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In the next 90 mins

Intro
● why OWL?
● relationship to RDF(S) and logics (DLs)

Application areas and tools

Basics
● entities, expressions, axioms
● dealing with data values
● non-logical part: annotations, imports, and versions 



  

So why Semantic Web needs OWL?

First, we've got RDF
● A simple graph language to express facts (LD)
● A simple data model + low-level data integration tools

 



  

So why Semantic Web needs OWL?

First, we've got RDF
● A simple graph language to express facts (LD)
● A simple data model + low-level data integration tools

No schema? But we have RDFS!
● A lightweight schema, good for simple vocabularies
● Some simple inferencing (transitivity of rdfs:subClassOf) 



  

RDF(S) not quite sufficient

Schemas are often just too weak
● Can say: :hasWife rdfs:domain :Woman (rdfs:range :Woman)

● Cannot say: :Peter :hasWife some :Woman (only :Woman)
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RDF(S) not quite sufficient

Schemas are often just too weak
● Can say: :hasWife rdfs:domain :Woman (rdfs:range :Woman)

● Cannot say: :Peter :hasWife some :Woman (only :Woman)

Reasoning is weak but very hard 
● NP-complete without negation, disjunction, etc.

So we need a language(s) that:
● Provides adequate balance between expressivity and 

computational complexity
● “pay-as-you-go” behavior

That language is called OWL 2 



  

Application areas

Vocabulary-centric applications
● manage complex terminologies

(in a machine-processable way)
● share terminology across applications

Data-centric applications
● lightweight reasoning over tons of data
● data integration



  

Terminology management

Example: medical informatics
● Terminologies are huge 

– ICD: ~100K medical codes
– SNOMED CT: >300K classes 

● Applications are different
– medical diagnosis tools
– electronic medical records
– learning and statistical analysis tools

Scalable schema reasoning is key
● e.g. for quality assurance

All must agree on the 
meaning of the terms



  

Data-centric apps

Mostly about querying loads of data
● w.r.t. some (simple) schema
● on top of RDF (or SQL) database

RDF DB

OWL
Query

OWL
Ontology

Query
Rewriter

SPARQL
Query

SPARQL
Query

...



  

Data integration

Data sources are often heterogeneous
● RDF data
● relational data
● spreadsheets

RDF DB RDB

query

RDF resources relations



  

Data integration

Data sources are often heterogeneous
● RDF data
● relational data
● spreadsheets

RDF DB

OWL
(schema

mappings)

Query
Rewriter

RDB

integration layer

query (in ontology terms)

SPARQL (RDF resources) SQL (relations)



  

One size does not fit all!

OWL 2 DLOWL 2 DL

OWL 2 RLOWL 2 RL OWL 2 QLOWL 2 QL

OWL 2 ELOWL 2 EL



  

Tools

Reasoners
● DL: Pellet, FaCT++, HermiT, RACER
● Lightweight: CEL/jCEL/ELK/Quest

Semantic databases
● Virtuoso, Stardog, OWLIM, Oracle 11
● not always fully implement profiles

● APIs: OWL API, RDF-based APIs (Jena, Sesame, etc.)
● Data integration (PDQ)
● Matchers, editors, debuggers, visualizers...



  

Extended RDF or logic?

OWL as RDF extension
● Every OWL ontology can be expressed as RDF graph

(the other way is trickier)
● a semantically compatible RDF graph
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Extended RDF or logic?

OWL as RDF extension
● Every OWL ontology can be expressed as RDF graph

(the other way is trickier)
● a semantically compatible RDF graph

OWL as a logic with a Web-friendly syntax
● OWL ontology is a DL knowledge base
● with a DL semantics

The views are compatible to a certain extent

We adopt the second view in this lecture



  

Schema vs Data

Think RDB 
● schema defines structure (tables, keys, attributes)
● data specifies facts



  

Schema vs Data

Think RDB 
● schema defines structure (tables, keys, attributes)
● data specifies facts

OWL
● schema (TBox) statements describe the domain
● data (ABox) statements express facts (like RDF)
● both are called axioms
● TBox + ABox is called ontology



  

Modeling example

Family
● parent, children
● cousins, aunts, uncles, nephews, etc.
● pets

Need to model to define terms unambiguously
● to manage data
● to make apps understand the data
● to make sure different apps agree on terms



  

A simple example (TBox, ABox)

TBox: conceptual modeling
● a parent is a mother or a father
● father and mother are disjoint concepts
● every person must have one parent of each kins
● your parents' parents are your grandparents 



  

A simple example (TBox, ABox)

TBox: conceptual modeling
● a parent is a mother or a father
● father and mother are disjoint concepts
● every person must have one parent of each kins
● your parents' parents are your grandparents 

ABox: a specific family
● Peter is a father, Lois is a mother
● Peter and Lois are parents of 

Chris, Meg, and Stewie
● Pewterschmidts are parents of Lois
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OWL ontologies are not databases
● DB are closed-world collections of facts: either 

explicitly true or false (NAF)
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Where the analogies stop...

