
Incremental Reasoning in OWL EL
without Bookkeeping

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel.klinov}@uni-ulm.de

Abstract. We describe a method for updating the classification of ontologies ex-
pressed in the EL family of Description Logics after some axioms have been
added or deleted. While incremental classification modulo additions is relatively
straightforward, handling deletions is more problematic since it requires retract-
ing logical consequences that are no longer valid. Known algorithms address this
problem using various forms of bookkeeping to trace the consequences back to
premises. But such additional data can consume memory and place an extra bur-
den on the reasoner during application of inferences. In this paper, we present a
technique, which avoids this extra cost while being very efficient for small in-
cremental changes in ontologies. The technique is freely available as a part of
the open-source EL reasoner ELK and its efficiency is demonstrated on naturally
occurring and synthetic data.

1 Introduction and Motivation

The EL family of Description Logics (DLs) are tractable extensions of the DL EL fea-
turing conjunction and existential restriction. Despite a limited number of constructors,
EL became the language of choice in many applications, especially in Biology and
Medicine, which require management of large terminologies. The DL EL++ [1]—an
extension of EL with other features such as complex role inclusion axioms, nominals,
and datatypes—became the basis of the OWL EL profile [2] of the Web ontology lan-
guage OWL 2 specifically aimed at such applications.

Ontology classification is one of the main reasoning tasks. It requires computing
all entailed (implicit) subsumption relations between atomic concepts. Specialized EL
reasoners, such as CEL [3], ELK [4], jcel [5], and Snorocket [6] are able to compute the
classification for ontologies as large as SNOMED CT [7] with about 300,000 axioms.
Classification plays the key role during ontology development, e.g., for detecting mod-
eling errors that result in mismatches between terms. But even with fast classification
procedures, frequent re-classification of ontologies can introduce significant delays in
the development workflow, especially as ontologies grow over time.

Several incremental reasoning procedures have been proposed to optimize frequent
ontology re-classification after small changes. Most procedures maintain extra informa-
tion to trace conclusions back to the axioms in order to deal with axiom deletions (see
Section 2). Although managing this information typically incurs only a linear overhead,
it can be a high cost for large ontologies such as SNOMED CT. In this paper, we pro-
pose an incremental reasoning method which does not require computing any of such

information. The main idea is to split the derived conclusions into several partitions.
We identify partitions containing ‘affected’ consequences (those that could be inval-
idated by deletion) using a simple forward chaining procedure, and then re-compute
all conclusions in these partitions. This way, we avoid storing any bookkeeping infor-
mation for checking whether the affected consequences still follow from other conclu-
sions. Our hypothesis is that, if the number of partitions is sufficiently large, changes
are relatively small, and most inferences happen within individual partitions, the re-
computation of affected partitions will not be too expensive. We describe a particular
partitioning method for EL that has this property, and verify our hypothesis experimen-
tally. Our experiments demonstrate that for large ontologies, such as SNOMED CT,
incremental classification can be 10–40 times faster than the (already highly optimized)
full classification, thus making re-classification almost instantaneous.

In this paper we focus on the DL EL+, which covers most of the existing OWL EL
ontologies, and for simplicity, consider only additions and deletions of concept axioms,
but not of role axioms. Although the method can be extended to changes in role axioms,
it is unlikely to pay off in practice, because such changes are more likely to cause a
significant impact on the result of the classification.

2 Related Work

Directly relevant to this work are various extensions to DL reasoning algorithms to
support incremental changes.

Incremental classification in ELmodulo additions implemented in the CEL system,
comes closest [8]. The procedure works, essentially, by applying new inferences corre-
sponding to the added axioms and closing the set of old and new conclusions under all
inference rules. Deletion of axioms is not supported.

Known algorithms that support deletions require a form of bookkeeping to trace
conclusions back to the premises. The Pellet reasoner [9] implements a technique called
tableau tracing to keep track of the axioms used in tableau inferences [10]. Tracing
maps tableau elements (nodes, labels, and relations) to the responsible axioms. Upon
deletion of axioms, the corresponding elements get deleted. This method is memory-
intensive for large tableaux and currently supports only ABox changes.

The module-based incremental reasoning method does not perform full tracing of
inferences, but instead maintains a collection of modules for derived conclusions [11].
The modules consist of axioms in the ontology that entail the respective conclusion,
but they are not necessarily minimal. If no axiom in the module was deleted then the
entailment is still valid. Unlike tracing, the method does not require changes to the
reasoning algorithm, but still incurs the cost of computing and storing the modules.

The approach presented in this paper is closely related to the classical DRed (over-
delete, re-derive) strategy for incremental maintenance of recursive views in databases
[12]. In the context of ontologies, this method was applied, e.g., for incremental updates
of assertions materialized using datalog rules [13], and for stream reasoning in RDF
[14]. Just like in DRed, we over-delete conclusions that were derived using deleted
inferences (to be on the safe side), but instead of checking which deleted conclusions are

Table 1. The syntax and semantics of EL+

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI
existential restriction ∃R.C {x | ∃y ∈ CI : 〈x, y〉 ∈ RI}

Axioms:
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI
role composition R1 ◦R2 v S RI1 ◦RI2 ⊆ SI

still derivable using remaining inferences (which would require additional bookkeeping
information), we re-compute some well-defined subset of ‘broken’ conclusions.

