
Exploiting Expert Knowledge in Factored POMDPs
Felix Müller and Christian Späth and Thomas Geier and Susanne Biundo 1

Abstract. Decision support in real-world applications is often chal-
lenging because one has to deal with large and only partially ob-
servable domains. In case of full observability, large deterministic
domains are successfully tackled by making use of expert knowl-
edge and employing methods like Hierarchical Task Network (HTN)
planning. In this paper, we present an approach that transfers the
advantages of HTN planning to partially observable domains. Ex-
perimental results for two implemented algorithms, UCT and A*
search, show that our approach significantly speeds up the genera-
tion of high-quality policies: the policies generated by our approach
consistently outperform policies generated by Symbolic Perseus and
can be computed in less than 10% of its runtime on average.

1 Introduction
Decision support in real-world applications, such as user assistance
or the automated control of technical systems, requires advanced
planning technology. In these settings, uncertainty often arises be-
cause state information depends on sensory input. Many such do-
mains are large and also pose the problem that a solution needs to be
found quickly. This is especially true in the case of user assistance:
a user cannot be asked to wait for minutes before decision support is
provided [2]. While factored Partially Observable Markov Decision
Processes (POMDPs) can adequately represent such domains [3],
solving them is difficult because scaling beyond medium-sized do-
mains is problematic.

The challenge to get along with large planning domains is ad-
dressed by approaches that use (variants of) hierarchical task network
planning [4]. HTNs provide the means to encode standard solutions
to planning problems and thereby enable the exploitation of expert
knowledge in solution discovery. Applications in many real-world
domains rely on HTN-based systems [10]. However, HTN-based sys-
tems are aimed at fully observable deterministic domains.

In this paper, we present an expressive and scalable approach to
exploit expert knowledge in partially observable domains by adapt-
ing HTN planning to POMDPs. We extend our earlier work [9] by
introducing more expressive action abstraction. We apply two algo-
rithms, UCT [7] and A* search, and provide data for a number of
experiments on planning problems taken from the 2011 International
Probabilistic Planning Competition (IPPC). Our experimental results
show that we are able to generate high-quality policies quite quickly:
on average, the policies generated by our approach consistently out-
performed policies generated by Symbolic Perseus, while generating
them took less than 10% of Symbolic Perseus’ runtime on average.

The problem of planning in large and only partially observable
environments has been addressed by various authors. On one hand,
traditional non-hierarchical methods have been improved. Silver and
Veness [13] present an adaptation of the UCT algorithm to POMDP

1 Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

planning, for example. On the other hand, some authors have begun
leveraging the advantages of HTN planning in partially observable
contexts. E.g., Kuter et al. [8] introduce an HTN-like approach in
partially observable settings not based on POMDP semantics.

The rest of the paper is organized as follows. We review the rel-
evant background for factored POMDPs and HTN planning in Sec-
tion 2. Our HTN-like planning formalism for factored POMDPs and
the application of UCT and A* are introduced in Sections 3 and 4.
We present the experimental results in Section 5 and conclude with
some final remarks in Section 6.

2 Background
Below, we present relevant background on POMDPs and HTNs.

2.1 POMDPs
A POMDP models a partially observable domain as a tuple
(S,A, T,R,O,Z, b0, h), where S, A, and O are sets of system
states, actions, and observations, respectively. The transition func-
tion T (s, a, s′) = P (s′|s, a) determines the probability of s′ being
the successor state after executing action a in state s. Analogously,
Z(s′, a, o)=P (o|a, s′) represents the probability of receiving obser-
vation o when executing action a resulted in state s′. The goals of the
planning agent are given as non-positive rewards by R(s, a) ∈ R−0 .
Where convenient, we will speak in terms of costs instead of negative
rewards. To account for uncertainty in the initial knowledge about the
system state, b0(s) defines a probability distribution over states, the
so-called initial belief state. The time horizon h determines the num-
ber of time steps over which the agent’s performance is measured.

A solution to a POMDP is a policy that maximizes the accumu-
lated expected reward for acting over h time steps, starting in b0.
Finite state controllers are one possible policy representation [5]:

Definition 1 (Finite State Controller). A finite state controller is a
tuple (N,α, δ). N is the finite set of controller nodes. Each node
n ∈ N is associated with an action a ∈ A via the action associa-
tion function α : N → A. Transitions are defined via the transition
function δ :N×N→2O .

Executing a finite state controller works by iteratively executing
the action associated with the current node, receiving an observation,
and choosing the transition whose label includes the received obser-
vation, until the horizon is reached.

