
Copyright (c) Universität Ulm
Pavel Klinov1 Bijan Parsia2

1University of Ulm 2University of Manchester |

August 6, 2013

Practical Tableau-based Reasoning
in Description Logics

2/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reminder: Reasoning Problems in DLs

ALC Tableau with TBoxes

Two Essential Optimizations

3/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reminder: Reasoning Problems in DLs

ALC Tableau with TBoxes

Two Essential Optimizations

4/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Decision Problem and Decision Procedure

Decision problem: a well-formulated yes/no question

Given I : all inputs and J ⊆ I : inputs
for which the answer must be yes

Decision procedure is an algorithm s.t.:
I Sound: if it answers yes, then the

input is in J
I Complete: if the input is in J , then

it answers yes
I Terminating: it returns an answer

after a finite number of steps

We only talk about decision problems in this course

4/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Decision Problem and Decision Procedure

Decision problem: a well-formulated yes/no question

Given I : all inputs and J ⊆ I : inputs
for which the answer must be yes

Decision procedure is an algorithm s.t.:
I Sound: if it answers yes, then the

input is in J
I Complete: if the input is in J , then

it answers yes
I Terminating: it returns an answer

after a finite number of steps

We only talk about decision problems in this course

4/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Decision Problem and Decision Procedure

Decision problem: a well-formulated yes/no question

Given I : all inputs and J ⊆ I : inputs
for which the answer must be yes

Decision procedure is an algorithm s.t.:
I Sound: if it answers yes, then the

input is in J
I Complete: if the input is in J , then

it answers yes
I Terminating: it returns an answer

after a finite number of steps

We only talk about decision problems in this course

4/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Decision Problem and Decision Procedure

Decision problem: a well-formulated yes/no question

Given I : all inputs and J ⊆ I : inputs
for which the answer must be yes

Decision procedure is an algorithm s.t.:
I Sound: if it answers yes, then the

input is in J
I Complete: if the input is in J , then

it answers yes
I Terminating: it returns an answer

after a finite number of steps

We only talk about decision problems in this course

5/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?

I is O coherent? O |= A v ⊥?
(for some concept name A)

I classification O |= A v B?
(for all concept names A,B)

I realization O |= b : B?
(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

5/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)

I classification O |= A v B?
(for all concept names A,B)

I realization O |= b : B?
(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

5/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)
I classification O |= A v B?

(for all concept names A,B)

I realization O |= b : B?
(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

5/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)
I classification O |= A v B?

(for all concept names A,B)
I realization O |= b : B?

(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

6/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Consistency Suffices

Theorem: Let O be an ontology and a a fresh individual name:

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent
2. O is coherent iff O ∪ {a : A} is consistent

(for each concept name A)
3. O |= A v B iff O ∪ {a : (A u ¬B)} is not consistent
4. O |= b : B iff O ∪ {b : ¬B} is not consistent

Answer: a decision procedure to solve consistency decides all
standard DL reasoning problems

7/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Consistency for ALC

The way we will do it:
I Concept satisfiability for ALC (no ABoxes or TBoxes)
I ABox consistency (very slight generalization)
I Ontology consistency (TBoxes enter the picture)

Optimizations along the way, two essential at the end

We will work through examples

7/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Consistency for ALC

The way we will do it:
I Concept satisfiability for ALC (no ABoxes or TBoxes)
I ABox consistency (very slight generalization)
I Ontology consistency (TBoxes enter the picture)

Optimizations along the way, two essential at the end

We will work through examples

7/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Consistency for ALC

The way we will do it:
I Concept satisfiability for ALC (no ABoxes or TBoxes)
I ABox consistency (very slight generalization)
I Ontology consistency (TBoxes enter the picture)

Optimizations along the way, two essential at the end

We will work through examples

8/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau for Concept Satisfiability in ALC

Given an ALC concept C , devise an algoritm that outputs:
I yes, if there is a model of a : C
I no, no such model exists

The idea is simple: it tries to construct a model CI :
I if successful, C is satisfiable
I otherwise, no model provably exists

This approach is different from syntactic proof calculi, e.g.,
natural deduction (Lecture 4)

8/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau for Concept Satisfiability in ALC

Given an ALC concept C , devise an algoritm that outputs:
I yes, if there is a model of a : C
I no, no such model exists

The idea is simple: it tries to construct a model CI :
I if successful, C is satisfiable
I otherwise, no model provably exists

This approach is different from syntactic proof calculi, e.g.,
natural deduction (Lecture 4)

8/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau for Concept Satisfiability in ALC

Given an ALC concept C , devise an algoritm that outputs:
I yes, if there is a model of a : C
I no, no such model exists

The idea is simple: it tries to construct a model CI :
I if successful, C is satisfiable
I otherwise, no model provably exists

This approach is different from syntactic proof calculi, e.g.,
natural deduction (Lecture 4)

9/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ALC Concept Interpretations

A reminder from yesterday: what ALC interpretations look like

CI can be represented as a labeled graph GCI = 〈V , E〉, where:
I V set of domain elements where v0 ∈ CI

I C ∈ L(v) if v ∈ CI

I (x, y) is a R-labeled edge if (x, y) ∈ RI

10/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Negation Normal Form

All concepts are assumed to be in Negation Normal Form
I negation can only appear before concept names
I need this to simplify explanation

I transform all concepts in O into NNF(C) using
¬(C uD) ≡ ¬C t ¬D ¬(C tD) ≡ ¬C u ¬D
¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

Lemma: Let C be an ALC concept. Then C ≡ NNF(C).

All concepts are assumed to be in NNF
¬̇C denotes NNF(¬C)

10/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Negation Normal Form

All concepts are assumed to be in Negation Normal Form
I negation can only appear before concept names
I need this to simplify explanation
I transform all concepts in O into NNF(C) using
¬(C uD) ≡ ¬C t ¬D ¬(C tD) ≡ ¬C u ¬D
¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

Lemma: Let C be an ALC concept. Then C ≡ NNF(C).

All concepts are assumed to be in NNF
¬̇C denotes NNF(¬C)

10/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Negation Normal Form

All concepts are assumed to be in Negation Normal Form
I negation can only appear before concept names
I need this to simplify explanation
I transform all concepts in O into NNF(C) using
¬(C uD) ≡ ¬C t ¬D ¬(C tD) ≡ ¬C u ¬D
¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

Lemma: Let C be an ALC concept. Then C ≡ NNF(C).

All concepts are assumed to be in NNF
¬̇C denotes NNF(¬C)

10/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Negation Normal Form

All concepts are assumed to be in Negation Normal Form
I negation can only appear before concept names
I need this to simplify explanation
I transform all concepts in O into NNF(C) using
¬(C uD) ≡ ¬C t ¬D ¬(C tD) ≡ ¬C u ¬D
¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

Lemma: Let C be an ALC concept. Then C ≡ NNF(C).