3 Preliminaries

3.1 The Description Logic EL+

In this paper, we will focus on the DL EL+ [3], which can be seen as EL++ [1] without
nominals, datatypes, and the bottom concept⊥. It is defined w.r.t. a vocabulary consist-
ing of countably infinite sets of (atomic) roles and atomic concepts. Complex concepts
and axioms are defined recursively in Table 1. We use the lettersR,S for roles, C,D,E
for concepts, andA,B for atomic concepts. An ontology is a finite set of axioms. Given
an ontology O, we write v∗O for the smallest reflexive transitive binary relation over
roles such that R v∗O S holds for all R v S ∈ O.

An interpretation I consists of a nonempty set ∆I called the domain of I and an
interpretation function ·I that assigns to each role R a binary relation RI ⊆ ∆I ×
∆I , and to each atomic concept A a set AI ⊆ ∆I . This assignment is extended to
complex concepts as shown in Table 1. I satisfies an axiom α (written I |= α) if
the corresponding condition in Table 1 holds. I is a model of an ontology O (written
I |= O) if I satisfies all axioms in O. We say that O entails an axiom α (written
O |= α), if every model of O satisfies α. The ontology classification task requires to
compute all entailed subsumptions between atomic concepts occurring in O.

3.2 Inferences and Inference Rules

Let Exp be a fixed countable set of expressions. An inference over Exp is an object inf
which is assigned with a finite set of premises inf.Premises ⊆ Exp and a conclusion
inf.conclusion ∈ Exp. When inf.Premises = ∅, we say that inf is an initialization
inference. An inference rule R over Exp is a countable set of inferences over Exp; it is
an initialization rule if all these inferences are initialization inferences. The cardinality

R0
C v C : C occurs in O

R>
C v > : C and > occur in O

Rv
C v D
C v E : D v E ∈ O

R−u
C v D1 uD2

C v D1 C v D2

R+
u
C v D1 C v D2

C v D1 uD2
: D1 uD2 occurs in O

R∃
E v ∃R.C C v D

E v ∃S.D :
∃S.D occurs in O
R v∗O S

R◦
E v ∃R1.C C v ∃R2.D

E v ∃S.D :
S1 ◦ S2 v S ∈ O
R1 v∗O S1

R2 v∗O S2

Fig. 1. The inference rules for reasoning in EL+

of the rule R (notation ||R||) is the number of inferences inf ∈ R. In this paper, we view
an inference system as one inference rule R representing all of their inferences.

We say that a set of expressions Exp ⊆ Exp is closed under an inference inf if
inf.Premises ⊆ Exp implies inf.conclusion ∈ Exp. Exp is closed under an inference
rule R if Exp is closed under every inference inf ∈ R. The closure under R is the
smallest set of expressions closed under R. Note that the closure is always empty if R
does not contain initialization inferences.

We will often restrict inference rules to subsets of premises. Let Exp ⊆ Exp be
a set of expressions, and R an inference rule. By R(Exp) (R[Exp]) we denote the rule
consisting of all inferences inf ∈ R such that inf.Premises ⊆ Exp (respectively Exp ⊆
inf.Premises). We can combine these operators: for example, R[Exp1](Exp2) consists
of those inferences in R whose premises contain all expressions from Exp1 and are a
subset of Exp2. Note that this is the same as R(Exp2)[Exp1]. For simplicity, we write
R(), R[], R(exp), and R[exp] instead of R(∅), R[∅], R({exp}), and R[{exp}] respectively.
Note that R[] = R and R() consists of all initialization inferences in R.

3.3 The Reasoning Procedure for EL+

The EL+ reasoning procedure works by applying inference rules to derive subsump-
tions between concepts. In this paper, we use the rules from EL++ [1] restricted to
EL+, but present them in a way that does not require the normalization stage [4].

The rules for EL+ are given in Figure 1, where the premises (if any) are given
above the horizontal line, and the conclusions below. Some rules have side conditions
given after the colon that restrict the expressions to which the rules are applicable.
For example, rule R+

u contains one inference inf for each C,D1, D2, such thatD1uD2

occurs inO with inf.Premises = {C v D1, C v D2}, inf.conclusion = C v D1uD2.
Note that the axioms in the ontologyO are only used in side conditions of the rules and
never used as premises of the rules.

The rules in Figure 1 are complete for deriving subsumptions between the concepts
occurring in the ontology. That is, if O |= C v D for C and D occurring in O,
then C v D can be derived using the rules in Figure 1 [1]. Therefore, in order to
classify the ontology, it is sufficient to compute the closure under the rules and take the
derived subsumptions between atomic concepts. The following example illustrates the
application of rules in Figure 1 for deriving the entailed subsumption relations.