The node transitions in an FSC need to be well-defined, i.e., the
outgoing transitions of each node n need to form a partition of O:
for all observations o, (1) o ∈ δ(n, n′) implies o 6∈ δ(n, n′′) for all
nodes n′ 6= n′′, and (2) there is a node n′ such that o ∈ δ(n, n′).2

2 Alternatively, one could define the transition function as δ : N ×O → N ,
which already guarantees well-defined transitions. However, we do not use
this formulation because it does not generalize well to our definitions below.

The expected value of executing a controller C starting at node n
in system state s over a finite time horizon h, denoted Vh(C, n, s),
can be calculated by iteratively computing a t-step-to-go value func-
tion [5]:

V0(C, n, s) =R(s, α(n))

Vt(C, n, s) =R(s, α(n)) + (1)∑
n′,s′

T (s, α(n), s′)
∑

o∈δ(n,n′)

Z(s′, α(n), o)Vt−1(C, n
′, s′)

The value for a belief state b is defined as Vt(C, n, b) =∑
s Vt(C, n, s)b(s). The controller execution is started in the

node n0 that maximizes the expected value for b0, i.e., n0 =
argmaxn{Vh(C, n, b0)}.

2.2 Factorization
In a propositionally factored POMDP, the state space S is the cross
product of k propositional state variables, i.e., S = S1 × · · · × Sk,
so that states s = (s1, . . . , sk) are interpretations of state variables.
Similarly, the observation space O = O1 × · · · ×Ol is factored into
l observation variables. This allows transition probabilities, observa-
tion probabilities, and rewards to be compactly represented by, e.g.,
algebraic decision diagrams (ADDs) [1], which represent real-valued
functions in boolean or finite domain variables as graphs. An advan-
tage of ADDs is that operations such as addition, point-wise multi-
plication, or summing over variables (also called sum out) can be im-
plemented efficiently on ADDs, i.e., without explicitly enumerating
all possible assignments. We use dual action diagrams as introduced
by Hoey et al. [6] to represent the state transition function: for each
action a, there is a dual action diagram T aS′

i
(S′i, S1, . . . , Sk) for each

primed state variable S′i, denoting P (S′i = s′i|S1 = s1, . . . , Sk =
sk) under execution of a. Analogously, dual observation diagrams
ZaOj

(Oj , S
′
1, . . . , S

′
k) represent P (Oj = oj |S′1 = s′1, . . . , S

′
k = s′k)

for action a and observation variableOj . Rewards are represented as
ADDs Ra(S1, . . . , Sk). The initial belief state is represented as an
ADD b0(S1, . . . , Sk).

2.3 Logical FSCs
For POMDPs with factored observations, the representation of the
transition function δ of a controller as defined in Definition 1 is very
large, since all observations must be enumerated. We therefore adopt
a compact representation of finite state controllers that makes use of
the fact that observations are factored [9]:

Definition 2 (Logical Finite State Controller). A logical finite state
controller (LFSC) is defined in the same way as in Definition 1, ex-
cept for the transition function: now, δ : N ×N → F(O1, . . . , Ol)
is a function that maps pairs of controller nodes to propositional for-
mulas over observation variables.

To determine whether a transition from n to n′ is chosen in the ex-
ecution of an LFSC, it now needs to be checked whether the received
observation o fulfills the respective transition formula, i.e., whether
o |= δ(n, n′). Transitions still need to be well-defined. Now, this is
captured by requiring for all nodes n and observations o, (1) when-
ever o |= δ(n, n′) it holds that o 6|= δ(n, n′′) for all nodes n′ 6= n′′,
and (2) there exists a node n′ such that o |= δ(n, n′).

As noted in Equation 1, the value of a flat FSC can be computed as
a sequence of value functions. This transfers to LFSCs by letting the
second summation range over o |= δ(n, n′) instead of o ∈ δ(n, n′)
to account for the fact that transitions are governed by formulas.

2.4 Hierarchical Task Networks

HTN planning [4] is an approach to planning in fully observable de-
terministic domains. World states are described in a similar manner
as shown above, yet actions are deterministic and the (single) initial
world state is completely known. Hence, no observations are needed,
because the evolution of the world can be predicted with certainty.

Apart from the domain dynamics, the HTN planning problem def-
inition includes a hierarchy of actions: in addition to normal actions
there are also abstract actions that cannot be executed directly. In-
stead, one or more implementations, called decomposition methods,
are provided for each abstract action. Methods are specified by do-
main experts and represent known possible solutions to subproblems
given by the abstract actions, therefore encoding a domain expert’s
knowledge about typical problem-solving “recipes”. In its simplest
form, a method is a sequence of primitive or abstract actions. At plan-
ning time, abstract actions are iteratively eliminated from an initial
sequence of abstract actions by replacing them with implementing
methods until a plan is found that contains only primitive actions.

