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Abstract

The SPARQL query language is currently being extended by the World Wide Web
Consortium (W3C) with so-called entailment regimes. An entailment regime defines how
queries are evaluated under more expressive semantics than SPARQL’s standard simple
entailment, which is based on subgraph matching. The queries are very expressive since
variables can occur within complex concepts and can also bind to concept or role names.

In this paper, we describe a sound and complete algorithm for the OWL Direct Seman-
tics entailment regime. We further propose several novel optimizations such as strategies
for determining a good query execution order, query rewriting techniques, and show how
specialized OWL reasoning tasks and the concept and role hierarchy can be used to reduce
the query execution time. For determining a good execution order, we propose a cost-based
model, where the costs are based on information about the instances of concepts and roles
that are extracted from a model abstraction built by an OWL reasoner. We present two
ordering strategies: a static and a dynamic one. For the dynamic case, we improve the
performance by exploiting an individual clustering approach that allows for computing the
cost functions based on one individual sample from a cluster.

We provide a prototypical implementation and evaluate the efficiency of the proposed
optimizations. Our experimental study shows that the static ordering usually outperforms
the dynamic one when accurate statistics are available. This changes, however, when the
statistics are less accurate, e.g., due to nondeterministic reasoning decisions. For queries
that go beyond conjunctive instance queries we observe an improvement of up to three
orders of magnitude due to the proposed optimizations.

1. Introduction

Query answering is important in the context of the Semantic Web since it provides a mech-
anism via which users and applications can interact with ontologies and data. Several query
languages have been designed for this purpose, including RDQL (Seaborne, 2004), SeRQL
(Broekstra & Kampman, 2006) and, most recently, SPARQL. In this paper, we consider the
SPARQL query language (Prud’hommeaux & Seaborne, 2008), which was standardized in
2008 by the World Wide Web Consortium (W3C) and which is currently being extended to
SPARQL 1.1 (Harris & Seaborne, 2013). Since 2008, SPARQL has developed into the main
query language for the Semantic Web and is now supported by most RDF triple stores.
The query evaluation mechanism defined in the SPARQL Query specification is based on
subgraph matching. This form of query evaluation is also called simple entailment since
it can equally be defined in terms of the simple entailment relation between RDF graphs
(Hayes, 2004). SPARQL 1.1 includes several entailment regimes (Glimm & Ogbuji, 2013)
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in order to use more elaborate entailment relations, such as those induced by RDF Schema
(RDFS) (Brickley & Guha, 2004) or OWL (Motik, Patel-Schneider, & Cuenca Grau, 2012b;
Schneider, 2012). Query answering under such entailment regimes is more complex as it
may involve retrieving answers that only follow implicitly from the queried graph, which is
seen as an OWL ontology when using OWL entailment. While several implementations for
SPARQL’s RDFS entailment regime are available (e.g., Oracle 11g (Oracle, 2013), Apache
Jena (The Apache Software Foundation, 2013), or Stardog (Clark & Parsia, 2013b)), the
development of tools that provide full SPARQL support under OWL semantics is still an
ongoing effort.

Since we consider the OWL Direct Semantics entailment regime of SPARQL 1.1 in this
paper, when we talk about SPARQL queries or the evaluation of SPARQL queries, we
always assume that the OWL Direct Semantics entailment regime is used. In this setting,
the WHERE clause of a query can be seen as a set of extended OWL axioms (an extended
OWL ontology), which can have variables in place of concept, role or individual names.
The query answers contain each instantiation of the variables that leads to OWL axioms
that are entailed by the queried ontology. Thus, a naive query evaluation procedure can be
realized through OWL’s standard reasoning task of entailment checking.

Please note that there are two types of individual variables in SPARQL; standard (dis-
tinguished) variables and anonymous individuals (aka blank nodes). The anonymous in-
dividuals are treated like distinguished variables with the difference that they cannot be
selected and, hence, their bindings cannot appear in the query answer. This is in contrast to
conjunctive queries, where anonymous individuals are treated as existential variables. On
the other hand, anonymous individuals can occur in the query answer as bindings to distin-
guished variables, i.e., SPARQL treats anonymous individuals from the queried ontology as
constants. This treatment of anonymous individuals has been chosen for compatibility with
SPARQL’s standard subgraph matching semantics. For example, in order to implement
the RDF(S) entailment regime, systems can simply extend the queried graph with inferred
information (materialization) and can then use SPARQL’s standard evaluation mechanism
over the materialized graph in order to compute the query results. Similarly, when users
move on to systems that support the OWL RL profile (Motik, Cuenca Grau, Horrocks, Wu,
Fokoue, & Lutz, 2012a), the OWL RL rule set from the OWL 2 specification can be used to
compute the query answers (again via materialization). If one were to change the semantics
of blank nodes for SPARQL’s entailment regimes to reflect conjunctive query semantics, one
could no longer use materialization plus a standard SPARQL query processor to implement
the entailment regime. If one were to change the semantics of blank nodes only for the
OWL Direct Semantics entailment regime, where materialization cannot be used to imple-
ment the regime, users would not simply get more answers by moving from systems that
support RDF(S) to systems that support OWL’s Direct Semantics, but it could also happen
that they get less answers by using a more expressive logic, which is counter-intuitive.

Over the last decade, much effort has been spent on optimizing standard reasoning tasks
such as entailment checking, classification, or realization (i.e., the computation of instances
of all concepts and roles) (Sirin, Cuenca Grau, & Parsia, 2006; Tsarkov, Horrocks, & Patel-
Schneider, 2007; Glimm, Horrocks, Motik, Shearer, & Stoilos, 2012). The optimization of
query answering algorithms has, however, mostly been addressed for conjunctive queries in
OWL profiles, most notably the OWL 2 QL profile (Calvanese, Giacomo, Lembo, Lenzerini,
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& Rosati, 2007; Kontchakov, Lutz, Toman, Wolter, & Zakharyaschev, 2010; Pérez-Urbina,
Motik, & Horrocks, 2010; Rodriguez-Muro & Calvanese, 2012). An exception to this are
the works on nRQL and SPARQL-DL. The query language nRQL is supported by Racer
Pro (Haarslev, Möller, & Wessel, 2004) and SPARQL-DL is implemented in the Pellet
reasoner (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007). We discuss this in greater detail
in Section 8.

In this paper, we address the problem of efficient SPARQL query evaluation for OWL 2
DL ontologies by proposing a range of novel optimizations that deal in particular with the
expressive features of SPARQL such as variables in place of concepts or roles. We further
adapt common techniques from databases such as cost-based query planning. The costs
for our cost model are based on information about the instances of concepts and roles
that are extracted from a model abstraction built by an OWL reasoner. We present a
static and a dynamic algorithm for finding an optimal or near optimal execution order and
for the dynamic case, we improve the performance by exploiting an individual clustering
approach that allows for computing the cost functions based on one individual sample from
a cluster. We further propose query rewriting techniques and show how specialized OWL
reasoning tasks and the concept and role hierarchy can be used to reduce the query execution
time. We provide a prototypical implementation and evaluate the efficiency of the proposed
optimizations. Our experimental study shows that the static ordering usually outperforms
the dynamic one when accurate statistics are available. This changes, however, when the
statistics are less accurate, e.g., due to non-deterministic reasoning decisions. For queries
that go beyond conjunctive SPARQL instance queries, we observe an improvement of up to
three orders of magnitude due to the proposed optimizations.

Note that this paper combines and extends two conference papers: I. Kollia and B.
Glimm: Cost based Query Ordering over OWL Ontologies. Proceedings of the 11th Inter-
national Semantic Web Conference, 2012 and I. Kollia, B. Glimm and I. Horrocks: SPARQL
Query Answering over OWL Ontologies. Proceedings of the 8th Extended Semantic Web
Conference, 2011. In the current paper we have, additionally to the first above mentioned
paper, defined cost functions for general SPARQL queries (i.e., not only for conjunctive in-
stance queries) and added experimental results for these expressive queries. In comparison
to the second of the above mentioned papers, we have defined the notion of concept and role
polarity and presented theorems that let us prune the search space of possible mappings for
axiom templates based on the polarity together with an algorithm that shows the way we
use the optimization. Moreover, more experimental results have been added for complex
queries that make use of this optimization.

The remainder of the paper is organized as follows: we next present some preliminaries,
we then present a general query evaluation algorithm in Section 3 that serves as the basis
for further optimization. In Section 4, we present the foundations for our cost model, which
we then specify in Section 5. In Section 6, we present optimizations for complex queries that
cannot directly be mapped to specialized reasoner tasks. Finally, we evaluate our approach
in Section 7 and discuss related work in Section 8 before we conclude in Section 9.
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2. Preliminaries

In this section, we first give a brief introduction into Description Logics since the OWL
Direct Semantics is based on the Description Logic SROIQ (Horrocks, Kutz, & Sattler,
2006). The optimizations we present do not need all features of SROIQ. Hence, we only
present SHOIQ, which allows for a shorter and easier to follow presentation.

After introducing SHOIQ, we clarify the relationship between RDF, SPARQL and
OWL, we present SPARQL’s OWL Direct Semantics entailment regime and we give an
overview of the model building tableau and hypertableau calculi.

2.1 The Description Logic SHOIQ

We first define the syntax and semantics of roles, and then go on to SHOIQ-concepts,
individuals, and ontologies/knowledge bases.

Definition 1 (Syntax of SHOIQ ). Let NC , NR, and NI be countable, infinite, and
pairwise disjoint sets of concept names, role names, and individual names, respectively.
We call S = (NC ,NR,NI ) a signature. The set rol(S) of SHOIQ-roles over S (or roles
for short) is NR ∪ {r− | r ∈ NR} ∪ {⊤r,⊥r}, where roles of the form r− are called inverse
roles, ⊤r is the top role (analogous to owl:topObjectProperty), and ⊥r is the bottom role
(analogous to owl:bottomObjectProperty). A role inclusion axiom is of the form r ⊑ s with
r, s roles. A transitivity axiom is of the form trans(r) for r a role. A role hierarchy H is a
finite set of role inclusion and transitivity axioms.