Example 1. Consider the following EL+ ontology O:
(ax1): A v ∃R.B (ax2): ∃H.B v C (ax3):R v H
(ax4):B v ∃S.A (ax5): ∃S.C v C
The subsumptions below can be derived via rules in Figure 1:

A v A by R0 since A occurs in O, (1)
B v B by R0 since B occurs in O, (2)
C v C by R0 since C occurs in O, (3)

∃R.B v ∃R.B by R0 since ∃R.B occurs in O, (4)
∃S.A v ∃S.A by R0 since ∃S.A occurs in O, (5)
∃H.B v ∃H.B by R0 since ∃H.B occurs in O, (6)
∃S.C v ∃S.C by R0 since ∃S.C occurs in O, (7)

A v ∃R.B by Rv to (1) using (ax1), (8)
B v ∃S.A by Rv to (2) using (ax4), (9)

∃R.B v ∃H.B by R∃ to (4) and (2) using (ax3), (10)
∃H.B v C by Rv to (6) using (ax2), (11)
∃S.C v C by Rv to (7) using (ax5), (12)

A v ∃H.B by R∃ to (8) and (2) using (ax3), (13)
∃R.B v C by Rv to (10) using (ax2), (14)

A v C by Rv to (13) using (ax2), (15)
∃S.A v ∃S.C by R∃ to (5) and (15), (16)

B v ∃S.C by R∃ to (9) and (15), (17)
∃S.A v C by Rv to (16) using (ax5), (18)

B v C by Rv to (17) using (ax5). (19)

The subsumptions (1)–(19) are closed under these rules so, by completeness, A v A,
B v B, C v C, A v C, B v C are all atomic subsumptions entailed by O.

3.4 Computing the Closure under Inference Rules

Computing the closure under inference rules, such as in Figure 1, can be performed
using a well-known forward chaining procedure presented in Algorithm 1. The algo-
rithm derives consequences by applying inferences in R and collects those conclusions
between which all inferences are applied in a set Closure and the remaining ones in a
queue Todo. The algorithm first initializes Todo with conclusions of the initialization
inferences R() ⊆ R (lines 2–3), and then in a cycle (lines 4–9), repeatedly takes the
next expression exp ∈ Todo, if any, inserts it into Closure if it does not occur there,
and applies all inferences inf ∈ R[exp](Closure) having this expression as one of the
premises and other premises from Closure. The conclusions of such inferences are then
inserted back into Todo.

Algorithm 1: Computing the inference closure
input : R: a set of inferences
output : Closure: the closure under R

1 Closure, Todo← ∅;
2 for inf ∈ R() do /* initialize */
3 Todo.add(inf.conclusion);

4 while Todo 6= ∅ do /* close */
5 exp← Todo.takeNext();
6 if exp /∈ Closure then
7 Closure.add(exp);
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 return Closure;

The following example illustrates the execution of Algorithm 1 for computing the
deductive closure under inferences in Figure 1.

Example 2 (Example 1 continued). The conclusions (1)–(19) in Example 1 are already
listed in the order in which they would be inserted into Todo by Algorithm 1. When a
conclusion is inserted into Closure, all inferences involving this and the previous con-
clusions are applied. For example, when (10) is inserted, the previous conclusions (1)–
(9) are already in Closure, so (14) is derived and added into Todo after (11)–(13).

Note that Algorithm 1 performs as many insertions into Todo as there are inferences
in R(Closure′) for the result Closure′ because every inference inf ∈ R(Closure′) is even-
tually applied, and an inference cannot apply more than once. Therefore, the number of
inferences performed by Algorithm 1 is exactly ||R(Closure′)||. The time complexity of
the algorithm depends highly on the representation of the inference rules. If the initial-
ization inferences inf ∈ R() in line 2 and matching inferences inf ∈ R[exp](Closure) in
line 8 can be effectively enumerated, the algorithm runs in O(||R(Closure′)||).

4 Incremental Deductive Closure Computation

In this section, we discuss algorithms for updating the deductive closure under a set of
inferences after the set of inferences has changed. Just like in Section 3.4, the material
in this section is not specific to any particular inference system, i.e., does not rely on
the EL+ classification procedure described in Section 3.3.

The problem of incremental computation of the deductive closure can be formulated
as follows. Let R, R+ and R− be sets of inferences, and Closure the closure under R.
The objective is to compute the closure under the inferences in (R \ R−) ∪ R+, using
Closure, R, R+, or R−, if necessary.

Algorithm 2: Update modulo additions
input : R, R+: sets of inferences, Closure: the closure under R
output : Closure: the closure under R ∪ R+

1 Todo← ∅;
2 for inf ∈ (R+ \ R)(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R ∪ R+;
5 while Todo 6= ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp /∈ Closure then
8 Closure.add(exp);
9 for inf ∈ R[exp](Closure) do

10 Todo.add(inf.conclusion);

11 return Closure;

4.1 Additions are Easy

If there are no deletions (R− = ∅), the closure under R ∪ R+ can be computed by
Algorithm 2. Starting from Closure, the closure under R, the algorithm first initializes
Todo with conclusions of new inferences inf ∈ (R+ \ R) applicable to Closure, and
then processes this queue with respect to the union of all inferences R ∪ R+ as it is
done in Algorithm 1. Note that Algorithm 1 is just a special case of Algorithm 2 when
Closure = ∅ and the initial set of inferences R is empty.

Let Closure be the set in the input of Algorithm 2, and Closure′ the set obtained in
the output. Intuitively, the algorithm applies all inferences in (R ∪ R+)(Closure′) that
are not in R(Closure) because those should have been already applied. If, in contrast,
we compute the closure from scratch using Algorithm 1, we would need to apply all
inferences in (R ∪ R+)(Closure′). Note that it is essential that Algorithm 2 starts with
the closure under R. If we start with a set that is not closed under R, we may lose some
conclusions because no inference in R(Closure) is applied by the algorithm.