3 Hierarchical Factored POMDPs

We now introduce action abstraction into POMDPs. For this, we first
augment a factored POMDP P = (S,A, T,R,O,Z, b0, h) with a
set of abstract actions Aa, Aa ∩ A = ∅. To complement the ab-
stract actions, we also define a set ofm abstract observation variables
Oa = {Oa1 , . . . , Oam}, Oa ∩ {O1, . . . , Ol} = ∅. Just like normal
observations do for primitive actions, abstract observations represent
information about the outcome of executing an abstract action.

As an example, consider a simplified variant of the robot do-
main introduced by Boutilier et al. [3], where a robot has to deliver
mail and coffee in an office environment. The robot can determin-
istically move clockwise and counterclockwise through the rooms,
e.g., executing move-clk moves the robot to the mail room when it
was in the office before. The problem is partially observable, be-
cause the robot can only observe whether there is a coffee request
when it is in the office, and can only detect whether mail has ar-
rived when it is in the mail room. We introduce three abstract actions,
abstract-wait, handle-coffee, and handle-mail, and two abstract ob-
servation variables, abs-mail-obs and abs-coffee-obs. The intention
is that abstract-wait detects both whether there is a coffee request
and whether mail has arrived, and the handle-x actions handle coffee
and mail requests.

3.1 Methods

We allow abstract actions to occur in LFSCs, i.e., we modify the
action association function α so that it maps to A∪Aa and the tran-
sition function δ so that it maps to formulas overOa when the source
node is labeled with an abstract action. In the course of this paper, we
will call nodes labeled with primitive or abstract actions primitive or
abstract nodes, respectively.

Since abstract actions represent high-level activities that are not
directly executable, a partially abstract LFSC such as the one shown
in Figure 1a is not directly executable either. To get an executable
controller, we must specify how abstract actions are executed. For
this purpose, each abstract action a is associated with one or more
decomposition methods. A decomposition method m = (a,C) con-
sists of the respective abstract action a and an implementation C – a
certain kind of LFSC that has start and end points, and can return an
abstract observation (e.g., whether mail has arrived). In our example,

a possible implementation of abstract-wait is to move back and forth
between office and mail room, looking whether there is a coffee re-
quest or mail has arrived (Figure 1b). More precisely, such a method
FSC is defined as follows:

Definition 3 (Method FSC). A method FSC (MFSC) is a partially
abstract LFSC, augmented with a set of terminal nodes Nt, Nt ∩
N = ∅, and a labeling function L : Nt → 2O

a

that maps terminal
nodes to abstract observations, i.e., interpretations of the abstract
observation variables inOa. Terminal nodes may occur as the target
nodes of δ. Complementary to terminal nodes, there is a single initial
node n0 ∈ N that defines where the execution of the MFSC starts.

abstract-waitstart

handle-mail handle-coffee

¬abs-mail-obs ∧ ¬abs-coffee-obs

abs-mail-obs ∧
¬abs-coffee-obs

abs-coffee-obs
> >

(a) A partially abstract LFSC for the robot domain.

move-clkstart move-c-clk

{abs-mail-obs} {abs-coffee-obs}

¬mail-obsmail-obs

¬coffee-obs

coffee-obs

(b) An MFSC for the abstract-wait action. The start node is identified by
the start marker. Doubly bordered nodes are terminal nodes.

move-clkstart move-c-clk

handle-mail handle-coffee

¬mail-obsmail-obs

¬coffee-obs

coffee-obs>
>

(c) The result of applying the method to the partially abstract LFSC.

Figure 1: Visualization of the method application procedure. A gray
node background identifies abstract nodes. For the sake of readabil-
ity, we omit edges with unsatisfiable transition conditions.

Applying a method transforms a partially abstract LFSC into a
more concrete version by replacing the abstract action with the im-
plementation specified by the method, as visualized in Figure 1c. In-
tuitively, the node sets are merged together, throwing out the decom-
posed node and the terminal nodes of the MFSC. The new transition
function preserves the internal transitions of the original controllers,
and introduces new transitions for wiring them together: transitions
to the decomposed node are redirected to the initial node of the
MFSC. Analogously, transitions to terminal nodes of the MFSC are
rerouted by evaluating terminal node labels with respect to whether

they fulfill outgoing abstract transition formulas of the decomposed
node: in Figure 1a, abstract-wait has an outgoing transition with con-
dition abs-coffee-obs, and the label of the right terminal node in Fig-
ure 1b assigns true to abs-coffee-obs, therefore there is a transition
from move-c-clk to handle-coffee in Figure 1c.