For a role hierarchy H, we define the function inv over roles as inv(r) := r− if r ∈ NR

and inv(r) := s if r = s− for a role name s ∈ NR. Further, we define ⊑H as the smallest
transitive reflexive relation on roles such that r ⊑ s ∈ H implies r ⊑H s and inv(r) ⊑H

inv(s). We write r ≡H s if r ⊑H s and s ⊑H r. A role r is transitive w.r.t. H (notation
r+ ⊑H r) if a role s exists such that r ⊑H s, s ⊑H r, and trans(s) ∈ H or trans(inv(s)) ∈ H.
A role s is called simple w.r.t. H if there is no role r such that r is transitive w.r.t. H and
r ⊑H s.

Given a signature S = (NC , NR, NI ) and a role hierarchy H, the set of SHOIQ-
concepts (or concepts for short) over S is the smallest set built inductively over symbols
from S using the following grammar, where o ∈ NI , A ∈ NC , n ∈ IN0, s is a simple role
w.r.t. H, and r is a role w.r.t. H:

C ::= ⊤ | ⊥ | {o} | A | ¬C | C ⊓ C | C ⊔ C | ∀r.C | ∃r.C | 6n s.C | >n s.C.

We now define the semantics of SHOIQ concepts:

Definition 2 (Semantics of SHOIQ-concepts). An interpretation I = (∆I , ·I) consists
of a non-empty set ∆I, the domain of I, and a function ·I , which maps every concept name
A ∈ NC to a subset AI ⊆ ∆I , every role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I,
and every individual name a ∈ NI to an element aI ∈ ∆I. The top role ⊤r is interpreted
as {〈δ, δ′〉 | δ, δ′ ∈ ∆I} and the bottom role ⊥r as ∅. For each role name r ∈ NR, the

interpretation of its inverse role (r−)
I
consists of all pairs 〈δ, δ′〉 ∈ ∆I × ∆I for which

〈δ′, δ〉 ∈ rI.
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The semantics of SHOIQ-concepts over a signature S is defined as follows:

⊤I = ∆I ⊥I = ∅ ({o})I = {oI}
(¬C)I = ∆I \ CI (C ⊓D)I = CI ∩DI (C ⊔D)I = CI ∪DI

(∀r.C)I = {δ ∈ ∆I | if 〈δ, δ′〉 ∈ rI , then δ′ ∈ CI}
(∃r.C)I = {δ ∈ ∆I | there is a 〈δ, δ′〉 ∈ rI with δ′ ∈ CI}

(6n s.C)I = {δ ∈ ∆I | ♯(sI(δ, C)) ≤ n}
(>n s.C)I = {δ ∈ ∆I | ♯(sI(δ, C)) ≥ n}

where ♯(M) denotes the cardinality of the set M and sI(δ, C) is defined as

{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ sI and δ′ ∈ CI}.

Definition 3 (Syntax and Semantics of Axioms and Ontologies, Entailment). For
C,D concepts, a (general) concept inclusion axiom (GCI) is an expression C ⊑ D. We
introduce C ≡ D as an abbreviation for C ⊑ D and D ⊑ C. A finite set of GCIs is called
a TBox. An (ABox) (concept or role) assertion axiom is an expression of the form C(a),
r(a, b), ¬r(a, b), a ≈ b, or a 6≈ b, where C ∈ NC is a concept, r ∈ NR is a role, and a, b ∈ NI

are individual names. An ABox is a finite set of assertion axioms. An ontology O is a
triple (T , H, A) with T a TBox, H a role hierarchy, and A an ABox. We use NO

C
, NO

R
,

and NO
I

to denote, respectively, the set of concept, role, and individual names occurring in
O.

Let I = (∆I , ·I) be an interpretation. Then I satisfies a role inclusion axiom r ⊑ s
if rI ⊆ sI, I satisfies a transitivity axiom trans(r) if rI is a transitive binary relation,
and a role hierarchy H if it satisfies all role inclusion and transitivity axioms in H. The
interpretation I satisfies a GCI C ⊑ D if CI ⊆ DI; and I satisfies a TBox T if it satisfies
each GCI in T . The interpretation I satisfies an assertion axiom C(a) if aI ∈ CI, r(a, b)
if 〈aI , bI〉 ∈ rI , ¬r(a, b) if 〈aI , bI〉 /∈ rI , a ≈ b if aI = bI , and a 6≈ b if aI 6= bI ; I satisfies
an ABox if it satisfies each assertion in A. We say that I satisfies O if I satisfies T , H,
and A. In this case, we say that I is a model of O and write I |= O. We say that O is
consistent if O has a model.

Given an axiom α, we say that O entails α (written O |= α) if every model I of O
satisfies α.

Description Logics can further be extended with concrete domains, which correspond to
OWL’s datatypes. In such a case, one distinguishes between abstract roles that relate two
individuals and concrete roles that relate an individual with a data value. The Description
Logic SROIQ further allows for a number of features such as role chains of the form
hasFather ◦ hasBrother ⊑ hasUncle, support for the special concept Self, which can be
used in axioms of the form Narcissist ⊑ ∃loves.Self, or for defining roles that are reflexive,
irreflexive, symmetric, or asymmetric.

Description Logic ontologies can equally be expressed in terms of OWL ontologies, which
in turn can be mapped into RDF graphs (Patel-Schneider & Motik, 2012). The other direc-
tion is, however, not always possible, i.e., a mapping from RDF graphs to OWL ontologies is
only defined for certain well-formed RDF graphs that correspond to an OWL 2 DL ontology.
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2.2 The Relationship between RDF, SPARQL, and OWL

SPARQL queries are evaluated over RDF graphs which remain the basic data structure
even when adopting a more elaborate semantic interpretation.

Definition 4 (RDF Graphs). RDF is based on the set I of International Resource
Identifiers (IRIs), the set L of RDF literals, and the set B of blank nodes. The set
T of RDF terms is I ∪ L ∪ B. An RDF graph is a set of RDF triples of the form
(subject, predicate, object) ∈ (I ∪B)× I × T .

We generally abbreviate IRIs using prefixes rdf, rdfs, owl, and xsd to refer to the RDF,
RDFS, OWL, and XML Schema Datatypes namespaces, respectively. The empty prefix is
used for an imaginary example namespace, which we completely omit in Description Logic
syntax.

An example of a SPARQL query is

SELECT ?x FROM <ontologyIRI> WHERE { ?x rdf:type :C . ?x :r ?y }

The WHERE clause of the SPARQL query consists of a basic graph pattern (BGP): an
RDF graph written in Turtle syntax (Beckett, Berners-Lee, Prud’hommeaux, & Carothers,
2013), where some nodes or edges are replaced by variables. A basic graph pattern is more
precisely defined as follows:

Definition 5 (Basic Graph Pattern). Let V be a countably infinite set of query variables
disjoint from T . A triple pattern is a member of the set (T ∪ V )× (I ∪ V )× (T ∪ V ), and
a basic graph pattern (BGP) is a set of triple patterns.

We do not recall the complete surface syntax of SPARQL here since the only part
that is specific to the evaluation of SPARQL queries under OWL’s Direct Semantics is
the evaluation of BGPs. More complex WHERE clauses, which use operators such as
UNION for alternative selection criteria or OPTIONAL to query for optional bindings
(Prud’hommeaux & Seaborne, 2008), can be evaluated simply by combining the results
obtained by the BGP evaluation. Similarly, operations such as the projection of variables
from the SELECT clause is a straightforward operation over the results of the evaluation of
the WHERE clause. Therefore, we focus here on BGP evaluation only. For a more detailed
introduction to SPARQL queries and their algebra we refer interested readers to the work
of Hitzler, Krötzsch, and Rudolph (2009) or Glimm and Krötzsch (2010).

Since the Direct Semantics of OWL is defined in terms of OWL structural objects, i.e.,
OWL axioms, we map the BGPs of SPARQL queries into structural objects, which can have
variables in place of class (concept), object or data property (abstract or concrete role), or
individual names or literals. Since there is a direct mapping between OWL axioms and
Description Logic axioms, BGPs can be expressed as Description Logic axioms in which
variables can occur in place of concept, role and individual names. For example, the BGP
of the previous example is mapped to ClassAssertion(C ?x) and ObjectPropertyAssertion(r
?x ?y) in functional-style syntax or to C(?x) and r(?x, ?y) in Description Logic syntax.

For further details, we refer interested readers to the W3C specification that defines
the mapping between OWL structural objects and RDF graphs (Patel-Schneider & Motik,
2012) and to the specification of the OWL Direct Semantics entailment regime of SPARQL
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(Glimm & Ogbuji, 2013) that defines the extension of this mapping between BGPs and
OWL objects with variables.

2.3 SPARQL Queries

In the following, we directly write BGPs in Description Logic notation extended to al-
low for variables in place of concept, role and individual names in axioms. It is worth
reminding that SPARQL does not support existentially quantified variables, which is in
contrast to database-style conjunctive queries, where one typically also has existential/non-
distinguished variables.

For brevity and without loss of generality, we assume here that neither the query nor
the queried ontology contains anonymous individuals. We further do not consider data
properties and literals, but the presented optimizations can easily be transferred to this
case.

Definition 6 (Query). Let S = (NC ,NR,NI ) be a signature. A query signature Sq w.r.t.
S is a six-tuple (NC ,NR,NI ,VC ,VR,VI ), where VC , VR, and VI are countable, infinite,
and pairwise disjoint sets of concept variables, role variables, and individual variables
disjoint from NC , NR, and NI . A concept term is an element from NC ∪ VC . A role term
is an element from NR ∪ VR. An individual term is an element from NI ∪ VI . An axiom
template over Sq is a SROIQ axiom over S, where one can also use concept variables from
VC in place of concept names, role variables from VR in place of role names, and individual
variables from VI in place of individual names. A query q w.r.t. a query signature Sq is a
non-empty set of axiom templates over Sq. We use Vars(q) (Vars(at) for an axiom template
at) to denote the set of all variables in q (at) and |q| to denote the number of axiom templates
in q. Let t, t′ be individual terms; we call axiom templates of the form A(t) with A ∈ NC ,
r(t, t′) with r ∈ NR, or t ≈ t′ query atoms. A conjunctive instance query q w.r.t. a query
signature Sq is a non-empty set of query atoms.