All concepts are assumed to be in NNF
¬̇C denotes NNF(¬C)

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}

I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}
I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}
I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}
I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}
I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}
I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

11/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for Concept Satisfiability in ALC

Tableau algorithm:
I works on sets of labeled graphs S = {G1,G2, . . . ,Gk}
I For an ALC concept C it starts with a singleton set
S = {GC}, where GC = 〈{a}, ∅〉, L(a) = {C}

I applies tableau rules that infer constraints on models of CI

I a rule is applied to some G ∈ S; its application extends G or
replaces it with two new graphs

I answers yes, if a rule application leads to a graph G that is
I complete, i.e., to which no more rules apply and
I clash-free, i.e., {A,¬A} 6⊆ L(a), ⊥ 6∈ L(a) for all a,A

I answers no, if all graphs contain clashes (complete or not)

Graphs computed by the procedure are called completion graphs

12/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

u-rule: if C1 u C2 ∈ L(a) for some a and {C1, C2} 6⊆ L(a)
then add {C1, C2} to L(a)

a a
u-rule

C1 u C2 C1 u C2, C1, C2

12/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

u-rule: if C1 u C2 ∈ L(a) for some a and {C1, C2} 6⊆ L(a)
then add {C1, C2} to L(a)

a a
u-rule

C1 u C2 C1 u C2, C1, C2

13/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

t-rule: if C1 t C2 ∈ L(a) for some a and {C1, C2} ∩ L(a) = ∅
then replace G with G1 and G2 s.t.

C1 ∈ L(a) in G1 and C2 ∈ L2(a) in G2

a

a

a
t-rule

G2

G1

C1 t C2

C1 t C2, C1

C1 t C2, C2

This is a don’t know (disjunctive) non-determinism

13/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

t-rule: if C1 t C2 ∈ L(a) for some a and {C1, C2} ∩ L(a) = ∅
then replace G with G1 and G2 s.t.

C1 ∈ L(a) in G1 and C2 ∈ L2(a) in G2

a

a

a
t-rule

G2

G1

C1 t C2

C1 t C2, C1

C1 t C2, C2

This is a don’t know (disjunctive) non-determinism

13/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

t-rule: if C1 t C2 ∈ L(a) for some a and {C1, C2} ∩ L(a) = ∅
then replace G with G1 and G2 s.t.

C1 ∈ L(a) in G1 and C2 ∈ L2(a) in G2

a

a

a
t-rule

G2

G1

C1 t C2

C1 t C2, C1

C1 t C2, C2

This is a don’t know (disjunctive) non-determinism

14/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

∃-rule: if ∃R.C ∈ L(a) for some a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b,
add an R-edge from a to b and add C to L(b)

a

b

a

R

∃-rule
∃R.C ∃R.C

C

This is the only rule that generates new nodes

14/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

∃-rule: if ∃R.C ∈ L(a) for some a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b,
add an R-edge from a to b and add C to L(b)

a

b

a

R

∃-rule
∃R.C ∃R.C

C

This is the only rule that generates new nodes

14/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

∃-rule: if ∃R.C ∈ L(a) for some a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b,
add an R-edge from a to b and add C to L(b)

a

b

a

R

∃-rule
∃R.C ∃R.C

C

This is the only rule that generates new nodes

15/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

∀-rule: if ∀R.C ∈ L(a) for some a
and there is an R-edge from a to b and C /∈ L(b)

then add C to L(b)

b

a

R

b

a

R
∀-rule

∀R.C ∀R.C

C

15/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Expansion Rules for ALC

∀-rule: if ∀R.C ∈ L(a) for some a
and there is an R-edge from a to b and C /∈ L(b)

then add C to L(b)

b

a

R

b

a

R
∀-rule

∀R.C ∀R.C

C

16/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm is a Decision Procedure

Sound
I Every completion graph can be transformed into a model

Complete
I If there is a model I, then there is a run of the algorithm

which constructs a clash-free G
I If the algorithm says no, then there is no model

Terminating
I Construction is monotonic, things are only added to graphs
I Number of nodes and size of labels are bounded

16/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm is a Decision Procedure

Sound
I Every completion graph can be transformed into a model

Complete
I If there is a model I, then there is a run of the algorithm

which constructs a clash-free G
I If the algorithm says no, then there is no model

Terminating
I Construction is monotonic, things are only added to graphs
I Number of nodes and size of labels are bounded

16/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm is a Decision Procedure

Sound
I Every completion graph can be transformed into a model

Complete
I If there is a model I, then there is a run of the algorithm

which constructs a clash-free G
I If the algorithm says no, then there is no model

Terminating
I Construction is monotonic, things are only added to graphs
I Number of nodes and size of labels are bounded

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A
∃R.B,∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A
∃R.B,∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A
∃R.B,∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A
∃R.B,∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A

∃R.B,∃S.A
∃R.B,∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A

∃R.B,∃S.A

∃R.B,∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A

D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A D

AA,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A D

AA,¬A

B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A D

A

A,¬A

B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A D

A

A,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A D

A

A,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

17/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 1

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.¬A︸ ︷︷ ︸
X3

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B,∃S.A

∃R.B, ∃S.A,
∀S.¬A D

A

A,¬A B

G0 contains a clash; no other graphs in S ⇒ X is unsatisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A
∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A
∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A
∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A
∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A

∃R.B, ∃S.A
∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A

∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D)

D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D)

B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

A

A, (¬A t D)

B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

A

A, (¬A t D) B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D)

B

G1

G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D)

B

G1

G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D)

B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D)

B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

18/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm: Example 2

X ≡ ∃S.D︸ ︷︷ ︸
X1

u ∃R.(∃R.B u ∃S.A)︸ ︷︷ ︸
X2

u ∀R.∀S.(¬A t D)︸ ︷︷ ︸
X3

G0

a0

a1

R

a2

S

a4

S

a3

R

X1 u X2 u X3

X1 u X2 u X3,X1,X2,X3

∃R.B u ∃S.A∃R.B, ∃S.A

∃R.B,∃S.A,
∀S.(¬A t D) D

AA, (¬A t D)

B

G1G1

A,¬A

G0

A, (¬A t D)

G2

A,D

G2

G2 is a complete clash-free completion graph ⇒ X is satisfiable

19/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Multiple expansion rules could be applicable
I Irrelevant for correctness
I Could be have a large impact on performance

Goal: choose the order which will quickly lead to either:
I a complete completion graph
I clashes in all graphs

General idea: apply cheap rules first and costly later
(maybe we will terminate before they’re applied)

Question: which are cheap and which are costly?

19/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Multiple expansion rules could be applicable
I Irrelevant for correctness
I Could be have a large impact on performance

Goal: choose the order which will quickly lead to either:
I a complete completion graph
I clashes in all graphs

General idea: apply cheap rules first and costly later
(maybe we will terminate before they’re applied)

Question: which are cheap and which are costly?

19/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Multiple expansion rules could be applicable
I Irrelevant for correctness
I Could be have a large impact on performance

Goal: choose the order which will quickly lead to either:
I a complete completion graph
I clashes in all graphs

General idea: apply cheap rules first and costly later
(maybe we will terminate before they’re applied)

Question: which are cheap and which are costly?

19/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Multiple expansion rules could be applicable
I Irrelevant for correctness
I Could be have a large impact on performance

Goal: choose the order which will quickly lead to either:
I a complete completion graph
I clashes in all graphs

General idea: apply cheap rules first and costly later
(maybe we will terminate before they’re applied)

Question: which are cheap and which are costly?