4.2 Deletions are Difficult

Let us now see how to update the closure under deletions, i.e., when R+ = ∅. Con-
sider Algorithm 3, which works analogously to Algorithm 2, but removes conclusions
instead of adding them. In this algorithm, the queue Todo is used to buffer conclusions
that should be removed from Closure. We first initialize Todo with consequences of
the removed inferences inf ∈ R−(Closure) (lines 2–3), and then remove such elements
from Closure together with the conclusions of inferences from Closure in which they
participate (lines 5–10). Note that in this loop, it is sufficient to consider only conse-
quences under the resulting R = R\R− because all consequences under R− are already
added into Todo during the initialization stage (lines 2–3).

Unfortunately, Algorithm 3 might not produce the closure under R \ R−: it may
delete expressions that are still derivable in R \ R−. For example, for the input R =

Algorithm 3: Update modulo deletions (incomplete)
input : R, R−: sets of inferences, Closure: the closure under R
output : Closure: a subset of the closure under (R \ R−)(Closure)

1 Todo← ∅;
2 for inf ∈ R−(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R \ R−;
5 while Todo 6= ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp ∈ Closure then
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 Closure.remove(exp);

11 return Closure;

{/a, a/b, b/a} (x/y is an inference with the premise x and conclusion y), R− =
{b/a}, and Closure = {a, b}, Algorithm 3 removes both a since it is a conclusion
of R−(Closure), and b since it is a conclusion of (R \ R−)[a](Closure), yet both a and
b are still derivable by the remaining inferences R \ R− = {/a, a/b}.

A common solution to this problem is to check which of the removed expressions
are conclusions of the remaining inferences in R(Closure), put them back into Todo, and
re-apply the inferences for them like in the main loop of Algorithm 2 (lines 5–10). This
is known as the DRed (over-delete, re-derive) strategy in logic programming [12]. To
check whether an expression is a conclusion of some inference from Closure, however,
one either needs to record how conclusions where produced, or build indexes that help
to identify matching premises in Closure by conclusions. Storing this information for
everything derived can consume a lot of memory and slow down the inference process.

Note that it makes little sense to ‘simply re-apply’ all inferences in R to the set
Closure produced by Algorithm 3. This differs little from running Algorithm 1 from
scratch, which applies exactly the same inferences anyway. Most of the inferences are
likely to be already applied to Closure, so, even if it is not ‘fully’ closed under R, it may
be ‘almost’ closed. The main idea behind our method presented in the next section, is
to identify a large enough subset of expressions Closure1 ⊆ Closure and a large enough
subset of inferences R1 ⊆ R, such that Closure1 is already closed under R1. We can
then re-compute the closure under R incrementally from Closure1 using Algorithm 2
for R+ = R \ R1. As has been shown, using this approach we can avoid applying the
already applied inferences in R1(Closure1).

Let Closure be the set in the input of Algorithm 3, and Closure′ the set obtained in
the output. Similarly to Algorithm 2, Algorithm 3 applies all inferences in R(Closure)
except for those in (R \ R−)(Closure′). Indeed, during initialization (lines 2–3) the
algorithm applies all inferences in R−(Closure), and in the main loop (lines 5–10) it
applies each inference in (R \ R−)(Closure) that is not in (R \ R−)(Closure′)—exactly
those inferences that have at least one premise in Closure \ Closure′. The conclusion of

every such inference is removed from Closure, i.e., it is an element of Closure\Closure′.
Although, as has been pointed out, the output Closure′ is not necessarily the closure
under R \ R−, it is, nevertheless, a subset of this closure:

Lemma 1. Let Closure be the set in the input of Algorithm 3, and Closure′ the set
obtained in the output. Then Closure′ is a subset of the closure under (R\R−)(Closure′).

Proof. Let Closure′′ be the closure under (R \ R−)(Closure′). We need to prove that
Closure′ ⊆ Closure′′. Clearly, Closure′ ⊆ Closure and Closure′′ ⊆ Closure. Define
Closure1 := (Closure \ Closure′) ∪ Closure′′ ⊆ Closure. We claim that Closure1 is
closed under R. Indeed, take any inf ∈ R(Closure1). Then there are two cases possible:

1. inf ∈ R(Closure)\(R\R−)(Closure′): Then inf was applied in Algorithm 3. There-
fore, inf.conclusion ∈ Closure \ Closure′ ⊆ Closure1.

2. inf ∈ (R \ R−)(Closure′): Since inf ∈ R(Closure1) and Closure′ ∩ Closure1 ⊆
Closure′′, we have inf ∈ (R \ R−)(Closure′′). Since Closure′′ ⊆ Closure1 and
Closure′′ is closed under (R \ R−)(Closure1), then Closure′′ is closed under inf.
Therefore inf.conclusion ∈ Closure′′ ⊆ Closure1.

Now, since Closure1 ⊆ Closure is closed under R and Closure is the smallest set
closed under R, we have Closure1 = Closure. Therefore, ∅ = Closure \ Closure1 =
Closure′ \ Closure′′, and so, Closure′ ⊆ Closure′′, as required.

Note that Lemma 1 claims something stronger than just that Closure′ is a subset of
the closure under R\R−. It is, in fact, a subset of the closure under (R\R−)(Closure′) ⊆
R \ R−. Not every subset of the closure under R \ R− has this property. Intuitively, this
property means that every expression in Closure′ can be derived by inferences in R\R−
using only expressions in Closure′ as intermediate conclusions. This property will be
important for correctness of our method.