For a function µ, we use dom(µ) to denote the domain of µ. Let O be an ontology over
S and q = {at1, . . . , atn} a query over Sq consisting of n axiom templates. A mapping µ
for q over O is a total function µ : Vars(q) → NO

C
∪ NO

R
∪ NO

I
such that

1. µ(v) ∈ NO
C

for each v ∈ VC ∩ dom(µ),

2. µ(v) ∈ NO
R

for each v ∈ VR ∩ dom(µ),

3. µ(v) ∈ NO
I

for each v ∈ VI ∩ dom(µ), and

4. O ∪ µ(q) is a SROIQ ontology.

We write µ(q) (µ(at)) to denote the result of replacing each variable v in q (at) with
µ(v). The set ΓO

q of the compatible mappings for q over O is defined as ΓO
q := {µ |

µ is a mapping for q over O}. A mapping µ is a solution mapping or a certain answer for
q over O if O |= µ(q). We denote the set containing all solution mappings for q over O
with ΩO

q . The result size or the number of answers of a query q over O is given by the

cardinality of the set ΩO
q .

Note that the last condition in the definition of mappings is required to ensure decid-
ability of query entailment. For example, without the condition, a reasoner might have to
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test instantiated axiom templates where a role variable has been replaced by a non-simple
role in a number restriction, which is not allowed in Description Logic axioms. Note also
that we do not indicate which variables are to be selected since we do not consider the
straightforward task of projection here.
Examples of queries according to the above definition are the following (where ?x is a
concept variable, ?y a role variable, and ?z an individual variable):

C ⊑ ∃?y.?x

(∃r.?x)(?z)

In the remainder, we use S for a signature (NC ,NR,NI ), O to denote a SROIQ ontology
over S, A,B ∈ NC for concept names from O, r, s ∈ NR for role names from O, a, b ∈ NI

for individual names from O, ?x, ?y for variables, c1, c2 for concept terms, r1, r2 for role
terms, t, t′ for individual terms, q = {at1, . . . , atn} for a query with n axiom templates over
the query signature Sq = (NC ,NR,NI ,VC ,VR,VI ), Γ

O
q for the compatible mappings and

ΩO
q for the solution mappings of q over O.

2.4 Model-building (Hyper)Tableau Calculi

In this section, we give a brief overview over the main reasoning techniques for OWL DL
ontologies since our cost-based query planning relies on these techniques.

In order to check whether an ontology O entails an axiom α, one typically checks whether
O ∪ {¬α} has a model. If that is not the case, then every model of O satisfies α and
O |= α. For example, to check whether an individual a0 is an instance of a concept C
w.r.t. an ontology O, we check whether adding the concept assertion ¬C(a0) to O leads
to an inconsistency. To check this, most OWL reasoners use a model construction calculus
such as tableau or hypertableau. In the remainder, we focus on the hypertableau calculus
(Motik, Shearer, & Horrocks, 2009), but a tableau calculus could equally be used and we
state how our results can be transferred to tableau calculi.

The hypertableau calculus starts from the initial set of ABox assertions and, by applying
derivation rules, it tries to construct (an abstraction of) a model of O. Derivation rules
usually add new concept or role assertion axioms, they may introduce new individuals, they
can be nondeterministic, leading to the need to choose between several alternative assertion
axioms to add or they can lead to a clash when a contradiction is detected. To show that
an ontology O is (in)consistent, the hypertableau calculus constructs a derivation, i.e., a
sequence of sets of assertions A0, . . . ,An, such that A0 contains all ABox assertions in O,
Ai+1 is the result of applying a derivation rule to Ai and An is the final set of assertions
where no more rules are applicable. If a derivation exists such that An does not contain a
clash, then O is consistent and An is called a pre-model of O. Otherwise O is inconsistent.
Each assertion in a set of assertions Ai is derived either deterministically or nondetermi-
nistically. An assertion is derived deterministically if it is derived by the application of a
deterministic derivation rule from assertions that were all derived deterministically. Any
other derived assertion is derived nondeterministically. It is easy to know whether an asser-
tion was derived deterministically or not because of the dependency directed backtracking
that most (hyper)tableau reasoners employ. In the pre-model, each individual s0 is assigned
a label L(s0) representing the concepts it is (non)deterministically an instance of and each
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pair of individuals 〈s0, s1〉 is assigned a label L(〈s0, s1〉) representing the roles through which
individual s0 is (non)deterministically related to individual s1.

3. Motivation

A straightforward algorithm to compute the answers for a query q is to test, for each
mapping µ, whether O |= µ(q). Since only terms that are used in O can occur in the range
of a mapping µ for q over O, there are finitely many mappings to test. In the worst case,
however, the number of mappings that have to be tested is still exponential in the number
of variables in the query. Such an algorithm is sound and complete if the reasoner used to
decide entailment is sound and complete since we check all mappings for variables that can
constitute actual solution mappings.

Optimizations cannot easily be integrated into the above sketched algorithm since it uses
the reasoner to check for the entailment of the instantiated query as a whole and, hence,
does not take advantage of relations or dependencies that may exist between the individual
axiom templates in q. For a more optimized evaluation, one can evaluate the query axiom
template by axiom template. Initially, the solution set contains only the identity mapping,
which does not map any variable to a value. One then picks the first axiom template,
extends the identity mapping to cover the variables of the chosen axiom template and then
uses a reasoner to check which of the mappings instantiate the axiom template into an
entailed axiom. One then picks the next axiom template and again extends the mappings
from the previous round to cover all variables and checks which of those mappings lead to
an entailed axiom. Thus, axiom templates which are very selective and are only satisfied by
very few solutions reduce the number of intermediate solutions. Choosing a good execution
order, therefore, can significantly affect the performance.

For example, let q = {A(?x), r(?x, ?y)} with ?x, ?y ∈ VI . The query belongs to the
class of conjunctive instance queries. We assume that the queried ontology contains 100
individuals, only 1 of which belongs to the concept A. This A instance has 1 r-successor,
while we have overall 200 pairs of individuals related with the role r. If we first evaluate
A(?x), we test 100 mappings (since ?x is an individual variable), of which only 1 mapping
satisfies the axiom template. We then evaluate r(?x, ?y) by extending the mapping with
all 100 possible mappings for ?y. Again only 1 mapping yields a solution. For the reverse
axiom template order, the first axiom template requires the test of 100 ·100 mappings. Out
of those, 200 remain to be checked for the second axiom template and we perform 10, 200
tests instead of just 200. Note also that the number of intermediate results when the query
is evaluated in the order A(?x), r(?x, ?y) is smaller than when it is evaluated in the reverse
order (2 versus 201).

In the context of databases or triple stores, cost-based ordering techniques for finding an
optimal or near optimal join ordering have been widely applied (Steinbrunn, Moerkotte, &
Kemper, 1997; Stocker, Seaborne, Bernstein, Kiefer, & Reynolds, 2008). These techniques
involve the maintenance of a set of statistics about relations and indexes, e.g., number of
pages in a relation, number of pages in an index, number of distinct values in a column,
together with formulas for the estimation of the selectivity of predicates and the estimation
of the CPU and I/O costs of query execution that depends amongst others, on the number
of pages that have to be read from or written to secondary memory. The formulas for the
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estimation of selectivities of predicates (result output size of axiom templates) estimate
the data distributions using histograms (Ioannidis & Christodoulakis, 1993), parametric
or sampling methods or combinations of them. Ordering strategies as implemented in
databases or triple stores are, however, not directly applicable in our setting. In the presence
of expressive schema level axioms, we cannot rely on counting the number of occurrences of
triples. We also cannot, in general, precompute all relevant inferences to base our statistics
on materialized inferences. Furthermore, we should not only aim at decreasing the number
of intermediate results, but also take into account the cost of checking or computing the
solutions. This cost can be very significant with OWL reasoning and its precise estimation
before query evaluation is difficult as this cost takes values from a wide range, e.g., due to
nondeterminism and the high worst-case complexity of the standard reasoning tasks.1

For several kinds of axiom templates we can, however, directly retrieve the solutions
from the reasoner instead of checking entailment. For example, for C(?x), reasoners typi-
cally have a method to retrieve concept instances. Although this might internally trigger
several tests, most methods of reasoners are highly optimized and avoid as many tests as
possible. Furthermore, reasoners typically cache several results such as the computed con-
cept hierarchy and retrieving sub-concepts can then be realized with a cache lookup. Thus,
the actual execution cost might vary significantly. Notably, we do not have a straight corre-
lation between the number of results for an axiom template and the actual cost of retrieving
the solutions as is typically the case in triple stores or databases. This requires cost models
that take into account the cost of the specific reasoning operations (depending on the state
of the reasoner) as well as the number of results.

As motivated above, we distinguish between simple and complex axiom templates. Sim-
ple axiom templates are those that correspond to dedicated reasoning tasks. Let c1 be a
concept term, C,C ′ (complex) concepts or concept variables, r1, r2 role terms or role in-
verses and t, t′ individual terms. The set of simple axiom templates contains templates of
the form: C ⊑ C ′, ∃r1.⊤ ⊑ c1 (domain restriction template), ⊤ ⊑ ∀r1.c1 (range restriction
template), r1 ⊑ r2, C(t), r1(t, t

′), t ≈ t′, t 6≈ t′. Complex axiom templates can, in con-
trast, not be evaluated by dedicated reasoning tasks and might require iterating over the
compatible mappings and by checking entailment for each instantiated axiom template. An
example of a complex axiom template is (∃r.?x)(?y).

4. Preprocessing for Extracting Information for Queries

In this section, we describe a way of preprocessing the queried ontology to extract informa-
tion that is useful for ordering the axiom templates in a query. This preprocessing is useful
for axiom templates of the form c1(t), r1(t, t

′), or t ≈ t′, where c1 is a concept term, r1 is a
role term and t, t′ are individual terms.

4.1 Extracting Individual Information from Reasoner Models

The first step in the ordering of query atoms is the extraction of statistics by exploiting
information generated by reasoners. We use the labels of an initial pre-model to pro-

1. For example, the description logic SROIQ, which underpins the OWL 2 DL standard, has a worst case
complexity of 2-NExpTime (Kazakov, 2008) and typical implementations are not worst case optimal.
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Algorithm 1 initializeKnownAndPossibleConceptInstances(O)

Input: a consistent SROIQ ontology O
1: An := buildModelFor(O)
2: for all a ∈ NO

I
do

3: for all C ∈ LAn
(a) do

4: if C was derived deterministically then
5: K[C] := K[C] ∪ {a}
6: else
7: P [C] := P [C] ∪ {a}
8: end if
9: end for

10: end for

vide information about the concepts the individuals belong to or the roles with which one
individual is connected to another one. We exploit this information similarly as was sug-
gested for determining known or possible (non-)subsumers for concepts during classification
(Glimm et al., 2012). In the hypertableau calculus, the following two properties hold for
each ontology O and each constructed pre-model An for O:

(P1) for each concept name C (role name r), each individual s0 (pair of individuals 〈s1, s2〉)
in An, if C ∈ LAn

(s0) (r ∈ LAn
(〈s1, s2〉)) and the assertion C(s0) (r(s1, s2)) was

derived deterministically, then it holds O |= C(s0) (O |= r(s1, s2)).