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B

Bad rule ordering:
first ∃-rule, then u-rule

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B

Bad rule ordering:
first ∃-rule, then u-rule

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B,A,¬A,∃R.B

B

Bad rule ordering:
first ∃-rule, then u-rule

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B

Good rule ordering:
first u-rule, then clash!

20/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ALC: Rule Ordering

Cheap rules: only modify node labels in the current graph
u-rule, ∀-rule

Expensive rules:
I t-rule: makes a non-deterministic choice (creates new graphs)
I ∃-rule: expands the current graph

a

b
R

A u B,¬A,∃R.B

B,A,¬A,∃R.B

B

Good rule ordering:
first u-rule, then clash!

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)∃R.B,C t ¬D∃R.B,C (or ¬D)∃R.B,C∃R.B,¬D

B

G1G2

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)

∃R.B,C t ¬D∃R.B,C (or ¬D)∃R.B,C∃R.B,¬D

B

G1G2

Good order: t after u,∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)

∃R.B,C t ¬D

∃R.B,C (or ¬D)∃R.B,C∃R.B,¬D

B

G1G2

Good order: t after u,∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)

∃R.B,C t ¬D

∃R.B,C (or ¬D)∃R.B,C∃R.B,¬D

B

G1G2

Good order: t after u,∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)∃R.B,C t ¬D

∃R.B,C (or ¬D)

∃R.B,C∃R.B,¬D

B

G1G2

Good order: t after u,∃
u, ∃, t
3 rule applications

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)

∃R.B,C t ¬D∃R.B,C (or ¬D)∃R.B,C∃R.B,¬D

B

G1G2

Bad order: t before ∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)

∃R.B,C t ¬D

∃R.B,C (or ¬D)∃R.B,C∃R.B,¬D

B

G1G2

Bad order: t before ∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)∃R.B,C t ¬D∃R.B,C (or ¬D)

∃R.B,C

∃R.B,¬D

B

G1

G2

Bad order: t before ∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)∃R.B,C t ¬D∃R.B,C (or ¬D)

∃R.B,C

∃R.B,¬D

B

G1

G2

Bad order: t before ∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)∃R.B,C t ¬D∃R.B,C (or ¬D)∃R.B,C

∃R.B,¬D

B

G1

G2

Bad order: t before ∃

21/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Disjunctive Non-Determinism

The t-rule is the only one to create two graphs out of one
Observations:
I copying isn’t necessary

sufficient to consider only a single graph at a time
(the reason the algorithm is in PSpace)

I makes sense to apply this rule last

Example: ∃R.B u (C t ¬D)

a

b
R

∃R.B u (C t ¬D)∃R.B,C t ¬D∃R.B,C (or ¬D)∃R.B,C

∃R.B,¬D

B

G1

G2

Bad order: t before ∃
u, t, ∃ (G1), ∃ (G2)
4 rule applications

No reason to do the same
work twice

22/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ABox Consistency

ABox: A is a finite set of assertions a : C or (a, b) : R

Consistency: is there interpretation I which satisfies all assertions?

A slight generalization of the concept satisfiability algorithm:
I Start with GA such that:

I each individual in A corresponds to its own node in GA
I a : C ∈ A, then C ∈ L(a)
I (a, b) : R ∈ A, then an R-edge from a to b is in GA

I Apply the tableau expansion rule exhaustively
I clashes in all graphs ⇒ inconsistent
I otherwise ⇒ consistent

22/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Tableau Algorithm for ABox Consistency

ABox: A is a finite set of assertions a : C or (a, b) : R

Consistency: is there interpretation I which satisfies all assertions?

A slight generalization of the concept satisfiability algorithm:
I Start with GA such that:

I each individual in A corresponds to its own node in GA
I a : C ∈ A, then C ∈ L(a)
I (a, b) : R ∈ A, then an R-edge from a to b is in GA

I Apply the tableau expansion rule exhaustively
I clashes in all graphs ⇒ inconsistent
I otherwise ⇒ consistent

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.FB,∃R.¬F A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.F

B,∃R.¬F A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.F

B,∃R.¬F A, ∀S.∀R.F

B, ∃R.¬F,∀R.F

¬F¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.FB,∃R.¬F

A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.FB,∃R.¬F

A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F

¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.FB,∃R.¬F

A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F

¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.FB,∃R.¬F

A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F

¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

23/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

ABox Consistency: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F), (b, a) : S}

a b

S

c
R

B u ∃R.¬F A u ∀S.∀R.FB,∃R.¬F

A, ∀S.∀R.FB, ∃R.¬F,∀R.F

¬F

¬F,F

The same optimizations work

The same theoretical properties hold (soundness, completeness,
termination, complexity)

24/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reminder: Reasoning Problems in DLs

ALC Tableau with TBoxes

Two Essential Optimizations

25/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

TBoxes Enter the Picture

TBox: T is a finite set of concept subsumption axioms C v D

Problem: decide consistency of ontology O = (T ,A)
a.k.a. A consistency w.r.t. T
“is data consistent w.r.t. schema?”

We consider cases:
I Acyclic simple TBoxes (easy)
I General TBoxes (not-so-easy)

25/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

TBoxes Enter the Picture

TBox: T is a finite set of concept subsumption axioms C v D

Problem: decide consistency of ontology O = (T ,A)
a.k.a. A consistency w.r.t. T
“is data consistent w.r.t. schema?”

We consider cases:
I Acyclic simple TBoxes (easy)
I General TBoxes (not-so-easy)

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D
I C uses D, F

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D, F
I C uses D, F

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D, F
I C uses D, F
I F uses E

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D, F
I C uses D, F, E
I F uses E

26/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Simple TBoxes and Reachibility

Axioms are restricted to: A v C and A ≡ C , where
A is a concept name and C is a concept expression
Each A (defined concept) occurs only once on the left

A directly uses B if B (syntactically) occurs in C
A uses B if A directly uses B∗ and B∗ uses B
(B can be reached from A)

T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}
I A uses C, D, F, E
I C uses D, F, E
I F uses E

27/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Acyclic Simple TBoxes

Acyclicity: No concept name uses itself

Acyclic simple TBox:
T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}

Cyclic simple axiom: Human v ∀hasChild.Human

Question: how to check acyclicity?

27/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Acyclic Simple TBoxes

Acyclicity: No concept name uses itself

Acyclic simple TBox:
T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}

Cyclic simple axiom: Human v ∀hasChild.Human

Question: how to check acyclicity?

27/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Acyclic Simple TBoxes

Acyclicity: No concept name uses itself

Acyclic simple TBox:
T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}

Cyclic simple axiom: Human v ∀hasChild.Human

Question: how to check acyclicity?

27/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Acyclic Simple TBoxes

Acyclicity: No concept name uses itself

Acyclic simple TBox:
T = {A v ∃R.C u D, C ≡ D t ¬F, F v E}

Cyclic simple axiom: Human v ∀hasChild.Human

Question: how to check acyclicity?