4.3 Incremental Updates using Partitions

Our new method for updating the closure under deletions can be described as follows.
We partition the set of expressions in Closure on disjoint subsets and modify Algo-
rithm 3 such that whenever an expression is removed from Closure, its partition is
marked as ‘broken’. We then re-apply inferences that can produce conclusions in broken
partitions to ‘repair’ the closure.

Formally, let Pts be a fixed countable set of partition identifiers (short partitions),
and every expression exp ∈ Exp be assigned with exactly one partition exp.partition ∈
Pts. For an inference rule R and a set of partitions Pts ⊆ Pts, let R〈Pts〉 be the set of
inferences inf ∈ R such that inf.conclusion.partition ∈ Pts and exp.partition /∈ Pts for
every exp ∈ inf.Premises. Intuitively, these are all inferences in R that can derive an
expression whose partition is in Pts from expressions whose partitions are not in Pts.

We modify Algorithm 3 such that whenever an expression exp is removed from
Closure in line 10, we add exp.partition into a special set of partitions Broken. This set
is then used to repair Closure in Algorithm 4. The goal of the algorithm is to collect in
the queue Todo the conclusions of inferences in R(Closure) that are missing in Closure.

Algorithm 4: Repair of over-deletions
input : R: a set of inferences, Closure: a subset of the closure under R (Closure),

Broken: a set of partitions such that if inf ∈ R(Closure) and
inf.conclusion /∈ Closure then inf.conclusion.partition ∈ Broken

output : Todo: the conclusions of inferences in R (Closure) that do not occur in Closure

1 Todo, ToRepair, Repaired← ∅;
2 for inf ∈ R〈Broken〉(Closure) do /* initialize */
3 if inf.conclusion /∈ Closure then
4 Todo.add(inf.conclusion);
5 else
6 ToRepair.add(inf.conclusion);

7 while ToRepair 6= ∅ do /* close */
8 exp← ToRepair.takeNext();
9 if exp /∈ Repaired then

10 for inf ∈ R[exp](Closure) do
11 if inf.conclusion.partition ∈ Broken then
12 if inf.conclusion /∈ Closure then
13 Todo.add(inf.conclusion);
14 else
15 ToRepair.add(inf.conclusion);

16 Repaired.add(exp);

17 return Todo;

This is done by applying all possible inferences inf ∈ R(Closure) that can produce such
conclusions. There can be two types of such inferences: those whose premises do not
belong to any partition in Broken, and those that have at least one such premise. The
inferences of the first type are R〈Broken〉(Closure); they are applied in initialization
(lines 2–6). The inferences of the second type are applied in the main loop of the algo-
rithm (lines 7–16) to the respective expression in Closure whose partition is in Broken.

Whenever an inference inf is applied and inf.conclusion belongs to a partition in
Broken (note that it is always the case for inf ∈ R〈Broken〉(Closure), see also line 11),
we check if inf.conclusion occurs in Closure or not. If it does not occur, then we put the
conclusion into the output Todo (lines 4, 13). Otherwise, we put it into a special queue
ToRepair (lines 6, 15), and repeatedly apply for each exp ∈ ToRepair all inferences
inf ∈ R[exp](Closure) of the second type in the main loop of the algorithm (lines 7–16).
After applying all inferences, we move exp into a special set Repaired (line 16), which
is there to make sure that we never consider exp again (see line 9).

Lemma 2. Let R, Closure, and Broken be the inputs of Algorithm 4, and Todo the
output. Then Todo = {inf.conclusion | inf ∈ R(Closure)} \ Closure.

Proof. Let Closure′ = {inf.conclusion | inf ∈ R(Closure)}. We need to demonstrate
that Todo = Closure′ \ Closure. Since Todo ⊆ Closure′ and Closure ∩ Todo = ∅, it is
sufficient to prove that Closure′ \ Closure ⊆ Todo.

First, note that Closure′ is the closure under R(Closure). Indeed, if Closure′′ is the
closure under R(Closure), then Closure ⊆ Closure′′ by the assumption of Algorithm 4.
Hence, for every inf ∈ R(Closure) ⊆ R(Closure′′), we have inf.conclusion ∈ Closure′′.
Therefore, Closure′ ⊆ Closure′′, and since Closure′ is closed under R(Closure), we
have Closure′ = Closure′′.

Let Closure1 = {exp ∈ Closure | exp.partition /∈ Broken}. Then it is easy to see
from Algorithm 4 that for every inf ∈ R(Closure1∪Repaired), we have inf.conclusion ∈
Closure1 ∪ Repaired ∪ Todo. Indeed, if inf.conclusion.partition /∈ Broken then by
assumption of Algorithm 4, since inf ∈ R(Closure) and inf.conclusion.partition /∈
Broken, we must have inf.conclusion ∈ Closure, and thus inf.conclusion ∈ Closure1.

If inf.conclusion.partition ∈ Broken, there are two cases possible. Either inf ∈
R(Closure1), thus, inf ∈ R〈Broken〉(Closure). In this case inf is applied in Algorithm 4
during initialization (lines 2–6). Or, otherwise, inf has at least one premise in Repaired,
and hence, it is applied in the main loop of Algorithm 4 (lines 7–16). In both cases the
algorithm ensures that inf.conclusion ∈ Repaired ∪ Todo.