(P2) for an arbitrary individual s0 in An (pair of individuals 〈s1, s2〉 in An) and an arbitrary
concept name C (simple role name r), if C 6∈ LAn

(s0) (r 6∈ LAn
(〈s1, s2〉)), then

O 6|= C(s0) (O 6|= r(s1, s2)).

For simplicity, we assume here that equality (≈) is axiomatized and ≈ is treated as a
reflexive, symmetric, and transitive role. We use these properties to extract information
from the pre-model of a satisfiable ontology O.

Definition 7 (Known and Possible Instances). Let An be a pre-model for an ontology
O. An individual a is a known (possible) instance of a concept name C in An, denoted
a ∈ KAn

[C] (a ∈ PAn
[C]), if C ∈ LAn

(a) and C(a) is derived deterministically (nondeter-
ministically) in An. A pair of individuals 〈a1, a2〉 is a known (possible) instance of a simple
role name r in An, denoted 〈a1, a2〉 ∈ KAn

(r), if r ∈ LAn
(〈a1, a2〉) and r(a1, a2) is derived

deterministically (nondeterministically) in An. The individual a1 is (possibly) equal to the
individual a2, written a1 ∈ K≈[a2] and a2 ∈ K≈[a1] (a1 ∈ P≈[a2] and a2 ∈ P≈[a1]) if
a1 ≈ a2 has been deterministically (nondeterministically) derived in O.

In the remainder, we assume that the known and possible instances are defined w.r.t.
some arbitrary pre-model An for O and we simply write K[C], K[r], K≈[a], P [C], P [r],
and P≈[a]. Intuitively, K[C] contains individuals that can safely be considered instances of
the concept name C. On the other hand, the possible instances require costly consistency
checks in order to decide whether they are real instances of the concept, while individuals
that neither belong to K[C] nor P [C] can safely be assumed to be non-instances of C.
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Algorithm 1 outlines a procedure to initialize the relations for known and possible con-
cept instances. The information we extract involves the maintenance of the sets of known
and possible instances for all concepts of O. One can define a similar algorithm for initial-
izing the known and possible instances of simple roles and for (possibly) equal individuals.
In our implementation, we use a more involved procedure to only store the direct types of
each individual, where a concept name C is a direct type of an individual a in an ontology
O if O |= C(a) and there is no concept name D such that O |= D ⊑ C, O |= D(a) and
O 6|= D ≡ C.

Hypertableau and tableau reasoners typically do not deal with transitivity directly. In
order to deal with non-simple roles, O is expanded with additional axioms that capture
the semantics of the transitive relations before a pre-model is built. In particular, for each
individual a and non-simple role r, new concepts Ca and Cr

a are introduced and the axioms
Ca(a) and Ca ⊑ ∀r.Cr

a are added to O. The consequent application of the transitivity
encoding (Motik et al., 2009) produces axioms that propagate Cr

a to each individual b that
is reachable from a via an r-chain. The known and possible r-successors for a can then be
determined from the Cr

a instances.
The technique presented in this paper can be used with any (hyper)tableau calculus for

which properties (P1) and (P2) hold. All (hyper)tableau calculi used in practice that we are
aware of satisfy property (P1). Pre-models produced by tableau algorithms as presented
in the literature also satisfy property (P2); however, commonly used optimizations, such
as lazy unfolding, can compromise property (P2), which we illustrate with the following
example. Let us assume we have an ontology O containing the axioms

A ⊑ ∃r.(C ⊓D) (1)

B ≡ ∃r.C (2)

A(a) (3)

It is obvious that in this ontology A is a subconcept of B (hence, O |= B(a)) since every
individual that is r-related to an individual that is an instance of the intersection of C
and D is also r-related to an individual that is an instance of the concept C. However,
even though the assertion A(a) occurs in the ABox, the assertion B(a) is not added in the
pre-model when we use lazy unfolding. With lazy unfolding, instead of treating (2) as two
disjunctions ¬B ⊔ ∃r.C and B ⊔ ∀r.(¬C) as is typically done for general concept inclusion
axioms, B is only lazily unfolded into its definition ∃r.C once B occurs in the label of an
individual. Thus, although (∃r.(C ⊓ D))(a) would be derived, this does not lead to the
addition of B(a).

Nevertheless, most (if not all) implemented calculi produce pre-models that satisfy at
least the following weaker property:

(P3) for an arbitrary individual s0 in An and an arbitrary concept name C where C is
primitive in O,2 if C 6∈ LAn

(s0), then O 6|= C(s0).

Hence, properties (P2) and (P3) can be used to extract (non-)instance information from
pre-models. For tableau calculi that only satisfy (P3), for each non-primitive concept name

2. A concept C is considered primitive in O if O is unfoldable (Tsarkov et al., 2007) and it contains no
axiom of the form C ≡ E
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C in O we need to add to P [C] the individuals in O that do not include the concept C in
their label.

The proposed technique for determining known and possible instances of concept and
role names can be used in the same way with both tableau and hypertableau reasoners.
Since tableau algorithms often introduce more nondeterminism than hypertableau, one
might, however, find less deterministic derivations, which results in less accurate statistics.

4.1.1 Individual Clustering

In this section, we describe the procedure for creating clusters of individuals within an
ontology O using a constructed pre-model An of O. Two types of clusters are created:
concept clusters and role clusters. Concept clusters contain individuals having the same
concepts in their label and role clusters contain individuals with the same concept and role
labels. Role clusters are divided into three categories, those that are based on the first
individual of role instances, those based on the second individual and those based on both
individuals.

Definition 8 (Concept and Role Clusters). Let O be an ontology and An a pre-model
for O. We define the following two relations P1 and P2 that map an individual a from O
to the roles for which a has at least one successor or predecessor, respectively:

P1(a) = {r | r ∈ LAn
(〈a, b〉) for some b ∈ NO

I }

P2(a) = {r | r ∈ LAn
(〈b, a〉) for some b ∈ NO

I }

Based on these relations, we build three different partitions over NO
I
: concept clusters CC,

role successor clusters PC1, and role predecessor clusters PC2 such that the clusters satisfy:

for each C ∈ CC.(for each a1, a2 ∈ C.(LAn
(a1) = LAn

(a2)))

for each C ∈ PC1.(for each a1, a2 ∈ C.(LAn
(a1) = LAn

(a2) and P1(a1) = P1(a2)))

for each C ∈ PC2.(for each a1, a2 ∈ C.(LAn
(a1) = LAn

(a2) and P2(a1) = P2(a2))).

We further partition NO
I

× NO
I

into role clusters PC12 such that the clusters satisfy:

for each C ∈ PC12.(for each 〈a1, a2〉, 〈a3, a4〉 ∈ C.(LAn
(a1) = LAn

(a3),LAn
(a2) = LAn

(a4)

and LAn
(〈a1, a2〉) = LAn

(〈a3, a4〉))).

We use these clusters in the next section to optimize the dynamic query ordering strategy.

5. Query Answering and Axiom Template Ordering

In this section, we describe two different algorithms (a static and a dynamic one) for ordering
the axiom templates of a query based on some costs and then we deal with the formulation
of these costs. We first introduce the abstract graph representation of a query q by means
of a labeled graph Gq on which we define the computed statistical costs.

Definition 9 (Query Join Graph). A query join graph Gq for a query q is a tuple
(V,E,EL), where
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• V = q is a set of vertices (one for each axiom template);

• E ⊆ V ×V is a set of edges; such that 〈at1, at2〉 ∈ E if Vars(at1)∩Vars(at2) 6= ∅ and
at1 6= at2;

• EL is a function that assigns a set of variables to each 〈at1, at2〉 ∈ E such that
EL(at1, at2) = Vars(at1) ∩ Vars(at2).

In the remainder, we use Gq for the query join graph of q.
Our goal is to find a query execution plan, which determines the evaluation order for

axiom templates in q. Since the number of possible execution plans is of order |q|!, the
ordering task quickly becomes impractical. In the following, we focus on greedy algorithms
for determining an execution order, which prune the search space considerably. Roughly
speaking, we proceed as follows: We define a cost function, which consists of two components
(i) an estimate for the costs of the reasoning tasks needed for the evaluation of an axiom
template and (ii) an estimate for the intermediate result size, i.e., the number of results
that the evaluation of an axiom template will incur. Both components are combined to
induce an order among axiom templates. In this paper, we simply build the sum of the
two cost components, but different combinations such as a weighted sum of the two values
could also be used. For the query plan construction we distinguish static from dynamic
planning. For the former, we start constructing the plan by adding a minimal template
according to the order. Variables from this template are then considered bound, which
changes the cost function and might induce a different order among the remaining axiom
templates. Considering the updated order, we again select the minimal axiom template that
is not yet in the plan and update the costs. This process continues until the plan contains
all templates. Once a complete plan has been determined the templates are evaluated.
The dynamic case differs in that after selecting a template for the plan, we immediately
determine the solutions for the chosen template, which are then used to update the cost
function. While this yields accurate cost estimates, it can be very costly when all solutions
are considered for updating the cost function. Sampling techniques can be used to only test
a subset of the solutions, but we show in Section 7 that random sampling, i.e., randomly
choosing a percentage of the individuals from the so far computed solutions, is not adequate.
For this reason, we propose an alternative sampling approach that is based on the use of the
previously described individual clusters. We first present an example to make the difference
between static and dynamic planning clearer and justify why dynamic ordering can be
beneficial in our setting.

Example 1. Let O be an ontology and q = {C(?x), r(?x, ?y),D(?y)} a conjunctive instance
query over O. Suppose that for the known and possible instances of the query concepts and
roles we have

K[C] = {a} K[r] = ∅ K[D] = {b}

P [C] = {c, e} P [r] = {〈c, d〉, 〈e, f〉} P [D] = {f, g, h}

And let us assume that the possible instances of C, D and r are, in fact, real instances (note
that we do not have this information from the beginning). Please have in mind that the
possible instances of concepts or roles are more costly to evaluate than the known instances
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since they require expensive consistency checks in order to decide whether they are real
instances.