For a formal definition of method application, let pdC(n) denote
the set of predecessors of a node n in an LFSC C with node set
N and transition function δ, i.e., pdC(n) = {n′ ∈ N |δ(n′, n) 6≡
⊥} and scC(n) the set of successors of n, i.e., scC(n) = {n′ ∈
N |δ(n, n′) 6≡ ⊥}. We use superscripts to disambiguate the members
of the different FSCs involved, e.g., we write N1 for the node set of
the LFSC C1.

Definition 4 (Method Application). Let C1 be an LFSC containing
a node n1

a with a = α1(n1
a) being an abstract action, m = (a,C) a

method for a, and C2 an isomorphic copy of C with N1 ∩N2 = ∅.
Applying m to n1

a results in a new LFSC C3 = (N3, α3, δ3) with:

• N3 := (N1∪N2)\({n1
a}∪N2

t); α
3(n) :=

{
α1(n), n ∈ N1

α2(n), n ∈ N2

• δ3(n, n′) :=

δ1(n, n′), n, n′∈N1

δ2(n, n′), n, n′∈N2

δ1(n, n1
a), n∈pdC1(n1

a), n
′=n2

0∨
t δ

2(n, t), t∈N2
t , n∈pdC2(t), n′∈N1, L(t) |=δ1(n1

a, n
′)∨

t δ
2(n, t), t∈N2

t , n∈pdC2(t), n′=n2
0, L(t) |=δ1(n1

a, n
1
a)

⊥, else

Applying methods maintains the well-definedness property:

Theorem 1. Let the transitions in C1 and C2 be well-defined. It
follows that the transitions in C3 are well-defined.

Proof sketch. We need to prove that outgoing transitions are well-
defined for each node n ∈ N3. For all nodes that originated from
N1, outgoing transitions either stay as they are or are only redirected
to n2

0. Thus, they remain well-defined.
For n’s that originate from N2, we first prove that for all o, there

is an n′ such that o |= δ(n, n′). For an observation o, the transition
target either was an inner node of C2, in which case it still is, or a
terminal node t. Because transitions inC1 are well-defined, there is a
node n′ such thatL(t) |=δ1(n1

a, n
′). It follows that o |=δ3(n, n′). To

show that o |=δ(n, n′) implies o 6|=δ(n, n′′), observe that the original
transition conditions in C2 are combined disjunctively, and that o 6|=
δ2(n, t) and o 6|=δ2(n, t′) implies o 6|=δ2(n, t)∨δ2(n, t′).

3.2 Planning Problem
MFSCs can in turn contain abstract nodes, so a set of methods defines
an action hierarchy. With a given initial partially abstract controller,
we can now fully define hierarchical factored POMDPs:

Definition 5 (Hierarchical Factored POMDP). A hierarchical fac-
tored POMDP is a tuple (P,Aa, Oa,M,C init, ninit

0), where

• P is the underlying factored POMDP (S,A, T,R,O,Z, b0, h),
• Aa is the finite set of abstract actions,
• Oa is the finite set of abstract observation variables,
• M is the finite set of methods,
• C init is the initial controller, a partially abstract LFSC, and
• ninit

0 ∈ N init is the initial node of C init.

The fact that an initial node is defined for the initial controller can
be seen as an additional piece of expert knowledge: in our example,
we define that we always start with abstract-wait.

A solution to a hierarchical POMDP is the best primitive controller
that can be generated from a hierarchical POMDP. When we require
that ninit

0 is primitive, a solution can be defined as follows:

Definition 6 (Solution). A solution for a hierarchical factored
POMDP is a controller C∗ such that

• C∗ can be generated from C init via repeated method application,
• C∗ does not contain abstract nodes, and
• there does not exist a controller C+ that satisfies the above crite-

ria and also satisfies Vh(C+, ninit
0 , b0) > Vh(C

∗, ninit
0 , b0).

Since ninit
0 is primitive, all decompositions of C init also contain

ninit
0 . In practice, requiring ninit

0 to be primitive would be somewhat
inconvenient, and is in fact not the case in our example. Therefore,
when ninit

0 is abstract, we take the initial node of the method applied
to ninit

0 as the new initial node of the decomposed controller (cf. the
nodes labeled with abstract-wait and move-clk in Figure 1a and 1c,
respectively). Note that a solution as defined in Definition 6 is in
general not an optimal policy for the underlying POMDP, as it is
constrained to be a policy that can be generated via decomposition.

We now take a look at how difficult planning with Hierarchical
Factored POMDPs is for the special case where initial nodes of MF-
SCs have to be primitive:

Theorem 2. Let H be a Hierarchical Factored POMDP where the
initial nodes of all MFSCs are primitive and let the action hierar-
chy allow for termination, i.e., for each abstract action, there exists
a finite sequence of decompositions so that the result of applying the
decompositions is fully primitive. Then a solution for H can be com-
puted in finite time.