Now, since Closure1∪Repaired∪Todo is closed under R(Closure1∪Repaired) and
Closure∩Todo = ∅, it is also closed under R(Closure) (if inf ∈ R(Closure) is applicable
to Closure1∪Repaired∪Todo then inf ∈ R(Closure1∪Repaired)). Since Closure′ is the
closure under R(Closure), we therefore, have Closure′ = Closure1∪Repaired∪Todo ⊆
Closure ∪ Todo. Hence, Closure′ \ Closure ⊆ Todo, as required.

After computing the repair Todo of the set Closure using Algorithm 4, we can com-
pute the rest of the closure as in Algorithm 2 using the partially initialized Todo. The
correctness of the complete incremental procedure follows from Lemma 1, Lemma 2,
and the correctness of our modification of Algorithm 2 when Todo is initialized with
missing conclusions of R(Closure).

Algorithm 4 does not impose any restrictions on the assignment of partitions to
expressions. Its performance in terms of the number of operations, however, can sub-
stantially depend on this assignment. If we assign, for example, the same partition to
all expressions, then in the main loop (lines 7–16) we have to re-apply all inferences in
R(Closure). Thus, it is beneficial to have many different partitions. At another extreme,
if we assign a unique partition to every expression, then R〈Broken〉 would consist of all
inferences producing the deleted expressions, and we face the problem of identifying
such inferences in lines 2–6. Next, we present a specific partition assignment for the
EL+ rules in Figure 1, which circumvents both of these problems.

5 Incremental Reasoning in EL+

In this section, we apply our method for updating the classification of EL+ ontologies
computed using the rules in Figure 1. We only consider changes in concept inclusion
axioms while resorting to full classification for changes in role inclusions and com-
positions. We first describe our strategy of partitioning the derived subsumptions, then
discuss some issues related to optimizations, and, finally, present an empirical evalua-
tion measuring the performance of our incremental procedure on existing ontologies.

5.1 Partitioning of Derived EL+ Subsumptions

The inferences R in Figure 1 operate with concept subsumptions of the form C v D.
We partition them into sets of subsumptions having the same left-hand side. Formally,
the set of partition identifiers Pts is the set of all EL+ concepts, and every subsumption
C v D is assigned to the partition corresponding to its left-hand side C. This assign-
ment provides sufficiently many different partitions, which could be as many as there
are concepts in the input ontology. It also has the advantage that the inferences R〈Pts〉
for any set Pts of partitions can be easily identified. Indeed, note that every conclusion
of a rule in Figure 1, except for the initialization rules R0 and R>, has the same left-
hand side as one of the premises of the rule. Therefore, R〈Pts〉 can only contain those
initialization inferences in R0 and R> for which C ∈ Pts.

5.2 Optimizations

Let us discuss a few optimizations that are specific to the EL+ inference rules.
Rule optimizations: The approach described in Section 4 can be used with any

EL+ classification procedure that implements the inference rules in Figure 1 as they are.
Existing implementations, however, include several optimizations to avoid unnecessary
applications of some rules. One of such optimizations in ELK prevents applying rule
R−u to conclusions of R+

u , and rules R∃ and R◦ if its left premise was obtained by
R∃ [15]. Even though the closure computed by Algorithm 1 does not change under
such optimizations (the algorithm just derives fewer duplicate conclusions), if the same
optimizations are used for deletions in Algorithm 3, some subsumptions that are no
longer derivable may remain in Closure. Intuitively, this happens because the inferences
for deleting conclusions in Algorithm 3 can be applied in a different order than they
were applied in Algorithm 1 for deriving these conclusions. Please refer to the technical
report [16] for an extended example of this situation.

To fix this problem, we do not use rule optimizations for deletions in Algorithm 3.
To repair the closure using Algorithm 4, we also need to avoid optimizations to make
sure that all expressions in broken partitions of Closure are encountered, but it is suffi-
cient to insert only conclusions of optimized inferences into Todo.

Subsumptions that cannot be re-derived: When Algorithm 3 deletes an expres-
sion exp from Closure, we mark exp.partition as broken because this expression could
be re-derived. In some situations this is not possible. One property of the EL+

⊥ rules in
Figure 1, is that they derive only subsumptions of the formC v D orC v ∃R.D where
C and D occur in the ontology. So, if a deleted subsumption is not of this form for the
ontology after deletion, we know that it cannot be re-derived. For example, consider
the following ontology O: (ax1) A v B, (ax2) B v C, from which (ax2) is deleted.
When the previously derived conclusion A v C is deleted, there is no need to mark the
partition of A as broken since C does not occur in the ontology after the deletion.

Structural rules: When we apply our incremental procedure for the EL+
⊥ in Fig-

ure 1, we take R− to be the inferences that are no longer valid after deletion of axioms.
An inference by a rule in Figure 1 is not valid when its side condition is not satisfied.
For example, for the rule Rv, the subsumption D v E may be removed from the on-
tology, or for the rule R+

u , the conjunction D1 uD2 does not occur in the ontology any

more. But the impact of these two inferences is different: the conclusion of Rv may
be not correct if the side condition does not hold, but the conclusion of R+

u is always
correct, but may be just irrelevant. This distinction between the rules can be used in our
next optimization. We call the rules R0, R>, R+

u , R−u , and R∃ structural—these rules
use only the structure of the concepts; they are sound even if their side conditions are
not satisfied. Avoiding application of some structural rules during deletions may result
in fewer broken partitions as shown in the next example.