According to static planning, an ordering for query atoms is first determined. In partic-
ular, the atom r(?x, ?y) is chosen first since it has the least number of known and pos-
sible instances (0 known and 2 possible versus 1 known and 2 possible for C(?x) and
1 known and 3 possible for D(?y)). Then the atom C(?x) is chosen since it has less
known and possible instances than D(?y), i.e., 1 known and 2 possible versus 1 known
and 3 possible for D(?y). Hence the chosen execution plan in static planning is P =
(r(?x, ?y), C(?x),D(?y)). Afterwards, the query is evaluated according to the chosen exe-
cution plan, i.e., the atom r(?x, ?y) is evaluated first, which gives the solution mappings
Ω1 = {{?x 7→ c, ?y 7→ d}, {?x 7→ e, ?y 7→ f}}. This requires 2 consistency checks for the 2
possible instances of r. Afterwards, we check which of the ?x mappings, c and e, are known
or possible instances of C. Since both c and e are possible instances, we check whether they
are real instances of C (this requires 2 consistency checks). Hence, the solution mappings
are Ω2 = Ω1 = {{?x 7→ c, ?y 7→ d}, {?x 7→ e, ?y 7→ f}}. In the end, we check which of
the ?y mappings, d and f , are known or possible instances of D. For the only possible
instance, f , we find after one consistency check that f is indeed an instance of D. Hence,
the solution mappings for q are ΩO

q = {{?x 7→ e, ?y 7→ f}} and finding the solution required
5 consistency checks.

According to dynamic planning, an ordering is determined while we evaluate the query.
For the same reasons as before, the atom r(?x, ?y) is chosen to be evaluated first and the
solution mappings are, as before, Ω1 = {{?x 7→ c, ?y 7→ d}, {?x 7→ e, ?y 7→ f}} (this requires
2 consistency checks). We afterwards check which of the ?y mappings, d and f , are known
or possible instances of D. Note that this only requires a look-up since if we find d or f to be
among the possible instances, we do not check whether the individual is indeed an instance
or not. Here only f is a possible instance. We also check which of the ?x mappings, c and
e, are known or possible instances of C. Here, both c and e are possible instances, i.e., we
have 2 relevant possible instances for C(?x) and 1 for D(?y). Hence, the atom D(?y) is
chosen to be evaluated next, resulting in the solution sequence Ω2 = {{?x 7→ e, ?y 7→ f}} for
the (partial) execution plan (r(?x, ?y),D(?y)), requiring 1 consistency check. In the end,
we check whether the ?x mapping, e, is a known or possible instance of C. Since e is a
possible instance, we check whether it is a real instance (this requires 1 consistency check).
Hence, the solution mappings for q are ΩO

q = {{?x 7→ e, ?y 7→ f}}, which have been found
by performing 4 consistency checks, one less than in the static case.

Note that in dynamic ordering we perform less checks than in static ordering, since in
this case we can exploit the results of joins of query atoms and more information regarding
the possible instances of atoms (i.e., which of them are real instances), which is determined
as a result of evaluating the atoms while ordering them.

We now make the process of query plan construction more precise, but we leave the
exact details of defining the cost function and the ordering it induces to later.

Definition 10 (Static and Dynamic Ordering). A static (dynamic) cost function w.r.t.

q over O is a function s : q × 2V ars(q) → R × R (d : q × 2Γ
O
q → R × R), where with ΓO

q we

denote the set of compatible mappings for q over O. The two costs 〈Ecsat,Rs
s
at〉 (〈Ec

d
at,Rs

d
at〉)

for an axiom template at ∈ q are combined to yield a static ordering �s (dynamic ordering
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�d), which is a total order over the axiom templates of q such that, for at, at′ ∈ q, we say
that at �s at

′ (at �d at
′) iff Ecsat + Rssat ≤ Ecsat′ + Rssat′ (Ec

d
at + Rsdat ≤ Ecdat′ + Rsdat′).

An execution plan for q is a duplicate-free sequence of axiom templates from q. The
initial execution plan is the empty sequence and a complete execution plan is a sequence
containing all templates of q. Let Pi = (at1, . . . , ati) with i < |q| be an execution plan for
q with query join graph Gq = (V,E,EL). The set of bound variables of ati within Pi is
Vb(ati) = Vars(ati) ∩ Vars({at1, . . . , ati−1}). Let Cq be the set of complex axiom templates
in q. We next define which axiom templates can be used to extend an incomplete execution
plan. Let at be an axiom template in Pi, the set suci(at) contains the axiom templates
that are connected to at and not yet in Pi, i.e., suci(at) = {at′ ∈ q | 〈at, at′〉 ∈ E, at′ /∈
{at1, . . . ati}}. Based on this, we define the set of connected successor axiom templates for
Pi as Si = {at | at′ ∈ {at1, . . . , ati} and at ∈ suci(at

′)}. We further allow for including
axiom templates that are only connected to a complex axiom template from Si and define
the potential next templates qi for Pi w.r.t. Gq as qi = q if Pi is the initial execution plan
and otherwise

qi = Si ∪
⋃

at ∈ Cq ∩ Si

suci(at).

Given Pi, the static (dynamic) ordering induces an execution plan Pi+1 = (at1, . . . , ati, ati+1)
with ati+1 ∈ qi and ati+1 �s at (ati+1 �d at) for each at ∈ qi such that at 6= ati+1.

Note that according to the above definition, for Pi an execution plan, it can be the case
that qi contains templates that are assigned the same minimal cost by the cost function.
In such case, one can choose any of these atoms to add to Pi. Moreover, according to
the above definition for the case of queries containing only simple axiom templates we
have that, for i > 0, the set of potential next templates only contains templates that are
connected to a template that is already in the plan since unconnected templates cause
an unnecessary blowup of the number of intermediate results. For queries with complex
templates the set of potential next axiom templates can additionally contain templates that
do not share common variables with any template that is already in the plan. This different
handling of queries with complex templates is reasonable since, before evaluating a complex
axiom template that requires many consistency checks, we want to reduce the number of
candidate bindings, by first evaluating other simple (cheaper) templates that bind variables
which appear in the complex one.

Example 2. Let O be an ontology and q = {?x ⊑ A, ?y ⊑ r,B ⊑ ∃?y.?x} a query over
O. Assuming that systems usually precompute the concept and role hierarchies before they
accept queries, the evaluation of the first two templates, i.e., ?x ⊑ A and ?y ⊑ r, require
cheap cache lookups, whereas the axiom template B ⊑ ∃?y.?x, requires costly consistency
checks. Hence, it is reasonable to first evaluate the first two (cheap) templates to reduce the
mappings for ?x and ?y and then evaluate the third (expensive) template, by checking which
of the reduced mappings yield an entailed axiom.

An example that shows the actual gain we get from handling the ordering of complex
axiom templates in this way is presented in Section 7.

Let n = |q| and Pn = (at1, . . . , atn) be a complete execution plan for q over O determined
by static ordering. The procedure to find the solution mappings ΩO

q for Pn is recursively
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defined as follows: Initially, our solution set contains only the identity mapping Ω0 = {µ0},
which does not map any variable to any value. Assuming that we have evaluated the
sequence Pi = (at1, . . . , ati), i < n and we have found the set of solution mappings Ωi,
in order to find the solution mappings Ωi+1 of Pi+1, we use specific reasoning tasks to
extend the mappings in Ωi to cover the new variables of ati+1 if ati+1 is a simple axiom
template or the entailment check service of reasoners if ati+1 does not contain new variables
or if ati+1 is a complex axiom template. In dynamic planning the difference is that the
execution plan construction is interleaved with query evaluation. In particular, let n = |q|
and Pi = (at1 . . . ati) with i < n be a (partial) execution plan for q determined by dynamic
ordering and let Ωi be the solution mappings of Pi. In order to find Pi+1 we extend Pi with
a new template, ati+1, from q, i.e., Pi+1 = (at1, . . . ati+1), which, according to the dynamic
cost function, has the minimal cost among the remaining templates q \ {at1, . . . ati}. The
dynamic cost function assigns costs to templates at iteration i+ 1 taking into account the
solution mappings Ωi. We afterwards evaluate the atom ati+1, i.e., we find the solution
mappings Ωi+1 of Pi+1 by extending the solution mappings Ωi of Pi in the same way as in
the static case. In Section 6.3 in Algorithm 3, we show the complete procedure we follow
to answer a query.

We now define the cost functions s and d more precisely, which estimate the cost of the
required reasoner operations (first component) and the estimated result output size (second
component) of evaluating an axiom template. The intuition behind the estimated value
of the reasoner operation costs is that the evaluation of possible instances is much more
costly than the evaluation of known instances since possible instances require expensive
consistency checks whereas known instances require cheap cache lookups. The estimated
result size takes into account the number of known and possible instances and the probability
that possible instances are actual instances.

The time needed for an entailment check can change considerably between ontologies
and even within an ontology (depending on the involved concepts, roles and individuals).
In order to more accurately determine the entailment cost we use different entailment cost
values depending on whether the template under consideration is a template of the form i)
c1(t), ii) r1(t, t

′), iii) t ≈ t′, where c1 is a concept term, r1 is a role term and t, t′ are individual
terms, iv) one of the rest simple axiom templates (that require consistency checks to be
evaluated) or a complex axiom template. In the following we write CL to denote the cost of
a cache lookup in the internal structures of the reasoner, CE as a placeholder for the relevant
entailment cost value and PIS for the possible instance success, i.e, the estimated percentage
of possible instances that are actual instances. The costs CL and CE are determined by
recording the average time of previously performed lookups and entailment checks for the
queried ontology, e.g., during the initial consistency check, classification, or for previous
queries. The possible instance success, PIS , was determined by testing several ontologies
and checking how many of the initial possible instances were real ones, which was around
50% in nearly all ontologies.

Apart from the relations for the known and possible instances from Section 4.1, we use
the following auxiliary relations:

Definition 11 (Successor and Predecessor Relations). Let r be a role and a an indi-
vidual. We define sucK[r] and preK[r] as the set of individuals with known r-successors and
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r-predecessors, respectively:

sucK[r] := {a | ∃b.〈a, b〉 ∈ K[r]} and preK[r] := {a | ∃b.〈b, a〉 ∈ K[r]}.