Proof sketch. We prove that the maximum number of decomposi-
tions that have to be applied to C init to receive a primitive controller
is finite. With the fact that the number of methods is finite, it follows
that only finitely many primitive controllers with different value can
be generated from C init.

Take Nd to be the set of abstract nodes with minimum distance
d from the initial node, where distance is measured as the minimum
number of nodes in a path between two nodes. Decomposing a node
from Nd removes one element from Nd and does not introduce new
elements toNd, because the first node of the used MFSC is primitive.
After |Nd| such steps, Nd will be empty. We proceed by decompos-
ing nodes fromNd+1 until it is empty, and so on. WhenNh is empty,
the controller is fully primitive within the horizon h and hence, its
value is fully determined. The remaining abstract nodes can then be
arbitrarily decomposed until the controller is primitive.

Requiring primitive initial nodes in all MFSCs may seem overly
restrictive. To avoid this, the requirement can be weakened to allow
finitely many (instead of only one) decomposition steps to occur be-
fore a decomposition with a primitive initial node is applied. This
does not invalidate the above result and suffices for a broad range of
applications.

4 Algorithms
We apply two algorithms to hierarchical factored POMDPs: A*
search and the UCT algorithm. For both, we conduct a search in the
space of plans, where search nodes correspond to partially abstract

LFSCs. The search is started with C init. Modifications applicable
to a search node correspond to all methods applicable to an abstract
controller node chosen by some scheme, e.g., one that has minimum
distance d to the initial node. Terminal search nodes contain primi-
tive controllers. The specifics for each algorithm are detailed below.

4.1 A* Search
For A*, we need to define a cost function g and a heuristic function
h, each of which is used to evaluate partially abstract LFSCs. We
will first show how to compute the value of a primitive LFSC, before
showing how this is used in the computation of g and h.

Because the state and observation spaces of the POMDP are
propositionally factored, computing the value by explicitly enumer-
ating all states and observations takes a prohibitively large amount of
time. Therefore, we will now show how the calculation of controller
value can be implemented with ADDs. For this, we need to map the
elements of Equation 1 to ADDs and operations on ADDs, avoiding
the explicit enumeration of states or observations.

Since the LFSC nodes determine which action is executed via α,
we introduce a multivalued node variable N and combine action-
dependent transition, observation, and reward ADDs into single
ADDs, yielding TS′

i
(S′i, N, S1, . . . , Sk), ZOj (Oj , N, S

′
1, . . . , S

′
k),

and R(N,S1, . . . , Sk), respectively. Next, we need to address the
node transition formulas δ. Since node transition formulas are propo-
sitional, they can be represented by zero/one-valued ADDs. We also
combine these ADDs with controller node information, but in this
case we need two node variables N and N ′: one for the source node
and one for the target node of the transition. This yields an ADD
δ(N ′, N,O1, . . . , Ol). Finally, we augment the initial belief state
ADD b0 with the initial node of the controller.

With the available operations on ADDs, we can directly imple-
ment Equation 1 similarly to the SPUDD algorithm [6]. Algorithm 1
shows the complete algorithm for computing the value of an LFSC.

Input : ADDs TS′
i
, ZOj , R, δ, b0 for LFSC C; horizon h

Output : Value of C in b0 over h

1 Z := δ
2 for j := 1 . . . l do Z := (Z ∗ ZOj).sumOut(Oj)
3 V0 := R
4 for t := 1 . . . h do
5 Vt := primeVariables(Vt−1)
6 Vt := (Vt ∗ Z).sumOut(N ′)
7 for i := 1 . . . k do Vt := (Vt ∗ TS′

i
).sumOut(S′i)

8 Vt := Vt +R

9 return (Vt ∗ b0).sumOut(N,S1, . . . , Sk)
Algorithm 1: The ADD-based LFSC value calculation algorithm.
Note that transition probabilities between controller nodes are pre-
computed by summing out observation variables in the ADD Z.

We can now define the cost function g for a partially abstract
LFSC C by transforming the partially abstract LFSC into a primi-
tive guaranteed-costs LFSC Cg with the property that the cost in-
curred by executing Cg is guaranteed to be incurred by executing
any decomposition of C. This cost can therefore be interpreted as
the “path costs” of reaching C. To construct Cg , we redirect all tran-
sitions to abstract controller nodes to a newly introduced controller
node with a sling labeled with > and label it with a zero-cost ac-
tion, i.e., we ignore costs incurred by abstract actions. We define
g(C) := Vh(Cg, n

init
0 , b0).

The heuristic function h(C) estimates the cost incurred by the ab-
stract nodes in an admissible manner. For this, we need to estimate
both the probability and the cost of reaching each abstract node na.
Since the cost incurred by executing α(na) crucially depends on how
much time is left, we need to do this estimation separately for each
time step in which the node can be reached.