28/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding

Ontology consistency can be reduced to ABox consistency
if TBox is acyclic and simple via the procedure called unfolding

Recursively unfold each defined concept in ABox untill there are no
concepts defined in TBox
I A ≡ C : replace A by C
I A v C : replace A by C u A∗

(since A v C is equivalent to saying A ≡ C u A∗ for fresh A∗)

Unfolding is a completely syntactic procedure

28/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding

Ontology consistency can be reduced to ABox consistency
if TBox is acyclic and simple via the procedure called unfolding

Recursively unfold each defined concept in ABox untill there are no
concepts defined in TBox
I A ≡ C : replace A by C
I A v C : replace A by C u A∗

(since A v C is equivalent to saying A ≡ C u A∗ for fresh A∗)

Unfolding is a completely syntactic procedure

28/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding

Ontology consistency can be reduced to ABox consistency
if TBox is acyclic and simple via the procedure called unfolding

Recursively unfold each defined concept in ABox untill there are no
concepts defined in TBox
I A ≡ C : replace A by C
I A v C : replace A by C u A∗

(since A v C is equivalent to saying A ≡ C u A∗ for fresh A∗)

Unfolding is a completely syntactic procedure

29/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F)}
T = {B ≡ ∃S.D, F v B u C}

T {B ≡ ∃S.D, F ≡ B u C u F∗}

A {a : (∃S.D u ∃R.¬F, B unfolded
b : (A u ∀S.∀R.F)}

A {a : (∃S.D u ∃R.¬(B u C u F∗)), F unfolded
b : (A u ∀S.∀R.(B u C u F∗))}

A {a : (∃S.D u ∃R.¬(∃S.D u C u F∗)), B further unfolded
b : (A u ∀S.∀R.(∃S.(D u C u F∗)))}

Now (T ,A) is consistent if and only if A is consistent
(same technique works for concept satisfiability, subsumption, etc.)

29/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F)}
T = {B ≡ ∃S.D, F v B u C}

T {B ≡ ∃S.D, F ≡ B u C u F∗}

A {a : (∃S.D u ∃R.¬F, B unfolded
b : (A u ∀S.∀R.F)}

A {a : (∃S.D u ∃R.¬(B u C u F∗)), F unfolded
b : (A u ∀S.∀R.(B u C u F∗))}

A {a : (∃S.D u ∃R.¬(∃S.D u C u F∗)), B further unfolded
b : (A u ∀S.∀R.(∃S.(D u C u F∗)))}

Now (T ,A) is consistent if and only if A is consistent
(same technique works for concept satisfiability, subsumption, etc.)

29/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F)}
T = {B ≡ ∃S.D, F v B u C}

T {B ≡ ∃S.D, F ≡ B u C u F∗}

A {a : (∃S.D u ∃R.¬F, B unfolded
b : (A u ∀S.∀R.F)}

A {a : (∃S.D u ∃R.¬(B u C u F∗)), F unfolded
b : (A u ∀S.∀R.(B u C u F∗))}

A {a : (∃S.D u ∃R.¬(∃S.D u C u F∗)), B further unfolded
b : (A u ∀S.∀R.(∃S.(D u C u F∗)))}

Now (T ,A) is consistent if and only if A is consistent
(same technique works for concept satisfiability, subsumption, etc.)

29/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F)}
T = {B ≡ ∃S.D, F v B u C}

T {B ≡ ∃S.D, F ≡ B u C u F∗}

A {a : (∃S.D u ∃R.¬F, B unfolded
b : (A u ∀S.∀R.F)}

A {a : (∃S.D u ∃R.¬(B u C u F∗)), F unfolded
b : (A u ∀S.∀R.(B u C u F∗))}

A {a : (∃S.D u ∃R.¬(∃S.D u C u F∗)), B further unfolded
b : (A u ∀S.∀R.(∃S.(D u C u F∗)))}

Now (T ,A) is consistent if and only if A is consistent
(same technique works for concept satisfiability, subsumption, etc.)

29/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F)}
T = {B ≡ ∃S.D, F v B u C}

T {B ≡ ∃S.D, F ≡ B u C u F∗}

A {a : (∃S.D u ∃R.¬F, B unfolded
b : (A u ∀S.∀R.F)}

A {a : (∃S.D u ∃R.¬(B u C u F∗)), F unfolded
b : (A u ∀S.∀R.(B u C u F∗))}

A {a : (∃S.D u ∃R.¬(∃S.D u C u F∗)), B further unfolded
b : (A u ∀S.∀R.(∃S.(D u C u F∗)))}

Now (T ,A) is consistent if and only if A is consistent
(same technique works for concept satisfiability, subsumption, etc.)

29/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Example

A = {a : (B u ∃R.¬F), b : (A u ∀S.∀R.F)}
T = {B ≡ ∃S.D, F v B u C}

T {B ≡ ∃S.D, F ≡ B u C u F∗}

A {a : (∃S.D u ∃R.¬F, B unfolded
b : (A u ∀S.∀R.F)}

A {a : (∃S.D u ∃R.¬(B u C u F∗)), F unfolded
b : (A u ∀S.∀R.(B u C u F∗))}

A {a : (∃S.D u ∃R.¬(∃S.D u C u F∗)), B further unfolded
b : (A u ∀S.∀R.(∃S.(D u C u F∗)))}

Now (T ,A) is consistent if and only if A is consistent
(same technique works for concept satisfiability, subsumption, etc.)

30/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Problems

How much bigger can the unfolded concepts be?

A1 ≡ ∃R1 .A0 u ∃R2 .A0,
A2 ≡ ∃R1 .A1 u ∃R2 .A1,
A3 ≡ ∃R1 .A2 u ∃R2 .A2
. . .

See what happens when A3 is unfolded:

A3 ≡ ∃R1 .(∃R1 .A1 u ∃R2 .A1) u ∃R2 .(∃R1 .A1 u ∃R2 .A1)

A3 ≡ ∃R1 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0)) u
∃R2 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0))

Unfolding can be done lazily
B unfolded only when B or ¬B is in L(v) for some v

30/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Problems

How much bigger can the unfolded concepts be?

A1 ≡ ∃R1 .A0 u ∃R2 .A0,
A2 ≡ ∃R1 .A1 u ∃R2 .A1,
A3 ≡ ∃R1 .A2 u ∃R2 .A2
. . .

See what happens when A3 is unfolded:

A3 ≡ ∃R1 .(∃R1 .A1 u ∃R2 .A1) u ∃R2 .(∃R1 .A1 u ∃R2 .A1)

A3 ≡ ∃R1 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0)) u
∃R2 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0))

Unfolding can be done lazily
B unfolded only when B or ¬B is in L(v) for some v

30/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Problems

How much bigger can the unfolded concepts be?

A1 ≡ ∃R1 .A0 u ∃R2 .A0,
A2 ≡ ∃R1 .A1 u ∃R2 .A1,
A3 ≡ ∃R1 .A2 u ∃R2 .A2
. . .

See what happens when A3 is unfolded:

A3 ≡ ∃R1 .(∃R1 .A1 u ∃R2 .A1) u ∃R2 .(∃R1 .A1 u ∃R2 .A1)

A3 ≡ ∃R1 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0)) u
∃R2 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0))

Unfolding can be done lazily
B unfolded only when B or ¬B is in L(v) for some v

30/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Problems

How much bigger can the unfolded concepts be?

A1 ≡ ∃R1 .A0 u ∃R2 .A0,
A2 ≡ ∃R1 .A1 u ∃R2 .A1,
A3 ≡ ∃R1 .A2 u ∃R2 .A2
. . .