Similarly, we define sucK[r, a] and preK[r, a] as the known r-successors of a and the known
r-predecessors of a, respectively:

sucK[r, a] := {b | 〈a, b〉 ∈ K[r]} and preK[r, a] := {b | 〈b, a〉 ∈ K[r]}.

We analogously define the functions sucP[r], preP[r], sucP[r, a], and preP[r, a] by replacing
K[r] with P [r].

Next, we define the cost functions for the case of conjunctive instance queries, i.e.,
queries containing only query atoms. In Section 5.2 we extend the cost functions to deal
with general queries.

5.1 The Static and Dynamic Cost Functions for Conjunctive Instance Queries

The static cost function s takes two components as input: a query atom and a set containing
the variables of the query atom that are considered bound. The function returns a pair of
real numbers for the reasoning cost and the result size for the query atom.

Initially, all variables are unbound and we use the number of known and possible in-
stances or successors/predecessors to estimate the number of required lookups and consis-
tency checks for evaluating the query atom and for the resulting number of mappings. For
an input of the form 〈C(?x), ∅〉 or 〈r(?x, ?y), ∅〉 the resulting pair of real numbers for the
computational cost and the estimated result size is computed as

〈|K[at]| · d · CL + |P [at]| · d · CE , |K[at]|+ PIS · |P [at]|〉,

where at denotes the predicate of the query atom (C or r). For at a concept (role) atom,
the factor d represents the depth of the concept (role) in the concept (role) hierarchy.
We use this factor since we only store the direct types of each individual (roles of which
individuals are instances) and, in order to find the instances of a concept (role), we may
need to check all its subconcepts (subroles) for known or possible instances. If the query
atom is a role atom with a constant in the first place, i.e., the input to the cost function is
of the form 〈r(a, ?x), ∅〉, we use the relations for known and possible successors to estimate
the computational cost and result size:

〈|sucK[r, a]| · d · CL + |sucP[r, a]| · d · CE , |sucK[r, a]| + PIS · |sucP[r, a]|〉.

Analogously, we use preK and preP instead of sucK and sucP for an input of the form
〈r(?x, a), ∅〉. Finally, if the atom contains only constants, i.e., the input to the cost function
is of the form 〈C(a), ∅〉, 〈r(a, b), ∅〉, the function returns 〈d · CL, 1〉 if the individual is a
known instance of the concept or role, 〈d · CE, PIS〉 if the individual is a possible instance
and 〈d · CL, 0〉 otherwise, i.e., if the individual is a known non-instance.

For equality atoms of the form ?x ≈?y, a ≈?x, ?x ≈ a or a ≈ b, we again exploit
information from the initial pre-model as described in Section 4.1. Based on the cardinality
of K≈[a] and P≈[a], we can define cost functions for the different cases of query atoms and
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bound variables. For inputs of the form 〈?x ≈ a, ∅〉 and 〈a ≈ ?x, ∅〉, the cost function is
defined as:

〈|K≈[a]| · CL + |P≈[a]| · CE , |K≈[a]|+ PIS · |P≈[a]|〉.

For inputs of the form 〈?x ≈ ?y, ∅〉, the cost function is computed as:

〈

∑

a∈NO

I

(|K≈[a]| · CL + |P≈[a]| · CE)/2,
∑

a∈NO

I

(|K≈[a]|+ PIS · |P≈[a]|)/2

〉

.

For inputs of the form 〈a ≈ b, ∅〉, the function returns 〈CL, 1〉 if b ∈ K≈[a], 〈CE , PIS〉 if
b ∈ P≈[a], and 〈CL, 0〉 otherwise (i.e., b is not equivalent to a).

After determining the cost of an initial query atom, at least one variable of a conse-
quently considered atom is bound, since during the query plan construction we move over
atoms sharing a common variable and we assume that the query is connected. We now de-
fine the cost functions for atoms with at least one variable bound. We make the assumption
that atoms with unbound variables are more costly to evaluate than atoms with all their
variables bound. For a query atom r(?x, ?y) with only ?x bound, i.e., function inputs of
the form 〈r(?x, ?y), {?x}〉, we use the average number of known and possible successors of
the role to estimate the computational cost and result size:

〈

|K[r]|

|sucK[r]|
· d · CL +

|P [r]|

|sucP[r]|
· d · CE,

|K[r]|

|sucK[r]|
+

|P [r]|

|sucP[r]|
· PIS

〉

.

In case only ?y in r(?x, ?y) is bound, we use the predecessor functions preK and preP instead
of sucK and sucP. Note that we now work with an estimated average number of successors
(predecessors) for one individual.

For atoms with all their variables bound, we use formulas that are comparable to the
ones above for an initial plan, but normalized to estimate the values for one individual. For
an input query atom of the form C(?x) with ?x a bound variable we use

〈

|K[C]| · d · CL + |P [C]| · d · CE

|NO
I
|

,
|K[C]|+ PIS · |P [C]|

|NO
I
|

〉

.

Such a simple normalization is not always accurate, but leads to good results in most
cases as we show in Section 7. Similarly, we normalize the formulas for role atoms of the
form r(?x, ?y) such that {?x, ?y} is the set of bound variables of the atom. The two cost
components for these atoms are computed as

〈

|K[r]| · d · CL + |P [r]| · d · CE

|NO
I
| · |NO

I
|

,
|K[r]|+ PIS · |P [r]|

|NO
I
| · |NO

I
|

〉

.

For role atoms with a constant and a bound variable, i.e., atoms of the form r(a, ?x)
(r(?x, a)) with ?x a bound variable, we use sucK[r, a] and sucP[r, a] (preK[r, a] and preP[r, a])
instead of K[r] and P [r] in the above formulas and we normalize by |NO

I
|.

Similarly, we normalize the cost functions for inputs with equality atoms and bound
variables, depending on whether the atoms contain one or two bound variables. For inputs
of the form 〈?x ≈ a, {?x}〉, 〈a ≈?x, {?x}〉, we divide the cost function components for inputs
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already executed current atom at K[at] P [at] real from P [at]

1 C(?x) 200 350 200

2 r(?x, ?y) 200 200 50

3 D(?y) 700 600 400

4 r(?x, ?y) C(?x) 100 150 100

5 r(?x, ?y) D(?y) 50 50 40

6 r(?x, ?y), D(?y) C(?x) 45 35 25

7 r(?x, ?y), C(?x) D(?y) 45 40 25

Table 1: Query Ordering Example

of the form 〈?x ≈ a, ∅〉 and 〈a ≈?x, ∅〉 by |NO
I
|. For an input of the form 〈?x ≈ y, {?x, ?y}〉,

we divide the cost function components for input of the form 〈?x ≈?y, ∅〉 by |NO
I
| · |NO

I
|.

For inputs of the form 〈?x ≈?y, {?x}〉, and 〈?x ≈?y, {?y}〉, we divide the cost function
components for input of the form 〈?x ≈?y, ∅〉 by |NO

I
|.

The dynamic cost function d is based on the static function s, but only uses the first
equations, where the atom contains only unbound variables or constants. The function
takes a pair 〈at,Ω〉 as input, where at is a query atom and Ω is the set of solution mappings
for the atoms that have already been evaluated, and returns a pair of real numbers using
matrix addition as follows:

d(at,Ω) =
∑

µ∈Ω

s(µ(at), ∅)

When sampling techniques are used, we compute the costs for each of the potential next
atoms for an execution plan by only considering one individual of each relevant cluster.
Which cluster is relevant depends on the query atom for which we compute the cost function
and the previously computed bindings. For instance, if we compute the cost of a role atom
r(?x, ?y) and we have already determined bindings for ?x, we use the role successor cluster
PC1. Among the ?x bindings, we then just check the cost for one binding per cluster and
assign the same cost to all other ?x bindings of the same cluster.

Example 3. Let us assume that we have a conjunctive instance query q and that we have
to find the cost (using the dynamic function) of the atom C(?x) within an execution plan
for q. We further assume that from the evaluation of previous query atoms in the plan
we have already determined a set of intermediate solutions Ω with the mappings a, b, or c
for ?x. Let us assume that a, b, and c belong to the same concept cluster. According to
dynamic ordering we need to find the cost of each instantiated atom using the static cost
function, i.e., d(C(?x),Ω) = s(C(a), ∅) + s(C(b), ∅) + s(C(c), ∅). If we additionally use
cluster based sampling, we find the cost for only one individual of each cluster, let us say a,
and then assign the same cost to all other individuals from the cluster which are mappings
for ?x in Ω. Hence, the cost of the atom C(?x) when sampling is used, is computed as
d(C(?x),Ω) = 3 · s(C(a), ∅) avoiding the computation of s(C(b), ∅) and s(C(c), ∅).

An example that is similar to Example 1 (but with a greater number of instances) and
shows how ordering is achieved by the use of the defined static and dynamic functions is
shown below. We assume that q is a query consisting of the three query atoms: C(?x),
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r(?x, ?y), D(?y). Table 1 gives information about the known and possible instances of
these atoms within a sequence. The second column shows already executed sequences
Pi−1 = (at1, . . . , ati−1) for the atoms of q. Column 3 gives the current atom ati and column
4 (5) gives the number of mappings to known (possible) instances of at that satisfy at the
same time the atoms (at1, . . . , ati−1) from column 2. Column 6 gives the number of real
instances from the possible instances for the current atom. For example, row 4 says that we
have evaluated the atom r(?x, ?y) and, in order to evaluate C(?x), we only consider those
100 known and 150 possible instances of C that are also mappings for ?x. We further assume
that we have 10,000 individuals in our ontology O. We now explain, using the example,
how the above described formulas work. We assume that CL ≤ CE, which is always the
case since a cache lookup is less expensive than a consistency check and that the CE values
are the same for all query concepts and roles. For ease of presentation, we further do not
consider the factor for the depth of the concept (role) within the concept (role) hierarchy.
In both techniques (static and dynamic) the atom r(?x, ?y) is chosen first since it has the
least number of possible instances (200) while it has the same (or smaller) number of known
instances (200) as the other atoms (µ0 is the initial solution mapping that does not map
any variable):

s(r(?x, ?y), ∅) = d(r(?x, ?y), {µ0}) = 〈200 · CL + 200 · CE , 200 + PIS · 200〉,

s(C(?x), ∅) = d(C(?x), {µ0}) = 〈200 · CL + 350 · CE , 200 + PIS · 350〉,

s(D(?y), ∅) = d(D(?y), {µ0}) = 〈700 · CL + 600 · CE , 700 + PIS · 600〉.

