangered) :CantHunt) 

entails ClassAssertion(:Harry :CantHunt)



  

Meta-modeling in OWL 2 DL

Some limited support is available:
● annotations (:isEndangered could be semantic-free)
● punning (BaldEagle-as-class vs. BaldEagle-as-instance)

but not for properties

What's often done:
● parallel hierarchy of meta-classes and extra-logical linking
● OWL Full



  

Classes as property values

Another example of meta-modeling

:Animal

:Lion

:AfricanLion

subclass of

subclass of



  

Classes as property values

Another example of meta-modeling

:Animal

:Lion

:AfricanLion

subclass of

subclass of

:Book

“Lions: 
Life in the Pride”

“The African Lion”

instance of

instance of
???

???

The books are not about some specific lions but about (African)Lion as a class



  

Workaround: parallel hierarchy

:Animal

:Lion

:AfricanLion

subclass of

subclass of

:Book

“Lions: 
Life in the Pride”

“The African Lion”

instance of

instance of

:Subject

LionSubject

AfricanLion
Subject

subclass of

subclass of

dc:subject

rdfs:seeAlso

Obvious maintenance overhead for keeping the hierarchies in sync

Or (you guessed it!) OWL Full

dc:subject



  

Integrity constraints

Popular idea: OWL as a constraint language for RDF
● take a Linked Data dataset
● describe ICs as OWL axioms
● validate!
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Integrity constraints

Popular idea: OWL as a constraint language for RDF
● take a Linked Data dataset
● describe ICs as OWL axioms
● validate!



  

IC failure example 1

Schema

SubClassOf(:Person 
ObjectSomeValuesFrom(:hasParent :Person))

Data

ClassAssertion(:Stewie :Person)

Valid?



  

IC failure example 1

Schema

SubClassOf(:Person 
ObjectSomeValuesFrom(:hasParent :Person))

Data

ClassAssertion(:Stewie :Person)

Valid?
● yes!
● but Stewie is inferred to have a parent



  

IC failure example 1

Schema

SubClassOf(:Person 
ObjectSomeValuesFrom(:hasParent :Person))

Data

ClassAssertion(:Stewie :Person)

Problem

Open World Assumption

Stewie is not known to have a parent

but he must, otherwise it's inconsistent



  

IC failure example 2

Schema

SubClassOf(:Person 

ObjectMaxCardinality(1 :hasMother :Woman)

Data

ClassAssertion(:Stewie :Person)

ObjectPropertyAssertion(:hasMother :Stewie :Lois)

ObjectPropertyAssertion(:hasMother :Stewie :Peter)

Valid?



  

IC failure example 2

Schema

SubClassOf(:Person 

ObjectMaxCardinality(1 :hasMother :Woman)

Data

ClassAssertion(:Stewie :Person)

ObjectPropertyAssertion(:hasMother :Stewie :Lois)

ObjectPropertyAssertion(:hasMother :Stewie :Peter)

Valid?
● yes!
● but :Lois and :Peter are inferred to be identical



  

IC failure example 2

Schema

SubClassOf(:Person 

ObjectMaxCardinality(1 :hasMother :Woman)

Data

ClassAssertion(:Stewie :Person)

ObjectPropertyAssertion(:hasMother :Stewie :Lois)

ObjectPropertyAssertion(:hasMother :Stewie :Peter)

Problem

Lack of the Unique Name Assumption

Lois and Peter aren't known to be different



  

OWL and ICs: proposals

Rules with DL-queries and NAF
● DL[Person(x)] Λ DL[hasParent(x,y)]  P(x,y)→

● DL[Person(x)] Λ NAF[P(x,y)]  → ⊥

Minimal model interpretation
● constraints checked in all minimal models

ClassAssertion(:Stewie :Person)

ClassAssertion(:Stewie 
ObjectSomeValuesFrom(:hasParent :Person))

still
valid!



  

Integrity constraints as queries

Instead of (non-recursive) rules we can use SPARQL

a query language for RDF

which can express NAF as OPTIONAL/FILTER/!BOUND

(NOT EXISTS in SPARQL 1.1)



  

Integrity constraints as queries

Instead of (non-recursive) rules we can use SPARQL

a query language for RDF

which can express NAF as OPTIONAL/FILTER/!BOUND

(NOT EXISTS in SPARQL 1.1)

Check that every named person has a named parent

ASK WHERE { ?x rdf:type :Person .

OPTIONAL { ?x :hasParent ?y .

                  ?y rdf:type :Person . }

FILTER(!BOUND(?y))}

“yes” means a violation



  

Integrity constraints as queries

Can be implemented by RDF databases 
● keep axioms separately from data
● run queries as data changes

Syntax does not matter
● OWL axioms  queries (Stardog)→
● SPIN, queries as RDF triples (AllegroGraph)

spinrdf.org



  

Time

OWL doesn't support temporal concepts:
● class of people who were employed before the crisis
● everyone will be eventually dead
● A was true, will be true, will be true after B... etc.

Available out-of-the-box? XSD datatypes
● xsd:dateTime, xsd:dateTimeStamp
● Facts are expressible:

DataPropertyAssertion ( :startTime 

              :MeetingA “2002-09-24-06:00”^^xsd:dateTime )



  

Time: “solutions”

OWL Time (formerly DAML Time)
● ontology on top of the existing logical model

SubClassOf(:Process 

           ObjectSomeValuesFrom(:hasDuration time:Interval)

● may help standardize temporal vocabulary
● very limited temporal reasoning



  

Time: “solutions”

OWL Time (formerly DAML Time)
● ontology on top of the existing logical model

SubClassOf(:Process 

           ObjectSomeValuesFrom(:hasDuration time:Interval)

● may help standardize temporal vocabulary
● very limited temporal reasoning

Various extensions based on temporal logics

Rule built-ins

Patient(?p) Λ hasTreatment(?p, ?t) Λ hasDrug(?t, DDI) Λ

temporal:hasValidTime(?t, ?tVT) Λ temporal:before(?tVT, “1999”)

 → TrialEligible(?p)



  

Uncertainty

Similar to Time: first-order logical model provides 
very limited means to capture uncertainty:
● disjunction 
● Open World Assumption

information may be legitimately missing 

● no Unique Name Assumption
captures canonical name uncertainty

New York and The Big Apple

different from name ambiguity!

New York as a city vs. New York as a state 



  

The sad state of affairs

At least 30 yrs of the “uncertainty in AI” research
● combinations of logic and probability

– very-very-VERY hard (computationally and cognitively)
– ClassAssertion(:Stewie :Infant 0.7)

● Bayesian and Markov models
– computationally tractable
– but propositional!
– … or, again, computationally impractical

● statistical black-box models (Breast Cancer Risk Calc)

No reusable modeling of uncertainty in SemWeb 



  

To summarize

OWL 2 isn't a silver bullet

But
● it's helpful in certain, reasonably understood scenarios

– terminology management
– data integration

● it matures fast
– tool support is getting better
– people accumulate experience

So
● you may try it for your next project
● and tell us about your experience! e.g. at OWLED!



  

Questions!
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