See what happens when A3 is unfolded:

A3 ≡ ∃R1 .(∃R1 .A1 u ∃R2 .A1) u ∃R2 .(∃R1 .A1 u ∃R2 .A1)

A3 ≡ ∃R1 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0)) u
∃R2 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0))

Unfolding can be done lazily
B unfolded only when B or ¬B is in L(v) for some v

30/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Unfolding: Problems

How much bigger can the unfolded concepts be?

A1 ≡ ∃R1 .A0 u ∃R2 .A0,
A2 ≡ ∃R1 .A1 u ∃R2 .A1,
A3 ≡ ∃R1 .A2 u ∃R2 .A2
. . .

See what happens when A3 is unfolded:

A3 ≡ ∃R1 .(∃R1 .A1 u ∃R2 .A1) u ∃R2 .(∃R1 .A1 u ∃R2 .A1)

A3 ≡ ∃R1 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0)) u
∃R2 .(∃R1 .(∃R1 .A0 u ∃R2 .A0) u ∃R2 .(∃R1 .A0 u ∃R2 .A0))

Unfolding can be done lazily
B unfolded only when B or ¬B is in L(v) for some v

31/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

General TBoxes

TBox is a set of general concept inclusion axioms (GCIs) C v D
C ≡ D is a syntactic sugar for {C v D, D v C}
(C , D are any ALC concept expressions)

Consistency of (T ,A) no longer reducible to consistency of A
need to take T into account when expanding the tableau

Question: would the following rule be sufficient?

GCI0-rule: if C ∈ L(a) for some a and C v D ∈ T
and D 6∈ L(a)
then add D to L(a)

i.e. can we view GCIs as If-Then rules?

31/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

General TBoxes

TBox is a set of general concept inclusion axioms (GCIs) C v D
C ≡ D is a syntactic sugar for {C v D, D v C}
(C , D are any ALC concept expressions)

Consistency of (T ,A) no longer reducible to consistency of A
need to take T into account when expanding the tableau

Question: would the following rule be sufficient?

GCI0-rule: if C ∈ L(a) for some a and C v D ∈ T
and D 6∈ L(a)
then add D to L(a)

i.e. can we view GCIs as If-Then rules?

31/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

General TBoxes

TBox is a set of general concept inclusion axioms (GCIs) C v D
C ≡ D is a syntactic sugar for {C v D, D v C}
(C , D are any ALC concept expressions)

Consistency of (T ,A) no longer reducible to consistency of A
need to take T into account when expanding the tableau

Question: would the following rule be sufficient?

GCI0-rule: if C ∈ L(a) for some a and C v D ∈ T
and D 6∈ L(a)
then add D to L(a)

i.e. can we view GCIs as If-Then rules?

31/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

General TBoxes

TBox is a set of general concept inclusion axioms (GCIs) C v D
C ≡ D is a syntactic sugar for {C v D, D v C}
(C , D are any ALC concept expressions)

Consistency of (T ,A) no longer reducible to consistency of A
need to take T into account when expanding the tableau

Question: would the following rule be sufficient?

GCI0-rule: if C ∈ L(a) for some a and C v D ∈ T
and D 6∈ L(a)
then add D to L(a)

i.e. can we view GCIs as If-Then rules?

32/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Problem 1

T ≡ {A u B v C}
A ≡ {a : A, a : B}

(T ,A) |= a : C, can prove inconsistency of (T ,A ∪ {a : ¬C})?

The problem: L(a) contains A,B,¬C but no A u B
so we can’t apply the GCI0-rule: and get the {C,¬C} clash

OK, one can “construct” conjunctions:
u+-rule: {A, B} ⊆ L(a), A u B 6∈ L(a), then add A u B to L(a)

I Fixes this sort of problems
I Messy, many useless conjunctions
I Particularly messy for disjunctions (what would the rule be?)

32/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Problem 1

T ≡ {A u B v C}
A ≡ {a : A, a : B}

(T ,A) |= a : C, can prove inconsistency of (T ,A ∪ {a : ¬C})?

The problem: L(a) contains A,B,¬C but no A u B
so we can’t apply the GCI0-rule: and get the {C,¬C} clash

OK, one can “construct” conjunctions:
u+-rule: {A, B} ⊆ L(a), A u B 6∈ L(a), then add A u B to L(a)

I Fixes this sort of problems
I Messy, many useless conjunctions
I Particularly messy for disjunctions (what would the rule be?)

32/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Problem 1

T ≡ {A u B v C}
A ≡ {a : A, a : B}

(T ,A) |= a : C, can prove inconsistency of (T ,A ∪ {a : ¬C})?

The problem: L(a) contains A,B,¬C but no A u B
so we can’t apply the GCI0-rule: and get the {C,¬C} clash

OK, one can “construct” conjunctions:
u+-rule: {A, B} ⊆ L(a), A u B 6∈ L(a), then add A u B to L(a)

I Fixes this sort of problems
I Messy, many useless conjunctions
I Particularly messy for disjunctions (what would the rule be?)

32/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Problem 1

T ≡ {A u B v C}
A ≡ {a : A, a : B}

(T ,A) |= a : C, can prove inconsistency of (T ,A ∪ {a : ¬C})?

The problem: L(a) contains A,B,¬C but no A u B
so we can’t apply the GCI0-rule: and get the {C,¬C} clash

OK, one can “construct” conjunctions:
u+-rule: {A, B} ⊆ L(a), A u B 6∈ L(a), then add A u B to L(a)

I Fixes this sort of problems
I Messy, many useless conjunctions
I Particularly messy for disjunctions (what would the rule be?)

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

33/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Local GCI Rule: Bigger Problem

T ≡ {C v D, D v F, ¬C t F v X}
A ≡ {a : A}

Question: are there any entailments for a?

(T ,A) |= a : X, can prove inconsistency of (T ,A ∪ {a : ¬X})?

Not really, stuck with L(a) = {A}

Reasoning by cases: in every I, aI ∈ CI or aI ∈ (¬C)I

I: aI ∈ CI , thus aI ∈ DI , thus aI ∈ FI , thus aI ∈ XI

II: aI ∈ (¬C)I , thus aI ∈ XI

Lesson: GCIs can be inherently global and apply to all individuals

34/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Global GCI Rule

Instead we use the following global GCI rule:

GCI-rule if C v D ∈ T and ¬̇C t D 6∈ L(a) for some a,
then add ¬̇C t D to L(a)

The GCI-rule adds a disjunction per individual and GCI. This is:
I Bad due to massive non-determinism
I Stupid for GCIs with a concept name on its left hand side

We retain the local rule :

GCI0-rule if A v C ∈ T and A ∈ L(a) and C 6∈ L(a) for some a,
then add C to L(a)

34/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Global GCI Rule

Instead we use the following global GCI rule:

GCI-rule if C v D ∈ T and ¬̇C t D 6∈ L(a) for some a,
then add ¬̇C t D to L(a)

The GCI-rule adds a disjunction per individual and GCI. This is:
I Bad due to massive non-determinism
I Stupid for GCIs with a concept name on its left hand side

We retain the local rule :

GCI0-rule if A v C ∈ T and A ∈ L(a) and C 6∈ L(a) for some a,
then add C to L(a)