Consider an ontologyO: (ax1) A v B, (ax2) A v C, (ax3) (B uC)uD v E. The
rules in Figure 1 derive the following conclusions (with the partition A):

A v A by R0 since A occurs in O, (20)
A v B by Rv to (20) using (ax1), (21)
A v C by Rv to (20) using (ax2), (22)

A v B u C by R+
u to (21) and (22) using (ax3). (23)

Now, assume that (ax3) is deleted from O. Normally, we should revert the inference
producing (23) by R+

u using (ax3) in the deletion stage, which would then mark the
partition of A as broken. We can, however, leave this rule applied (because it is still
sound), which not only makes the partition of A unaffected, but also prevents further
deletion of subsumptions A v B and A v C by rule R−u applied to (23).

5.3 Experimental Evaluation

We have implemented the procedure described in Section 4.3 in the OWL EL reasoner
ELK v.0.4.0,1 and performed some experiments to evaluate its performance.

We used three large OWL EL ontologies which are frequently used in evaluations
of EL reasoners [3–6]: the Gene Ontology GO [17] with 84, 955 axioms, an EL+-
restricted version of the GALEN ontology with 36, 547 axioms,2 and the official Jan-
uary 2013 release of SNOMED CT with 296, 529 axioms.3

The recent change history of GO is readily available from the public repository.4 We
took the last (as of April 2013) 342 changes of GO (the first at r560 with 74, 708 axioms
and the last at r7991 with 84, 955 axioms). Each change is represented as sets of added
and deleted axioms (an axiom modification counts as one deletion plus one addition).
Out of the 9 role axioms in GO, none was modified. Unfortunately, similar data was
not available for GALEN or SNOMED CT. We used the approach of Cuenca Grau et.al
[11] to generate 250 versions of each ontology with n random additions and deletions
(n = 1, 10, 100). For each change history, we classified the first version of the ontology
and then classified the remaining versions incrementally. We used a PC with Intel Core
i5-2520M 2.50GHz CPU, running Java 1.6 with 4GB of RAM available to JVM.

1In fact, the incremental procedure in ELK supports many other features outside of EL+,
such as assertions, disjointness axioms, and restricted use of nominals and datatype restrictions,
see http://elk.semanticweb.org for the full release notes.

2http://www.co-ode.org/galen/
3http://www.ihtsdo.org/snomed-ct/
4svn://ext.geneontology.org/trunk/ontology/

Table 2. Number of inferences and running times (in ms.) for test ontologies. The results for
each incremental stage are averaged (for GO the results are only averaged over changes with a
non-empty set of deleted axioms). Time (resp. number of inferences) for initial classification is:
GO (r560): 543 (2,224,812); GALEN: 648 (2,017,601); SNOMED CT: 10,133 (24,257,209)

Ontology Changes Deletion Repair Addition Total
add.+del. # infer. |Broken| time # infer. time # infer. time # infer. time

GO (r560) 84+26 62,384 560 48 17,628 8 58,933 66 138,945 134
GALEN 1+1 3,444 36 18 4,321 4 3,055 13 10,820 39
(EL+ version) 10+10 68,794 473 66 37,583 17 49,662 52 156,039 147

100+100 594,420 4,508 214 314,666 96 426,462 168 1,335,548 515
SNOMED CT 1+1 4,022 64 120 423 1 2,886 68 7,331 232
(Jan 2013) 10+10 42,026 251 420 8,343 4 31,966 349 82,335 789

100+100 564,004 3,577 662 138,633 56 414,255 545 1,116,892 1,376

The results of the initial and incremental classifications are given in Table 2. For
GO we have only included results for changes that involve deletions (otherwise the
averages for deletion and repair would be artificially lower). First note that in each
case, the incremental procedure makes substantially fewer inferences and takes less
time than the initial classification. Unsurprisingly, the difference is most pronounced
for larger ontologies and smaller values of n. Also note that the number of inferences in
each stage and the number of partitions |Broken| affected by deletions, depend almost
linearly on n, but not the running times. This is because applying several inferences
at once is more efficient than separately. Finally, observe that the repair stage takes a
relatively small fraction of the total time.

In order to compare our method to the module-based approach of [11] (the only
implemented incremental reasoning procedure for DLs which works for TBox additions
and deletions that we are aware of) we classified the same history of GO changes using
the implementation included in the standard distribution of Pellet 2.3.2.5 Pellet provides
a consequence-based procedure for EL classification which was used for re-classifying
the affected parts of the ontology. Unfortunately the same experiment was not possible
for the other two ontologies due to time-outs (10 hours). The results for GO are as
follows: initial classification together with module extraction takes 126 seconds, the
average incremental classification 101 seconds, the average numbers of re-computed
modules are 634 (when processing deletions) and 672 (for additions).

Abstracting from the much worse time results,6 which are likely due to a naive
implementation of the module-based incremental procedure and/or the EL algorithm
in Pellet, it is interesting to compare the average number of modules which are re-
computed during the deletion stage with the average number of broken partitions re-
ported by our algorithm. Intuitively, both of these metrics characterise the number of
named concepts for which subsumers need to be re-computed upon an axiom change.
The number of modules (634) is greater than the number of broken partitions (560).
Interestingly, this relationship is of general nature. We prove in the technical report [16]

5http://clarkparsia.com/pellet/
6Note that the times in Table 2 are in milliseconds, not in seconds

that if a subsumption C v D is deleted by our (optimized) incremental algorithm as a
result of deleting some axiom α, then α is contained in the locality-based module for
C and thus the module must be re-computed. Simply put, the generic module-based
approach may not incur less overhead than our method for EL+.