In the case of static ordering, the atom C(?x) is chosen after r(?x, ?y) since C has less
possible (and known) instances than D (350 versus 600):

s(C(?x), {?x}) =

〈

200

10, 000
· CL +

350

10, 000
· CE,

200 + 350 · PIS

10, 000

〉

,

s(D(?y), {?y}) =

〈

700

10, 000
· CL +

600

10, 000
· CE,

700 + 600 · PIS

10, 000

〉

.

Hence, the order of evaluation in this case is P = (r(?x, ?y), C(?x),D(?y)) leading to
200 (row 2) + 150 (row 4) + 40 (row 7) entailment checks. In the dynamic case, after the
evaluation of r(?x, ?y), which gives a set of solutions Ω1, the atom D(?y) has fewer known
and possible instances (50 known and 50 possible) than the atom C(?x) (100 known and
150 possible) and, hence, a lower cost:

d(D(?y),Ω1) = 〈50 · CL + 150 · CL + 50 · CE, 50 + 0 + 50 · PIS〉,

d(C(?x),Ω1) = 〈100 · CL + 0 · CL + 150 · CE, 100 + 0 + 150 · PIS〉.

Note that applying a solution µ ∈ Ω1 to D(?y) (C(?x)) results in a query atom with a
constant in place of ?y (?x). For D(?y), it is the case that out of the 250 r-instances, 200
can be handled with a look-up (50 turn out to be known instances and 150 turn out not
to be instances of D), while 50 require an entailment check. Similarly, when considering
C(?x), we need 100 lookups and 150 entailment checks. Note that we assume the worst
case in this example, i.e., that all values that ?x and ?y take are different. Therefore,
the atom D(?y) is chosen next, leading to the execution of the query atoms in the order
P = (r(?x, ?y),D(?y), C(?x)) and the execution of 200 (row 2) + 50 (row 5) + 35 (row 6)
entailment checks.
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5.2 Cost Functions for General Queries

We now explain how we order the remaining simple and complex axiom templates. We
again use statistics from the reasoner, whenever these are available. In case the reasoner
cannot give estimates, one can still work with statistics computed from explicitly stated
information or use upper bounds to estimate the reasoner costs and the result size of axiom
templates.

We first consider a general concept assertion axiom template. Let KC [a] be the concepts
of which a is a known instance, PC [a] the concepts of which a is a possible instance. These
sets are computed from the sets of known and possible instances of concepts. For an input
of the form 〈?x(a), ∅〉 the cost function is defined as

〈|KC [a]| · d · CL + |PC [a]| · d · CE , |KC [a]|+ PIS · |PC [a]|〉.

For an input of the form 〈?x(?y), ∅〉, the cost function is defined as

〈

∑

C∈NO
C

(|K[C]| · d · CL + |P [C]| · d · CE),
∑

C∈NO
C

(|K[C]|+ PIS · |P [C]|)

〉

.

For inputs of the form 〈?x(a), {?x}〉 and 〈?x(?y), {?x, ?y}〉, we normalize the above functions
by |NO

C
| and |NO

I
|·|NO

C
| respectively. For inputs of the form 〈?x(?y), {?x}〉 and 〈?x(?y), {?y}〉

we normalize the function for inputs of the form 〈?x(?y), ∅〉 by |NO
C
| and |NO

I
| respectively.

For general role assertion axiom templates, there are several cases of cost functions de-
pending on the bound variables. We next define the cost functions for some cases. The cost
functions for the other cases can similarly be defined. For an input of the form 〈?z(?x, ?y), ∅〉,
the cost function is defined as :

〈

∑

r∈NO

R

(|K[r]| · d · CL + |P [r]| · d · CE),
∑

r∈NO

R

(|K[r]|+ PIS · |P [r]|)

〉

.

For inputs of the form 〈?z(a, ?y), ∅〉, the cost function is defined as:

〈

∑

r∈NO

R

(|sucK[r, a]| · d · CL + |sucP[r, a]| · d · CE),
∑

r∈NO

R

(|sucK[r, a]| + PIS · |sucP[r, a]|)

〉

.

For an input of the form 〈?z(?x, ?y), {?z}〉, the cost function is defined as:

〈

∑

r∈NO
R

|K[r]| · d · CL + |P [r]| · d · CE

|NO
R
|

,
∑

r∈NO
R

|K[r]|+ PIS · |P [r]|

|NO
R
|

〉

.

Last, for inputs of the form 〈?z(?x, ?y), {?x}〉, the two cost components are computed as:

〈

∑

r∈NO

R

(
|K[r]|

|sucK[r]|
· d · CL +

|P [r]|

|sucP[r]|
· d · CE),

∑

r∈NO

R

(
|K[r]|

|sucK[r]|
+

|P [r]|

|sucP[r]|
·PIS)

〉

.

274



Optimizing SPARQL Query Answering over OWL Ontologies

For concept (role) inclusion axiom templates of the form c1 ⊑ c2 (r1 ⊑ r2), where c1, c2
concept terms (r1, r2 role terms), that contain only concept (role) names and variables we
need lookups in the computed concept (role) hierarchy in order to compute the answers
(assuming that the concept (role) hierarchy is precomputed).

One can define similar cost functions for other types of axiom templates by either using
the available statistics or by relying on told information from the ontology. For this paper,
however, we just define a cost function based on the assumption that we iterate over all
possible values of the respective variables and do one consistency check for each value.
Hence, we define the following general cost function for these cases:

〈|N | · CE, |N |〉,

where N ∈ {NO
C
,NO

R
,NO

I
} as appropriate for the variable that is tested. As discussed in

Section 5.1, the dynamic function is based on the static one and is applied only to the above
described cases for an empty set of bound variables.

Proposition 1. Let q be a query over an ontology O, s and d the static and dynamic cost
functions defined in Sections 5.1 and 5.2. The ordering induced by s and d is a total order
over the axiom templates of q.

Proof. The cost functions s and d are defined for all kinds of axiom templates and return
two real numbers to each possible input. Since, according to Definition 10, the orders �s

and �d are based on the addition of the two real numbers, addition of reals yields again a
real number, and since ≤ is a total order over the reals, we immediately get that �s and
�d are total orders.

It is obvious that the ordering of axiom templates does not affect soundness and com-
pleteness of a query evaluation algorithm.

6. Complex Axiom Template Optimizations

In this section, we first describe some optimizations that we have developed for complex
axiom templates (Sections 6.1, 6.2) and then we present the procedure for evaluating queries
(Section 6.3).

6.1 Axiom Template Rewriting

Some costly to evaluate axiom templates can be rewritten into axiom templates that can
be evaluated more efficiently and yield an equivalent result. Before we go on to describe the
axiom template rewriting technique, we define what a concept template is, which is useful
throughout the section.

Definition 12 (Concept Template). Let Sq = (NC ,NR,NR,VC ,VR,VI ) be a query
signature w.r.t. a signature S = (NC ,NR,NI ). A concept template over Sq is a SROIQ
concept over S, where one can also use concept variables from VC in place of concept names,
role variables from VR in place of role names and individual variables from VI in place of
individual names.
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Definition 13 (Rewriting). Let O be an ontology, at ∈ q an axiom template over Sq,
t, t1, . . . tn individuals or individual variables from Sq, and C,C1, . . . , Cn concept templates
over Sq. The function rewrite takes an axiom template and returns a set of axiom templates
as follows:

• if at = (C1 ⊓ . . . ⊓Cn)(t), then rewrite(at) = {C1(t), . . . , Cn(t)};

• if at = C ⊑ C1 ⊓ . . . ⊓ Cn, then rewrite(at) = {C ⊑ C1, . . . , C ⊑ Cn};

• if at = C1 ⊔ . . . ⊔ Cn ⊑ C, then rewrite(at) = {C1 ⊑ C, . . . , Cn ⊑ C};

• if at = t1 ≈ . . . ≈ tn, then rewrite(at) = {t1 ≈ t2, t2 ≈ t3, . . . , tn−1 ≈ tn}.

To understand the intuition behind such transformation, we consider a query with only
the axiom template: ?x ⊑ ∃r.?y ⊓ A. Its evaluation requires a quadratic number of con-
sistency checks in the number of concepts (since ?x and ?y are concept variables). The
rewriting yields: ?x ⊑ A and ?x ⊑ ∃r.?y. The first axiom template is now evaluated with a
cheap cache lookup (assuming that the concept hierarchy has been precomputed). For the
second one, we only have to check the usually few resulting bindings for ?x combined with
all other concept names for ?y.

Note that Description Logics typically do not support n-ary equality axioms t1 ≈ . . . ≈
tn, but only binary ones, whereas in OWL, one can typically also write n-ary equality axioms.
Since our cost functions are only defined for binary equality axioms, we equivalently rewrite
an n-ary one into several binary ones. One could even further optimize the evaluation of
such atoms by just evaluating one binary equality axiom template and by then propagating
the binding for the found equivalent individuals to the other equality axioms. This is valid
since equality is a congruence relation.

6.2 Concept and Role Hierarchy Exploitation

The number of consistency checks required to evaluate a query can be further reduced
by taking the concept and role hierarchies into account. Once the concepts and roles are
classified (this can ideally be done before a system accepts queries), the hierarchies are
stored in the reasoner’s internal structures. We further use the hierarchies to prune the
search space of solutions in the evaluation of certain axiom templates. We illustrate the
intuition with the example Infection ⊑ ∃hasCausalLinkTo.?x. If A is not a solution and
B ⊑ A holds, then B is also not a solution. Thus, when searching for solutions for ?x, we
choose the next binding to test by traversing the concept hierarchy top-down. When we find
a non-solution A, the subtree rooted in A of the concept hierarchy can safely be pruned.
Queries over ontologies with a large number of concepts and a deep concept hierarchy
can, therefore, gain the maximum advantage from this optimization. We employ similar
optimizations using the role hierarchies.