34/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Global GCI Rule

Instead we use the following global GCI rule:

GCI-rule if C v D ∈ T and ¬̇C t D 6∈ L(a) for some a,
then add ¬̇C t D to L(a)

The GCI-rule adds a disjunction per individual and GCI. This is:
I Bad due to massive non-determinism
I Stupid for GCIs with a concept name on its left hand side

We retain the local rule :

GCI0-rule if A v C ∈ T and A ∈ L(a) and C 6∈ L(a) for some a,
then add C to L(a)

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D
A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C
G0G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A B

A, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D
A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A B

A, ∃S.C B,∀R.∀S.D

A, ∃S.C,∀S.D
A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C

B,∀R.∀S.DA, ∃S.C, ∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C

B,∀R.∀S.DA, ∃S.C, ∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

C

C,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C

B,∀R.∀S.DA, ∃S.C, ∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

C

C,D

C,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,D

C,D, (¬D t ¬C) t ⊥

C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥

C,D,⊥

C,D,¬D t ¬CC,D,¬DC,D,¬C
G0

G1

G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,D

C,D, (¬D t ¬C) t ⊥

C,D,⊥C,D,¬D t ¬CC,D,¬DC,D,¬C

G0

G1G2G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥

C,D,¬D t ¬C

C,D,¬DC,D,¬C
G0G1

G2

G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬C

C,D,¬D

C,D,¬C
G0G1G2

G21

G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬C

C,D,¬D

C,D,¬C
G0G1G2

G21

G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥

C,D,¬D t ¬C

C,D,¬DC,D,¬C
G0G1

G2

G21G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬D

C,D,¬C

G0G1G2G21

G22

35/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Ontology Consistency: Example

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

a b
R

c
S

A BA, ∃S.C B,∀R.∀S.DA, ∃S.C,∀S.D

A, ∀S.D,∃S.C,
(¬D t ¬C) t ⊥ B,∀R.∀S.D,(¬D t ¬C) t ⊥

CC,DC,D, (¬D t ¬C) t ⊥C,D,⊥C,D,¬D t ¬CC,D,¬D

C,D,¬C

G0G1G2G21

G22

36/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

It’s All About Choices. . .

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

G0 Deterministic part

G1G2
(¬D t ¬C) or ⊥ at c

clash at c due to ⊥

G21 G22

(¬D or ¬C) at c

{D,¬D} clash {C,¬C} clash

The space of choices explodes huge and very-very fast
(lots of backtracking)

36/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

It’s All About Choices. . .

T ≡ {A v ∃S.C, B v ∀R.∀S.D, C u D v ⊥}
A ≡ {a : A, b : B, (b, a) : R}

G0 Deterministic part

G1G2
(¬D t ¬C) or ⊥ at c

clash at c due to ⊥

G21 G22

(¬D or ¬C) at c

{D,¬D} clash {C,¬C} clash

The space of choices explodes huge and very-very fast
(lots of backtracking)

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R a3R . . .
R

A,∃R.A B
A,∃R.A

A,∃R.A
A,∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R a3R . . .
R

A,∃R.A B
A,∃R.A

A,∃R.A
A,∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b

a1R
a2R a3R . . .

R

A, ∃R.A B

A,∃R.A

A,∃R.A
A, ∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R a3R . . .
R

A, ∃R.A B
A, ∃R.A

A,∃R.A
A, ∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R

a3R . . .
R

A, ∃R.A B
A, ∃R.A

A, ∃R.A

A, ∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R a3R

. . .
R

A, ∃R.A B
A, ∃R.A

A, ∃R.A
A, ∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R a3R . . .
R

A, ∃R.A B
A, ∃R.A

A, ∃R.A
A, ∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

37/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Didn’t We Lose Anything?..

Question: did we retain soundness, completeness, and termination?

Cyclic schema: T ≡ {A v ∃R.A}, A ≡ {a : A, b : B}

a b
a1R

a2R a3R . . .
R

A, ∃R.A B
A, ∃R.A

A, ∃R.A
A, ∃R.A

The GCI propagates ∃R.A along the infinite chain
This expansion does not terminate on cyclic TBoxes

38/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Blocking

Need to block infinite duplication of individuals

Blocking: each rule is applicable to a if there is no node b s.t.
L(a) ⊆ L(b)

In case we have
I a freshly created node a,
I another node b s.t.:

I L(a) ⊆ L(b)
I b is older than a

 ⇒ node b blocks node a

u-rule: if ∃R.C ∈ L(a) for some non-blocked a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b, add an R-edge from a to b
and add C to L(b)

38/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Blocking

Need to block infinite duplication of individuals

Blocking: each rule is applicable to a if there is no node b s.t.
L(a) ⊆ L(b)

In case we have
I a freshly created node a,
I another node b s.t.:

I L(a) ⊆ L(b)
I b is older than a

 ⇒ node b blocks node a

u-rule: if ∃R.C ∈ L(a) for some non-blocked a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b, add an R-edge from a to b
and add C to L(b)

38/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Blocking

Need to block infinite duplication of individuals

Blocking: each rule is applicable to a if there is no node b s.t.
L(a) ⊆ L(b)

In case we have
I a freshly created node a,
I another node b s.t.:

I L(a) ⊆ L(b)
I b is older than a

 ⇒ node b blocks node a

u-rule: if ∃R.C ∈ L(a) for some non-blocked a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b, add an R-edge from a to b
and add C to L(b)

38/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Blocking

Need to block infinite duplication of individuals

Blocking: each rule is applicable to a if there is no node b s.t.
L(a) ⊆ L(b)

In case we have
I a freshly created node a,
I another node b s.t.:

I L(a) ⊆ L(b)
I b is older than a

 ⇒ node b blocks node a

u-rule: if ∃R.C ∈ L(a) for some non-blocked a and there is no b s.t.
C ∈ L(b) and an R-edge from a to b is in G

then create a new node b, add an R-edge from a to b
and add C to L(b)

39/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Theoretical Properties

The tableau algorithm with the global GCI rule and blocking is:
I Sound
I Complete
I Terminating

for standard reasoning problems in ALC (w.r.t. general TBoxes)

Complexity is trickier:
I No longer in PSpace (exponentially long chains may be

generated before blocking)
I It’s actually in ExpSpace while the problem is in ExpTime

Implemented in FaCT++, RacerPro, Pellet, Konclude,. . .

39/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Theoretical Properties

The tableau algorithm with the global GCI rule and blocking is:
I Sound
I Complete
I Terminating

for standard reasoning problems in ALC (w.r.t. general TBoxes)

Complexity is trickier:
I No longer in PSpace (exponentially long chains may be

generated before blocking)
I It’s actually in ExpSpace while the problem is in ExpTime

Implemented in FaCT++, RacerPro, Pellet, Konclude,. . .

39/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Theoretical Properties

The tableau algorithm with the global GCI rule and blocking is:
I Sound
I Complete
I Terminating

for standard reasoning problems in ALC (w.r.t. general TBoxes)

Complexity is trickier:
I No longer in PSpace (exponentially long chains may be

generated before blocking)
I It’s actually in ExpSpace while the problem is in ExpTime

Implemented in FaCT++, RacerPro, Pellet, Konclude,. . .