In general, this relationship does not hold in the other direction since modules can
contain more axioms than used in derivations. For example, consider the ontology O
containing A v ∃R.B and B v C. The rules in Figure 1 derive only A v A and
A v ∃R.B in the partition for A, thus removing B v C will not break the partition for
A. On the other hand, the locality-based module for A contains all axioms in O, and
thus, it has to be re-computed after the deletion. The difference between the number of
re-extracted modules and the number of broken partitions is likely to be greater for more
complex ontologies, e.g., GALEN. The structure of the anatomical part of GALEN is
known to induce very large locality-based modules [11].

Finally, we have evaluated the effectiveness of the two optimizations from Sec-
tion 5.2 that can reduce the set of broken partitions when some concepts get deleted
from the ontology. Avoiding applications of structural rules during deletion gives the
most improvement. It reduces the set Broken by roughly 10%, e.g., 498 vs 560 on av-
erage for GO. This leads to reduction of the total number of rule applications also by
10%. The time difference is most visible for smaller change sizes, e.g. ±1 and ±10 for
GALEN and SNOMED CT. Please see the technical report [16] for detailed results.

6 Summary and Future Research

In this paper we have presented a new method for incremental classification of EL+ on-
tologies. It is simple, supports both additions and deletions, and does not require deep
modification of the base reasoning procedure. Our experiments, though being prelim-
inary due to the shortage of revision histories for real-life EL ontologies, demonstrate
that the reasoning results can be obtained almost instantly after small changes. Poten-
tial applications of the method range from background classification of ontologies in
editors to stream reasoning and query answering. The method could also be used to
handle ABox changes (via a TBox encoding) or easily extended to consequence-based
reasoning procedures for more expressive Description Logics [18, 19].

The main idea of our method is that we can benefit from knowing the exact rules of
EL+, which is not possible in the general DRed setting. In particular, we can exploit the
‘granularity’ of the EL+ procedure, namely that subsumers of different concepts can be
often computed independently of each other. A similar property is a corner stone for the
concurrent EL classification algorithm used in ELK where contexts are similar to our
partitions [4]. In the future, we intend to further exploit this property for on-demand
proof generation (for explanation and debugging) and distributed EL reasoning.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In Kaelbling, L., Saffiotti, A., eds.:
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), Professional Book Center
(2005) 364–369

2. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., eds.: OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009) Available
at http://www.w3.org/TR/owl2-profiles/.

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In Parsia, B., Sattler,
U., Toman, D., eds.: Proc. 19th Int. Workshop on Description Logics (DL’06). Volume 189
of CEUR Workshop Proceedings., CEUR-WS.org (2006)

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontologies. In
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E., eds.: Proc. 10th Int. Semantic Web Conf. (ISWC’11). Volume 7032 of LNCS., Springer
(2011) 305–320

5. Mendez, J., Ecke, A., Turhan, A.Y.: Implementing completion-based inferences for the EL-
family. In Rosati, R., Rudolph, S., Zakharyaschev, M., eds.: Proc. 24th Int. Workshop on
Description Logics (DL’11). Volume 745 of CEUR Workshop Proceedings., CEUR-WS.org
(2011) 334–344

6. Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2 EL
reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA’10). (2010) 45–49

7. Schulz, S., Cornet, R., Spackman, K.A.: Consolidating SNOMED CT’s ontological commit-
ment. Applied Ontology 6(1) (2011) 1–11

8. Suntisrivaraporn, B.: Module extraction and incremental classification: A pragmatic ap-
proach for ontologies. In Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M., eds.:
ESWC. Volume 5021 of LNCS., Springer (June 1-5 2008) 230–244

9. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2) (2007) 51–53

10. Halaschek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syntactic up-
dates. In: OTM Conferences (1). (2006) 722–737

11. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incremental
classification of description logics ontologies. J. of Automated Reasoning 44(4) (2010) 337–
369

12. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In Bune-
man, P., Jajodia, S., eds.: Proc. 1993 ACM SIGMOD Int. Conf. on Management of Data,
Washington, D.C., ACM Press (May 26-28 1993) 157–166

13. Volz, R., Staab, S., Motik, B.: Incrementally maintaining materializations of ontologies
stored in logic databases. J. of Data Semantics 2 (2005) 1–34

14. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Incremental reasoning on
streams and rich background knowledge. In: European Semantic Web Conference. (2010)
1–15

15. Kazakov, Y., Krötzsch, M., Simančík, F.: ELK: a reasoner for OWL EL ontologies. Technical
report, University of Oxford (2012) available at http://elk.semanticweb.org.

16. Kazakov, Y., Klinov, P.: Incremental classification for OWL EL without bookkeeping. Tech-
nical report, University of Ulm (2013) available at http://elk.semanticweb.org.

17. Mungall, C.J., Bada, M., Berardini, T.Z., Deegan, J.I., Ireland, A., Harris, M.A., Hill, D.P.,
Lomax, J.: Cross-product extensions of the gene ontology. J. of Biomedical Informatics
44(1) (2011) 80–86

18. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In Boutilier, C.,
ed.: Proc. 21st Int. Joint Conf. on Artificial Intelligence (IJCAI’09), IJCAI (2009) 2040–2045

19. Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn on-
tologies. In Walsh, T., ed.: Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11),
AAAI Press/IJCAI (2011) 1093–1098