Let Pt(C, na) denote the probability of reaching na with t steps
to go through any fully primitive path from n0 to na inC. This is not
the true probability of reaching na with t time steps left, because de-
composing other abstract nodes might add new primitive paths from
n0 to na. Still, the true probability cannot be lower than Pt(C, na).

The cost of na is given by the minimum cost of its primitive de-
compositions. If we define Ṽt(C, na) to be a state-independent un-
derestimation of the true value of Vt(C, na, s) then Ṽ (C, na) :=∑h
t=1 Pt(C, na)Ṽt(C, na) is an underestimation of the expected

cost of na. The heuristic value can then be defined as h(C) :=∑
na
Ṽ (C, na). To receive a state-independent underestimation

Ṽt(C, na), we conduct a fixed-depth relaxed search in plan space.
We only consider minimal costs for each executed primitive action
R̃(a) = minsR(s, a) and for traversing LFSCs, we allow the agent
to “choose” the best transitions without respecting observations.

For our implementation, we use the decision diagram library pro-
vided with Symbolic Perseus [11], since it supports multi-valued
variables. We heuristically choose the decomposition depth for the
computation of h to be 2.

4.2 UCT

UCT (Upper Confidence Bound applied to Trees) is an instance of
Monte Carlo Tree Search (MCTS), a family of algorithms that incre-
mentally expand a search tree in memory by interacting with a do-
main simulator [7]. A concrete MCTS algorithm requires the choice
of a tree policy for selecting actions to traverse the search tree and
a rollout policy for generating information about the search space.
UCT uses a special kind of tree policy, which is governed by an adap-
tation of the UCB algorithm for the bandit problem.

Applied to searching in the space of LFSCs, the tree policy
chooses a method m∗ to apply to a partially abstract controller C:

m∗ = argmin
m

(
Q(C,m) + c

√
(lnn(C))/n(C,m)

)
, (2)

where n(C) is the number of times C has been encountered while
traversing the tree, n(C,m) is the number of times method m was
selected when choosing a method to apply to C, and Q(C,m) is the
average of the values sampled from primitive LFSCs generated from
C. We heuristically pick c to be equal to the planning horizon of the
underlying POMDP, i.e., h. As the rollout policy, we choose simple
uniformly random rollouts.

It is noteworthy that applying methods is deterministic and does
not incur a cost unless the resulting LFSC is fully primitive, i.e., there
are only terminal rewards. In this case, the cost function of the prim-
itive LFSC is sampled by simulating its execution within the under-
lying POMDP once. Intuitively, a primitive controller corresponds to
a bandit in the context of the original UCB algorithm.

To implement the required LFSC execution simulation, we di-
rectly employ the functionality provided via the rddlsim tool used
in the 2011 IPPC by letting our LFSC data structure implement the
Policy interface and running it via the provided Simulator.

5 Evaluation

To evaluate our approach, we modeled action hierarchies for the
POMDP variants of the Elevator, Navigation, and Skill Teaching do-
mains from the 2011 IPPC. Hierarchies were specified in a lifted
manner using a hierarchical extension of the RDDL language [12]
and then grounded by our implementation to fit our definitions above.
Lifted decomposition methods may contain variables both for param-
eters of primitive and abstract actions and inside the formulas used
as edge labels. Thus, we could model a single hierarchy per domain
and instance-specific initial controllers. We quickly sketch how we
defined action hierarchies for the domains before we present experi-
mental results.

Elevators. In the Elevators domain, our hierarchy encodes the
choice between several high-level strategies for controlling elevator
movement. One strategy is to let the elevator repeatedly go from the
bottom to the top floor and back, opening the door at floors with wait-
ing persons. A second strategy is to let the elevator hover, waiting for
passengers. and as soon as there is one, get them and deliver them
to the top or to the bottom floor. We restricted our analysis to prob-
lem instances with one elevator (i.e., IPPC instances 1, 4, 7, and 10),
since our approach currently does not support concurrent actions.

Navigation. In the Navigation domain, the task is to reach the goal
cell on the bottom right of a grid. Starting from a random cell in the
top row, the agent needs to traverse rows of cells that are safe on the
left side and get increasingly more dangerous to the right. Since the
agent can only observe when it hits a corner, a simple (and the safest)
policy is to move left until the top left corner is hit, move down until
the bottom left corner is hit, and then move right until the bottom
right corner is hit, which is also the goal. Alternatives include taking
a more direct route towards the goal once the top left corner is hit (at
which point the agent fully knows all aspects of the state), or simply
ignoring the dangers in the center rows completely and taking the
most direct route right away.