40/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Reminder: Reasoning Problems in DLs

ALC Tableau with TBoxes

Two Essential Optimizations

41/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Non-Determinism

Disjunctive non-determinism is the major source of intractability
I Disjunction
I GCIs

Non-determinism is an inherent feature of the logic!
O |= a : (D1 t D2) does not mean O |= a : D1 or O |= a : D2

(ALC is non-convex or non-Horn)

Two essential optimizations:
I Backjumping: being smarter about non-determinism
I Absorption: reducing non-determinism

41/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Non-Determinism

Disjunctive non-determinism is the major source of intractability
I Disjunction
I GCIs

Non-determinism is an inherent feature of the logic!
O |= a : (D1 t D2) does not mean O |= a : D1 or O |= a : D2

(ALC is non-convex or non-Horn)

Two essential optimizations:
I Backjumping: being smarter about non-determinism
I Absorption: reducing non-determinism

41/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Non-Determinism

Disjunctive non-determinism is the major source of intractability
I Disjunction
I GCIs

Non-determinism is an inherent feature of the logic!
O |= a : (D1 t D2) does not mean O |= a : D1 or O |= a : D2

(ALC is non-convex or non-Horn)

Two essential optimizations:
I Backjumping: being smarter about non-determinism
I Absorption: reducing non-determinism

42/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Remember: for T = {Ci v Di | 1 ≤ i ≤ n},
where no Ci is a concept name,
each individual x will have n disjunctions x : (¬̇Ci t Di)

GCI0-rule: if A ∈ L(a) for some non-blocked a
and A v D ∈ T and D 6∈ L(a)
then add D to L(a)

GCI-rule if C v D ∈ T
and ¬̇C t D 6∈ L(a) for some non-blocked a,
then add ¬̇C t D to L(a)

Observation: many GCIs are of the form A u X1 u X2 u . . . v C
for concept name A and arbitrary concepts Xi

e.g., Human u . . . v C or Device u . . . v C

42/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Remember: for T = {Ci v Di | 1 ≤ i ≤ n},
where no Ci is a concept name,
each individual x will have n disjunctions x : (¬̇Ci t Di)

GCI0-rule: if A ∈ L(a) for some non-blocked a
and A v D ∈ T and D 6∈ L(a)
then add D to L(a)

GCI-rule if C v D ∈ T
and ¬̇C t D 6∈ L(a) for some non-blocked a,
then add ¬̇C t D to L(a)

Observation: many GCIs are of the form A u X1 u X2 u . . . v C
for concept name A and arbitrary concepts Xi

e.g., Human u . . . v C or Device u . . . v C

42/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Remember: for T = {Ci v Di | 1 ≤ i ≤ n},
where no Ci is a concept name,
each individual x will have n disjunctions x : (¬̇Ci t Di)

GCI0-rule: if A ∈ L(a) for some non-blocked a
and A v D ∈ T and D 6∈ L(a)
then add D to L(a)

GCI-rule if C v D ∈ T
and ¬̇C t D 6∈ L(a) for some non-blocked a,
then add ¬̇C t D to L(a)

Observation: many GCIs are of the form A u X1 u X2 u . . . v C
for concept name A and arbitrary concepts Xi

e.g., Human u . . . v C or Device u . . . v C

43/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Localise GCIs to concept names by rewriting A u X v C into
equivalent A v ¬X t C

Human u ∃owns.Dog v PetOwner
becomes
Human v ¬∃owns.Dog t PetOwner

Due to absorption the local GCI rule applies more often and the
global, non-deterministic one less often

In the best case nearly all GCIs are absorbed

In the worst case nothing changes

43/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Localise GCIs to concept names by rewriting A u X v C into
equivalent A v ¬X t C

Human u ∃owns.Dog v PetOwner
becomes
Human v ¬∃owns.Dog t PetOwner

Due to absorption the local GCI rule applies more often and the
global, non-deterministic one less often

In the best case nearly all GCIs are absorbed

In the worst case nothing changes

43/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Localise GCIs to concept names by rewriting A u X v C into
equivalent A v ¬X t C

Human u ∃owns.Dog v PetOwner
becomes
Human v ¬∃owns.Dog t PetOwner

Due to absorption the local GCI rule applies more often and the
global, non-deterministic one less often

In the best case nearly all GCIs are absorbed

In the worst case nothing changes

43/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption of General Concept Inclusions

Localise GCIs to concept names by rewriting A u X v C into
equivalent A v ¬X t C

Human u ∃owns.Dog v PetOwner
becomes
Human v ¬∃owns.Dog t PetOwner

Due to absorption the local GCI rule applies more often and the
global, non-deterministic one less often

In the best case nearly all GCIs are absorbed

In the worst case nothing changes

44/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption: Example

Human u ∃owns.Dog v PetOwner becomes
Human v ¬∃owns.Dog t PetOwner

Consider some node x in some G:

I Human 6∈ L(x) (most of the nodes) ⇒ no GCI rule applies
vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

I Human ∈ L(x) ⇒ adding ¬∃owns.Dog t PetOwner – 2
choices
vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

Savings are exponential in the number of absorbed GCIs

No real ontology with complex concepts on the left can be
classified without absorption

44/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption: Example

Human u ∃owns.Dog v PetOwner becomes
Human v ¬∃owns.Dog t PetOwner

Consider some node x in some G:
I Human 6∈ L(x) (most of the nodes) ⇒ no GCI rule applies

vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

I Human ∈ L(x) ⇒ adding ¬∃owns.Dog t PetOwner – 2
choices
vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

Savings are exponential in the number of absorbed GCIs

No real ontology with complex concepts on the left can be
classified without absorption

44/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption: Example

Human u ∃owns.Dog v PetOwner becomes
Human v ¬∃owns.Dog t PetOwner

Consider some node x in some G:
I Human 6∈ L(x) (most of the nodes) ⇒ no GCI rule applies

vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices
I Human ∈ L(x) ⇒ adding ¬∃owns.Dog t PetOwner – 2

choices
vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

Savings are exponential in the number of absorbed GCIs

No real ontology with complex concepts on the left can be
classified without absorption

44/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption: Example

Human u ∃owns.Dog v PetOwner becomes
Human v ¬∃owns.Dog t PetOwner

Consider some node x in some G:
I Human 6∈ L(x) (most of the nodes) ⇒ no GCI rule applies

vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices
I Human ∈ L(x) ⇒ adding ¬∃owns.Dog t PetOwner – 2

choices
vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

Savings are exponential in the number of absorbed GCIs

No real ontology with complex concepts on the left can be
classified without absorption

44/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Absorption: Example

Human u ∃owns.Dog v PetOwner becomes
Human v ¬∃owns.Dog t PetOwner

Consider some node x in some G:
I Human 6∈ L(x) (most of the nodes) ⇒ no GCI rule applies

vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices
I Human ∈ L(x) ⇒ adding ¬∃owns.Dog t PetOwner – 2

choices
vs. adding ¬Human t ¬∃owns.Dog t PetOwner – 3 choices

Savings are exponential in the number of absorbed GCIs

No real ontology with complex concepts on the left can be
classified without absorption

45/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

Recall: when a clash is encountered, the non-deterministic
algorithm backtracks i.e., returns to the last non-deterministic
choice and tries the other possibility