OWL ontologies are not databases
● DB are closed-world collections of facts: either 

explicitly true or false (NAF)
● ontologies are open-world: things can be explicitly 

true, implicitly true, false, or unknown
– explicitly true: Peter is a father
– implicitly true: Chris, Meg, and Stewie have grandparents
– false: Lois is a father
– unknown: Chris is a parent

● no unique name assumption: Chris, Meg, and Stewie 
could all denote the same person



  

Where the analogies stop...

OWL is not a programming language
● modeling is declarative, describes what's true
● no procedural semantics (triggers, slots, etc.)
● doesn't specify how to infer what's true



  

Where the analogies stop...

OWL is not a programming language
● modeling is declarative, describes what's true
● no procedural semantics (triggers, slots, etc.)
● doesn't specify how to infer what's true

OWL is not a schema language
● can't impose syntactic constraints on documents

(e.g. like in XML Schema)
● example: can't require that parent axioms are 

syntactically present



  

On OWL syntaxes

There are many:
● RDF-native: RDF/XML, Turtle, N3, etc.

all describe triples 
● OWL-native: OWL/XML, Functional, Manchester

all describe axioms

This lecture uses the Functional Syntax
● avoid OWL axiom to RDF triples mapping
● avoid XML verbosity



  

Axioms, Entities, and Expressions 



  

Entities

Main building blocks: classes, properties, individuals 
(all denoted with IRIs)
● Individuals: specific objects

:Peter, :Lois, etc.
● Classes (concepts): sets of individuals 

:Family, :Parent
● Properties (roles): sets of pairs of individuals

:marriedTo, :childOf



  

Entities

Main building blocks: classes, properties, individuals 
(all denoted with IRIs)
● Individuals: specific objects

:Peter, :Lois, etc.
● Classes (concepts): sets of individuals 

:Family, :Parent
● Properties (roles): sets of pairs of individuals

:marriedTo, :childOf

Entities need to be declared in OWL 2 DL

Declaration ( ObjectProperty (:hasParent))



  

Class expressions (CE)

Classes with a IRI are called named or atomic

:Person, :Parent, ...

owl:Thing (⊤) and owl:Nothing (⊥) are predefined

Can be combined into class expressions
● expressions don't have IRIs
● still interpreted as sets
● propositional and non-propositional



  

Property expressions

Named properties 
● identified with IRI
● owl:topObjectProperty and owl:bottomObjectProperty
● object properties and data properties

Property expressions
● no IRIs
● also interpreted as relations



  

CE: boolean constructors

OWL 2 DL is a propositionally complete language

intersection: ObjectIntersectionOf(:Woman :Parent)

union: ObjectUnionOf(:Mother :Father)

complement: ObjectComplementOf(:Parent : Mother)

:WomanI :ParentI



  

CE: restrictions on properties

Existentials:

ObjectSomeValuesFrom(:hasChild :Man)

:ManI

:hasChildI

:hasChildI

:hasChildI



  

CE: restrictions on properties

Existentials:

ObjectSomeValuesFrom(:hasChild :Man)

:ManI

:hasChildI

:hasChildI

:hasChildI



  

CE: restrictions on properties

Universals:

ObjectAllValuesFrom(:hasChild :Woman)

:ManI

:hasChildI

:hasChildI

:WomanI

:hasChildI



  

CE: restrictions on properties

Universals:

ObjectAllValuesFrom(:hasChild :Woman)

:ManI

:hasChildI

:hasChildI

:WomanI

:hasChildI



  

Nominals classes

Sometimes you just want to enumerate things

ObjectOneOf(:Chris :Meg :Stewie)



  

Nominals classes

Sometimes you just want to enumerate things

ObjectOneOf(:Chris :Meg :Stewie)

Does it mean that the class
● contains exactly 3 objects?
● at least 3? at most 3?