Skill Teaching. Skill Teaching is about teaching a set of interde-
pendent skills to a student using hints and multiple choice questions.
For this domain, we chose a very light-weight hierarchy. There is an
abstract action teachAll with a noop implementation and a recursive
implementation parameterized with a skill s, the latter of which es-
sentially consists of teaching the skill s followed by teachAll. Teach-
ing a single skill is an abstract action, parameterized with a skill,
and with two possibilities for teaching that skill as implementations,
namely giving a hint and asking questions until the user answered
correctly once. The purpose of this hierarchy is to measure perfor-
mance for the case where little expert knowledge is available.

5.1 Results

Our experiments address two questions: first, we want to know how
good the polices generated with our approach are. Second, we want
to determine how quickly policies can be generated.

We compare computed policy quality and running times of both
our A* and UCT adaptations against Symbolic Perseus and a blind
policy. For the blind policy, we take the maximum of executing a
noop policy and a random policy that randomly chooses an action in
each time step. Since UCT is an anytime algorithm, we make exper-
iments with running times of 0.1s, 1s, and 10s.

We compare policy quality using the simulation feature of rddlsim,
reporting the average of 1000 runs. All experiments were conducted
on a 24-core Intel Xeon machine running at 2.4GHz. All planners
are written in Java, the virtual machine was given 4GB of memory.
Table 1 shows our results. The time limit was 2 hours.

Table 1: The results of our experiments. In a cell, the upper value is
the runtime in milliseconds and the lower value the corresponding
quality of the computed policy, rounded to 3 decimal places. Time-
out or memout means that the planner ran out of time or memory,
respectively. The low results of Symbolic Perseus for the Navigation
domain seem to be due to a bug in its policy simulation code. There-
fore, we show the values it itself reported in parentheses.

Instance A* UCT 0.1s UCT 1s UCT 10s Sym. Perseus Blind

Elevators

instance 1 timeout 1,187 1,999 10,871 651,885 n/a
n/a -32.580 -32.580 -32.580 -35.418 -44.363

instance 4 timeout 2,278 2,938 12,184 timeout n/a
n/a -74.256 -74.256 -74.256 n/a -88.982

instance 7 timeout 4,116 4,571 14,486 timeout n/a
n/a -112.874 -112.949 -113.247 n/a -133.809

instance 10 timeout 14,783 15,105 23,926 timeout n/a
n/a -154.429 -168.112 -148,802 n/a -177.855

Navigation

instance 1 5,597 1,123 1,929 11,669 104,042 n/a
-10.165 -10.165 -10.165 -10.165 -40 (-12,355) -38.605

instance 2 15,936 1,159 3,607 12,269 302,217 n/a
-10.781 -10.781 -10.781 -10.781 -40 (-11,696) -39.178

instance 3 258,135 2,076 2,445 11,799 5,824,802 n/a
-12.457 -12.457 -12.457 -12.457 -40 (-14,314) -39.833

instance 4 memout 1,356 2,524 11,361 memout n/a
n/a -15.745 -15.745 -15.745 n/a -39.991

instance 5 timeout 4,004 4,763 12,752 memout n/a
n/a -17.924 -17.924 -17.924 n/a -39.839

instance 6 memout 3,854 4,291 13,746 memout n/a
n/a -19.978 -19.978 -19.978 n/a -39.995

instance 7 memout 2,390 3,215 12,057 memout n/a
n/a -22.385 -22.385 -22.385 n/a -39.996

instance 8 memout 2,498 3,817 14,789 memout n/a
n/a -32.042 -32.042 -32.042 n/a -39.87

instance 9 memout 6,002 5,731 13,709 memout n/a
n/a -33.228 -33.228 -33.228 n/a -39.997

instance 10 memout 5,214 5,989 14,968 memout n/a
n/a -33.511 -33.511 -33.511 n/a -40

Skill Teaching

instance 1 timeout 736 1,590 12,559 26,943 n/a
n/a 39.319 49.888 48.699 -16.039 25.937

instance 2 timeout 1,160 1,634 10,616 25,906 n/a
n/a 42.344 48.559 51.774 20.193 26.551

instance 3 timeout 1,388 2,209 11,181 timeout n/a
n/a 9.185 9.185 28.263 n/a -86.6

instance 4 timeout 3,358 4,020 12,855 timeout n/a
n/a -22.914 -48.606 -3.646 n/a -111.645

instance 5 timeout 3,704 5,766 14,019 memout n/a
n/a -118.919 -116.301 -46.2 n/a -247.745

instance 6 timeout 4,047 5,374 14,812 memout n/a
n/a -165.705 -203.779 -106.799 n/a -292.613

instance 7 timeout 9,318 10,482 18,693 memout n/a
n/a -572.92 -394.459 -181.782 n/a -589.307

instance 8 timeout 6,584 7,641 16,516 memout n/a
n/a -487.102 -287.325 -202.218 n/a -537.33

instance 9 timeout 9,142 10,037 19,070 memout n/a
n/a -401.814 -303.297 -270.603 n/a -602.724

instance 10 timeout 15,208 15,556 25,135 memout n/a
n/a -437.534 -360.025 -307.424 n/a -542.868