It may re-discover the same clash again

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

The clash {A,¬A} is caused by the interaction between
∃R.(A u B) and ∀R.¬A

This has nothing to do with massive branching on Ci t Di

Backjumping attempts to recognize such interactions

45/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

Recall: when a clash is encountered, the non-deterministic
algorithm backtracks i.e., returns to the last non-deterministic
choice and tries the other possibility

It may re-discover the same clash again

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

The clash {A,¬A} is caused by the interaction between
∃R.(A u B) and ∀R.¬A

This has nothing to do with massive branching on Ci t Di

Backjumping attempts to recognize such interactions

45/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

Recall: when a clash is encountered, the non-deterministic
algorithm backtracks i.e., returns to the last non-deterministic
choice and tries the other possibility

It may re-discover the same clash again

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

The clash {A,¬A} is caused by the interaction between
∃R.(A u B) and ∀R.¬A

This has nothing to do with massive branching on Ci t Di

Backjumping attempts to recognize such interactions

45/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

Recall: when a clash is encountered, the non-deterministic
algorithm backtracks i.e., returns to the last non-deterministic
choice and tries the other possibility

It may re-discover the same clash again

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

The clash {A,¬A} is caused by the interaction between
∃R.(A u B) and ∀R.¬A

This has nothing to do with massive branching on Ci t Di

Backjumping attempts to recognize such interactions

45/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

Recall: when a clash is encountered, the non-deterministic
algorithm backtracks i.e., returns to the last non-deterministic
choice and tries the other possibility

It may re-discover the same clash again

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

The clash {A,¬A} is caused by the interaction between
∃R.(A u B) and ∀R.¬A

This has nothing to do with massive branching on Ci t Di

Backjumping attempts to recognize such interactions

45/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

Recall: when a clash is encountered, the non-deterministic
algorithm backtracks i.e., returns to the last non-deterministic
choice and tries the other possibility

It may re-discover the same clash again

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

The clash {A,¬A} is caused by the interaction between
∃R.(A u B) and ∀R.¬A

This has nothing to do with massive branching on Ci t Di

Backjumping attempts to recognize such interactions

46/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

46/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

x

t

t t

t

tt
x

x

R
yL(y) = {(A u B),¬A, A, B}

Clash

R
y L(y) = {(A u B),¬A, A, B}

Clash Clash . . . Clash

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

L(x) ∪ {Cn}

46/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

t

t t

t

tt
x

x

R
yL(y) = {(A u B),¬A, A, B}

Clash

46/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

t

t t

t

tt
x

x

R
yL(y) = {(A u B),¬A, A, B}

Clash

R
y

Clash

L(y) = {(A u B),¬A, A, B}

46/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Backjumping

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

R
y

Clash

L(y) = {(A u B),¬A, A, B}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

t

t t

t

tt
x

x

R
yL(y) = {(A u B),¬A, A, B}

Clash

47/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Is Everything OK?

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

Remember the rule ordering
I Cheap rules first
I Costly rules after

u-rule: ∃R.(A u B), (C1 t D1), . . . , (Cn t Dn), ∀R.¬A
∃-rule: A u B,¬A ⊆ L(v), which is a clash

47/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Is Everything OK?

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

Remember the rule ordering
I Cheap rules first
I Costly rules after

u-rule: ∃R.(A u B), (C1 t D1), . . . , (Cn t Dn), ∀R.¬A
∃-rule: A u B,¬A ⊆ L(v), which is a clash

47/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Is Everything OK?

L(x) = {∃R.(A u B) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A}

Remember the rule ordering
I Cheap rules first
I Costly rules after

u-rule: ∃R.(A u B), (C1 t D1), . . . , (Cn t Dn), ∀R.¬A
∃-rule: A u B,¬A ⊆ L(v), which is a clash

48/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Another Backjumping Example

(∃R.(A u B) t C0) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A

No inconsistency any more

But the first choice of ∃R.(A u B) is extremely unfortunate:
I ∃R.(A u B) u Ci u . . . u ∀R.¬A

is unsatisfiable for every i > 0
I Naive tableau will systematically try each Ci or Di

Backjumping realizes that instead it should jump back and try C0
instead of ∃R.(A u B)

Clause/choice ordering and other SAT heuristics help further

48/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Another Backjumping Example

(∃R.(A u B) t C0) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A

No inconsistency any more

But the first choice of ∃R.(A u B) is extremely unfortunate:
I ∃R.(A u B) u Ci u . . . u ∀R.¬A

is unsatisfiable for every i > 0
I Naive tableau will systematically try each Ci or Di

Backjumping realizes that instead it should jump back and try C0
instead of ∃R.(A u B)

Clause/choice ordering and other SAT heuristics help further

48/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Another Backjumping Example

(∃R.(A u B) t C0) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A

No inconsistency any more

But the first choice of ∃R.(A u B) is extremely unfortunate:
I ∃R.(A u B) u Ci u . . . u ∀R.¬A

is unsatisfiable for every i > 0
I Naive tableau will systematically try each Ci or Di

Backjumping realizes that instead it should jump back and try C0
instead of ∃R.(A u B)

Clause/choice ordering and other SAT heuristics help further

48/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Another Backjumping Example

(∃R.(A u B) t C0) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A

No inconsistency any more

But the first choice of ∃R.(A u B) is extremely unfortunate:
I ∃R.(A u B) u Ci u . . . u ∀R.¬A

is unsatisfiable for every i > 0
I Naive tableau will systematically try each Ci or Di

Backjumping realizes that instead it should jump back and try C0
instead of ∃R.(A u B)

Clause/choice ordering and other SAT heuristics help further

48/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Another Backjumping Example

(∃R.(A u B) t C0) u ((C1 t D1) u . . . u (Cn t Dn)) u ∀R.¬A

No inconsistency any more

But the first choice of ∃R.(A u B) is extremely unfortunate:
I ∃R.(A u B) u Ci u . . . u ∀R.¬A

is unsatisfiable for every i > 0
I Naive tableau will systematically try each Ci or Di

Backjumping realizes that instead it should jump back and try C0
instead of ∃R.(A u B)

Clause/choice ordering and other SAT heuristics help further

49/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Stuff Seen Today

I standard reasoning problems for ALC ontologies
I tableau algorithm for ALC ontologies that

I requires blocking for termination
I is a decision procedure for the standard reasoning problems
I works on a set of labeled graphs in a non-deterministic way

with backtracking
I is implemented in state-of-the-art reasoners

I some essential optimizations

Tomorrow: Classification algorithm and performance experiments

Ask your questions!

49/49 Pavel Klinov Bijan Parsia | Practical Tableau-based Reasoning in Description Logics | August 6, 2013

Stuff Seen Today

I standard reasoning problems for ALC ontologies
I tableau algorithm for ALC ontologies that

I requires blocking for termination
I is a decision procedure for the standard reasoning problems
I works on a set of labeled graphs in a non-deterministic way

with backtracking
I is implemented in state-of-the-art reasoners

I some essential optimizations

Tomorrow: Classification algorithm and performance experiments

Ask your questions!

	Reminder: Reasoning Problems in DLs
	 Tableau with TBoxes
	Two Essential Optimizations