  

Self-restrictions

Can define a class of objects related to itself

ObjectHasSelf(:likes)

:likesI

:likesI



  

Cardinality restrictions

ObjectMinCardinalityFrom ( 2 :hasChild owl:Thing)

ObjectMaxCardinalityFrom ( 2 :hasParent :Parent)

 



  

Property restrictions

Inverse properties

ObjectInverseOf(:hasChild)

interpreted as inverse relations

:hasParent

:hasParent--



  

Property restrictions

Property chains

ObjectPropertyChain(:hasParent :hasSibling)

interpreted as compositions of relations

:hasParent :hasSibling

:hasParent o :hasSibling



  

Axioms

TBox axioms
● relationships between classes (e.g. inclusion)
● relationships between properties 

ABox axioms
● class membership
● property membership
● individual equality/inequality



  

Class inclusions

SubClassOf( :Woman :Person )

SubClassOf(

     :Grandfather

     ObjectIntersectionOf( :Man :Parent ))



  

Class equivalence

EquivalentClasses(

:Mother

ObjectIntersectionOf(:Woman :Parent))
● all mothers are women and parents
● vice versa 



  

Class disjointness

DisjointClasses(:Father :Mother)

no instance of A is an instance of B (and vice versa)



  

Property axioms

Property inclusions

simple: SubObjectPropertyOf( :hasWife :hasSpouse )

chains: 

SubObjectPropertyOf(

ObjectPropertyChain(

:hasParent :hasParent ) :hasGrandparent)



  

Property axioms

FunctionalObjectProperty(:hasMother)

InverseFunctionalObjectProperty(:motherOf)

ReflexiveObjectProperty(:likes)

IrreflexiveObjectProperty(:hates)

TransitiveObjectProperty(:partOf)

SymmetrycObjectProperty(:hasSpouse)

AsymmetricObjectProperty(:hasChild)



  

The feature set isn't minimal  

Existentials and universals
● ObjectSomeValuesFrom(:hasChild :Person)
● ObjectAllValuesFrom(:hasChild :Person)

Class equivalence and disjointness (trivial)

Transitivity?



  

The feature set isn't minimal  

Existentials and universals
● ObjectSomeValuesFrom(:hasChild :Person)
● ObjectAllValuesFrom(:hasChild :Person)

Class equivalence and disjointness (trivial)

Transitivity?

Or even ABoxes?

SubClassOf(ObjectOneOf(:Stewie) :Person)

ClassAssertion(:Person :Stewie)



  

Where are we?

Parts we've covered
● entities, class expressions
● object properties

Next
● data types and data properties
● very similar to classes and object properties!

Later: non-logical part
● imports
● versions
● annotations



  

OWL and data values

OWL is a two-sorted language
● The abstract domain

– classes, properties, named objects 

ObjectPropertyAssertion(:fatherOf :Peter :Meg)



  

OWL and data values

OWL is a two-sorted language
● The abstract domain

– classes, properties, named objects 

ObjectPropertyAssertion(:fatherOf :Peter :Meg)

● The concrete (or data) domain
– strings, numbers, dates, etc.

DataPropertyAssertion(:hasAge :Meg “17”^^xsd:integer)



  

Abstract and data domains

Abstract domain: Δ
● non-empty and arbitrary
● finite or infinite

Data domain Δ
● a superset of standard value sets (e.g., integers)
● fixed!

The domains are disjoint



  

The abstract world of logic

For developing theories about the world
● modelers often cautious and pedantical
● Open World Assumption, no Unique Name Assumption
● instances are defined only by axioms



  

The abstract world of logic

For developing theories about the world
● modelers often cautious and pedantical
● Open World Assumption, no Unique Name Assumption
● instances are defined only by axioms

Makes sense because
● usually better to under-model than to over-model

– under-modeling loses entailments
– over-modeling introduces errors

●  gives extra flexibility



  

The concrete, data world

For re-using standard data theories
● have excellent theories about numbers, etc.
● know how to use them, how to compute with them
● don't need custom, ill-made integer ontologies!
● don't need UNA



  

The concrete, data world

For re-using standard data theories
● have excellent theories about numbers, etc.
● know how to use them, how to compute with them
● don't need custom, ill-made integer ontologies!
● don't need UNA

Datatypes fix what we know about, e.g., integers
● “4”^^xsd:integer and “6”^^integer aren't equal
● because all names have fixed meaning

– somewhat like owl:'Thing
– except that the concrete domain is always the same



  

Connecting the worlds

Data properties
● map abstract individuals to concrete data values
● DataSomeValueFrom(:hasWeight 

                                :Peter “100”^^xsd:integer)

Semantics
● interpreted as subsets of ΔxΔd 



  

Data axioms

Axioms (mostly as for object properties)
● equivalence, inclusion, disjointness
● domains and ranges
● assertions
● functionality

But
● no chains (even transitivity)
● no inverses, reflexivity, symmetry
● can't go the other way or break the separation



  

More on fixed semantics

Example:

DataPropertyAssertion(:hasAge

                                   :Meg “17”^^xsd:integer)

DataPropertyAssertion(:hasAge

                                   :Meg “16”^^xsd:integer)

FunctionalDataProperty(:hasAge)

This is inconsistent

Try to formalize this logically!
● Remember UNA
● DifferentIndividuals(17 16)?