Since A* is an optimal algorithm, the values computed by A* are
solutions in the sense of Definition 6, while UCT computes approxi-
mations in an anytime fashion. UCT quickly converges towards good
policies and is far superior to our A* adaptation in terms of speed.
UCT always quickly returns a policy that is significantly better than
a blind policy and one generated by Symbolic Perseus, which can
only solve small instances. On average, UCT10s requires only 8.4%
of the runtime needed by Symbolic Perseus, while producing better
policies. The need to exactly compute a controller’s value poses the
biggest obstacle for A*. UCT, on the other hand, limits the effort
spent on determining the value of suboptimal controllers.

Navigation is a domain where it is very easy to come up with good
quality expert knowledge: the described safest policy is always a very
good policy. As a result, our UCT adaptation computes better policies
faster than Symbolic Perseus across all instances. For the elevator do-
main, the policies generated by our approach are only slightly better
than policies found by Symbolic Perseus. We conjecture that better
performance would be possible with more elaborate expert knowl-
edge, which could be gained by, e.g., looking at commercial elevator
systems. In the skill teaching domain, running UCT for a short period
of time already results in policies that outperform both blind policies
and policies generated by Symbolic Perseus, which means that UCT
can generate good policies even with light-weight hierarchies. Run-
ning UCT for a longer period of time drastically improves the found
policies, even beyond the values shown here: in our further experi-
ments, we observed that, e.g., UCT was able to produce a policy with
a value of -89.013 for instance 10 after 103s.

6 Conclusion
We introduced an adaptation of HTN planning to the POMDP set-
ting and two algorithms, UCT and A*, to deal with these hierarchi-
cal POMDPs. Our experiments on problems taken from the 2011
IPPC showed a significant speed up in policy generation: on aver-
age, UCT10s needs only 8.4% of the runtime required by Symbolic
Perseus to produce an even better solution than Symbolic Perseus.

Acknowledgments. This work is done within the Transre-
gional Collaborative Research Centre SFB/TRR 62 “Companion-
Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

REFERENCES
[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,

and F. Somenzi, ‘Algebraic decision diagrams and their applications’,
in ICCAD, pp. 188 –191, (1993).

[2] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihai-
lidis, ‘A decision-theoretic approach to task assistance for persons with
dementia’, in IJCAI, pp. 1293–1299, (2005).

[3] C. Boutilier, T. Dean, and S. Hanks, ‘Decision-theoretic planning:
Structural assumptions and computational leverage’, JAIR, 11, 1–94,
(1999).

[4] K. Erol, J. Hendler, and D. S. Nau, ‘UMCP: A sound and complete
procedure for hierarchical task-network planning’, in AIPS, pp. 249–
254, (1994).

[5] E. A. Hansen, ‘Solving POMDPs by searching in policy space’, in UAI,
pp. 211–219, (1998).

[6] J. Hoey, R. St-aubin, A. Hu, and C. Boutilier, ‘SPUDD: Stochastic plan-
ning using decision diagrams’, in UAI, pp. 279–288, (1999).

[7] Levente Kocsis and Csaba Szepesvári, ‘Bandit based monte-carlo plan-
ning’, in ECML, pp. 282–293, (2006).

[8] U. Kuter, D. Nau, E. Reisner, and R. Goldman, ‘Conditionalization:
Adapting forward-chaining planners to partially observable environ-
ments’, in PlanEx, (2007).

[9] F. Müller and S. Biundo, ‘HTN-style planning in relational POMDPs
using first-order FSCs’, in KI, pp. 216–227, (2011).

[10] D. Nau, T.-Ch. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila, J. W. Mur-
dock, D. Wu, and F. Yaman, ‘Applications of SHOP and SHOP2’, in
IEEE Intelligent Systems, (2004).

[11] P. Poupart, Exploiting structure to efficiently solve large scale partially
observable Markov decision processes, Ph.D. dissertation, University
of Toronto, 2005.

[12] Scott Sanner, ‘Relational dynamic influence di-
agram language (RDDL): Language description’.
http://users.cecs.anu.edu.au/˜ssanner/IPPC 2011/RDDL.pdf, 2010.

[13] D. Silver and J. Veness, ‘Monte-carlo planning in large POMDPs’, in
NIPS, pp. 2164–2172, (2010).