  

More on datatypes

Datatype: a kind of data values (integers, strings)
● IRI
● lexical space: “str”, “1”^^xsd:integer, “01”^^xsd:integer

● value space: “str”, 1

● facet spaces: pairs (F, v), mapped to a subset of VS
– F: constraining facet
– v: constraining value
– (xsd:minExclusive , “30”^^xsd:integer)

Datatype map: a particular set of datatypes
● for a language
● for a particular tool (reasoner)



  

The OWL 2 datatype map

XSD datatypes
● decimals, integers (and subtypes)
● xsd:float
● xsd:double
● strings (subtypes of rdf:PlainLiteral)

Nuances:
● decimals and integers are subtypes of owl:real
● which is pairwise disjoint with xsd:float and xsd:double

DataPropertyRange( a:hasAge xsd:integer ) 

DataPropertyAssertion( a:hasAge a:Meg "17"^^xsd:double )



  

Data ranges

Abstract world analogue: class expressions

Can define custom datatypes based on standard ones

DataRange
● Datatype (like xsd:integer)
● DataUnionOf, DataIntersectionOf, DataComplementOf

DataUnionOf( xsd:string xsd:integer )

● DataOneOf

DataOneOf( "1"^^xsd:integer “2.5”^^xsd:double )

● DatatypeRestriction



  

Datatype restrictions

Can constrain a datatype using facets

DatatypeRestriction( DT F1 v1 ... F2 vn )

Example:
DatatypeRestriction(xsd:integer 

xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer )

contains only 5, 6, 7, 8, 9

facets are combined conjunctively



  

Datatype definitions

Can assign names to custom (restricted) datatypes

DatatypeDefinition( DT DR )

Example:

DatatypeDefinition(

      :email

      DatatypeRestriction( xsd:string xsd:pattern "..." ))

Now can use :email in data axioms:

DataPropertyRange(:hasEmail :email)



  

Identifying abstract individuals

What if we need to identify objects by their 
“attributes”?

For object property values
● use inverse functional properties

InverseFunctionalProperty(:hasName)



  

Identifying abstract individuals

What if we need to identify objects by their 
“attributes”?

For object property values
● use inverse functional properties

InverseFunctionalProperty(:hasName)

Problems:
● global inverse functionality often undesirable

(name's only unique within the Griffin family)
● how about data properties?

no inverse functional data properties



  

Keys

HasKey( CE ( OPE1 ... OPEm ) ( DPE1 ... DPEn ) )

This says that:
● if two named individuals of CE coincide on ...
● … values of all object properties …
● … and values of all data properties, then
● the individuals are identical

Example:
● HasKey( :GriffinFamily ( :hasName ) () )
● HasKey( owl:Thing () (:hasTaxId) )



  

Where are we?

Covered the logical part
● abstract part (class expressions, object properties)
● data part (datatypes, data ranges, data properties)
● axioms

Next: non-logical part
● imports
● versions
● annotations



  

Imports

Ontologies are meant to be reusable

OWL supports knowledge reuse via importing

Ontology(<http://fox.com/familyguy>

Import( <http://example.org/families.owl> ))



  

Imports

Ontologies are meant to be reusable

OWL supports knowledge reuse via importing

Ontology(<http://fox.com/familyguy>

Import( <http://example.org/families.owl> ))

Particularly important in HCLS, biology, etc.
● pros: reuse other people efforts
● cons: can be too heavyweight

solution: modularity (on Friday)



  

Versions

Ontologies are identified with a IRI

but also may have a version IRI to distinguish versions

Ontology(<http://fox.com/familyguy>

              <http://fox.com/familyguy/2.0>

Why?

● ontologies are like public APIs (for your or shared data)
● changing your ontology may break others

http://fox.com/familyguy
http://fox.com/familyguy


  

Annotations

Not all content has to be logical

Meta-information
● author info
● axiom labels, comments
● provision

Modeling these on the logical level is unnecessary
● aren't statements about the domain
● statements about statements about the domain!

OWL 2 provides annotation support for these



  

Annotations

Subjects: ontologies or entities

Assertion: <annotationProperty, annotationValue>

Values: IRIs, literals, or individuals

Examples:
● AnnotationAssertion( rdfs:label a:Peter

       "Represents the main character from Family Guy")
● Ontology( <http://fox.com/familyguy>

        Annotation( rdfs:label "A Family Guy ontology" )

Often useful for i18n



  

End of the basics

questions?
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