In the example above, we can prune the subconcepts of A because ?x has positive
polarity in the axiom template Infection ⊑ ∃hasCausalLinkTo.?x., i.e., ?x occurs positively
on the right hand side of the axiom template. In case a variable ?x has negative polarity
in an axiom template of the form C1 ⊑ C2, i.e., ?x occurs directly or indirectly under a
negation on the right hand side of the axiom template or positively on the left-hand side of
an axiom template, one can, instead, prune the superconcepts.
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We next specify more precisely the polarity of a concept variable in a concept or axiom
template.

Definition 14 (Concept Polarity). Let ?x ∈ VC be a concept variable and C,C1, C2,D
concept templates, r a role, and n ∈ IN0. We define the polarity of ?x in C as follows: ?x
occurs positively in ?x. Furthermore, ?x occurs positively (negatively)

• in ¬D if ?x occurs negatively (positively) in D,

• in C1 ⊓ C2 or C1 ⊔ C2 if ?x occurs positively (negatively) in C1 or C2,

• in ∃r.D, ∀r.D, or > n r.D if ?x occurs positively (negatively) in D,

• in 6 n r.D if ?x occurs negatively (positively) in D

• in = n r.D if ?x occurs in D.

We further say that ?x occurs positively (negatively) in C1 ⊑ C2 if ?x occurs negatively
(positively) in C1 or positively (negatively) in C2. Note that ?x can occur both positively
and negatively in a concept template. We further define a partial function polc that maps
a concept variable ?x and a concept template C (axiom template of the form C1 ⊑ C2) to
pos if ?x occurs only positively in C (C1 ⊑ C2) and to neg if ?x occurs only negatively in
C (C1 ⊑ C2).

Note that no matter whether ?x occurs positively or negatively in a concept template D,
in any concept template C of the form = n r.D, ?x occurs positively as well as negatively.
This is due to the fact that C is equivalent to the concept template 6 n r.D ⊓ > n r.D
in which ?x occurs positively as well as negatively. Since the function polc is not defined
for variables that appear both positively and negatively, the concept hierarchy cannot be
exploited in this case. For example, consider the concept template ¬?x ⊔ ∃r.?x, (axiom
template ?x ⊑ ∃r.?x), where ?x appears negatively in ¬?x and positively in ∃r.?x. Now,
let δ ∈ ∆I be an arbitrary element from a model I = (∆I , ·I) of the ontology. It is obvious
that if δ is an instance of ¬A ⊔ ∃r.A and either A ⊑ B or B ⊑ A holds, we cannot deduce
that δ is an instance of ¬B ⊔ ∃r.B.

Before proving the correctness of the proposed optimization, we first show the relation-
ship between entailment and concept membership, which is used in the subsequent proofs.

Lemma 1. Let q be a query over O w.r.t. the query signature Sq = (NC ,NR,NI ,VC ,VR,VI ),
at ∈ q be an axiom template of the form C1 ⊑ C2 where C1 and C2 are concept templates
and let µ be a mapping for at over O. It holds that O 6|= µ(C1 ⊑ C2) iff there exists an
interpretation I = (∆I , ·I) and an element δ ∈ ∆I such that I |= O and δ 6∈ µ(¬C1 ⊔C2)

I .

Proof. O 6|= µ(C1 ⊑ C2) holds iff there exists an interpretation I = (∆I , ·I) and an element
δ ∈ ∆I such that I |= O and δ ∈ µ(C1)

I and δ 6∈ µ(C2)
I , which holds iff δ ∈ µ(C1)

I

and δ ∈ µ(¬C2)
I , which is equivalent to δ ∈ µ(C1 ⊓ ¬C2)

I , which is equivalent to δ ∈
µ(¬(¬C1 ⊔ C2))

I , which holds iff δ 6∈ µ(¬C1 ⊔ C2)
I .

The following theorem holds for every axiom template of the form C1 ⊑ C2. Note that
we assume here that concept assertion templates of the form C(a) are expressed as the
equivalent axiom templates {a} ⊑ C. We use Cµ(?x)=A, where A is a concept name, to
denote the concept obtained by applying the extension of µ that also maps ?x to A.
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Theorem 1. Let O be an ontology, A,B concept names such that O |= A ⊑ B, C1, C2

concept templates, C1 ⊑ C2 an axiom template, C = ¬C1 ⊔C2, ?x ∈ VC a concept variable
occurring in C and µ a mapping that covers all variables of C apart from ?x.

1. For polc(?x,C) = pos it holds that if O 6|= (C1 ⊑ C2)µ(?x)=B , then O 6|= (C1 ⊑ C2)µ(?x)=A.

2. For polc(?x,C) = neg it holds that if O 6|= (C1 ⊑ C2)µ(?x)=A, then O 6|= (C1 ⊑ C2)µ(?x)=B .

Proof. Due to Lemma 1, it suffices to show for some model I = (∆I , ·I) of O and some
element δ ∈ ∆I the following (which is formalized in contrapositive form):

1. For polc(?x,C) = pos it holds that if δ ∈ (Cµ(?x)=A)
I , then δ ∈ (Cµ(?x)=B)

I .

2. For polc(?x,C) = neg it holds that if δ ∈ (Cµ(?x)=B)
I , then δ ∈ (Cµ(?x)=A)

I .

We prove the claim by induction on the structure of the concept template C:

• For C =?x, ?x occurs positively in C. Now, if δ ∈ (?xµ(?x)=A)
I , that is δ ∈ AI , it is

easy to see that δ ∈ BI since O |= A ⊑ B by assumption. Hence, δ ∈ (?xµ(?x)=B)
I .

• For C = ¬D and polc(?x,C) = pos, if δ ∈ (¬Dµ(?x)=A)
I , we have to show that

δ ∈ (¬Dµ(?x)=B)
I . Note that polc(?x,D) = neg. In contrary to what is to be shown,

assume that δ ∈ (Dµ(?x)=B)
I . Since O |= A ⊑ B and by induction hypothesis δ ∈

(Dµ(?x)=A)
I and δ ∈ (¬Dµ(?x)=A)

I which is a contradiction. The proof is analogous
for polc(?x,C) = neg.

• For C = C1 ⊓ C2 and polc(?x,C) = pos, if δ ∈ ((C1 ⊓ C2)µ(?x)=A)
I , then δ ∈

(C1µ(?x)=A)
I and δ ∈ (C2µ(?x)=A)

I . Since O |= A ⊑ B and by induction hypoth-

esis, δ ∈ (C1µ(?x)=B)
I and δ ∈ (C2µ(?x)=B)

I . Thus, δ ∈ ((C1 ⊓ C2)µ(?x)=B)
I . The

proof is analogous for polc(?x,C) = neg.

• The proof for C1 ⊔C2 is analogous to the one for C1 ⊓ C2.

• For C = ∃r.D and polc(?x,C) = pos, if δ ∈ ((∃r.D)µ(?x)=A)
I , then δ has at least one r-

successor, say δ′, that is an instance of Dµ(?x)=A. Since O |= A ⊑ B and by induction

hypothesis, δ′ ∈ Dµ(?x)=B . Hence, δ ∈ (∃r.(Dµ(?x)=B))
I = ((∃r.D)µ(?x)=B)

I . The
proof is analogous for polc(?x,C) = neg.

• For C = ∀r.D and polc(?x,C) = pos, if δ ∈ ((∀r.D)µ(?x)=A)
I , then δ ∈ (∀r.(D)µ(?x)=A)

I

and each r-successors of δ is an instance of Dµ(?x)=A. Since O |= A ⊑ B and by in-
duction hypothesis, these r-successors are also instances of Dµ(?x)=B . Hence, δ ∈

(∀r.(Dµ(?x)=B))
I = ((∀r.D)µ(?x)=B)

I . The proof is analogous for polc(?x,C) = neg.

• For C = > n r.D and polc(?x,C) = pos, if δ ∈ ((> n r.D)µ(?x)=A)
I , then δ has at

least n distinct r-successors which are instances of Dµ(?x)=A. Since O |= A ⊑ B and
by induction hypothesis, these successors are instances of Dµ(?x)=B . Hence, δ has
at least n distinct r-successors that are instances of Dµ(?x)=B and, therefore, δ ∈ (>

n r.(D)µ(?x)=B)
I = ((> n r.D)µ(?x)=B)

I . The proof is analogous for polc(?x,C) = neg.
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• For C = 6 n r.D and polc(?x,C) = pos, if δ ∈ ((6 n r.D)µ(?x)=A)
I , we have to show

that δ ∈ ((6 n r.D)µ(?x)=B)
I . Note that polc(?x,D) = neg. In contrary to what is to

be shown, assume that δ ∈ (¬(6 n r.D)µ(?x)=B)
I , i.e., δ ∈ ((> n + 1 r.D)µ(?x)=B)

I .
Hence, δ has at least n + 1 distinct r-successors which are instances of Dµ(?x)=B .
Since polc(?x,D) = neg and by induction hypothesis, these Dµ(?x)=B instances are

also Dµ(?x)=A instances and δ ∈ (> n + 1 r.(D)µ(?x)=A)
I = ((> n + 1 r.D)µ(?x)=A)

I ,
which is a contradiction. The proof is analogous for polc(?x,C) = neg.

• For C = (= n r.D), the polarity of ?x in C is always positive and negative, so
polc(?x,C) is undefined and the case cannot occur.

We now extend this optimization to the case of role variables and we first define the
polarity of a role variable in a concept or axiom template.

Definition 15 (Role Polarity). Let ?x ∈ VR be a role variable, C,C1, C2,D concept
templates, r a role, and n ∈ IN0. We define the polarity of ?x in C as follows: ?x occurs
positively in ∃?x.D, ∃?x−.D, > n ?x.D, > n ?x−.D, = n ?x.D, and = n ?x−.D; ?x
occurs negatively in ∀?x.D, ∀?x−.D, 6 n ?x.D, 6 n ?x−.D, = n ?x.D, and = n ?x−.D.
Furthermore, ?x occurs positively (negatively)

• in ¬D if ?x occurs negatively (positively) in D,

• in C1 ⊓ C2 or C1 ⊔ C2 if ?x occurs positively (negatively) in C1 or C2,

• in ∃r.D, ∃?x.D, ∃?x−.D, > n r.D, > n ?x.D, > n ?x−.D, ∀r.D, ∀?x.D, or ∀?x−.D
if ?x occurs positively (negatively) in D,

• in 6 n r.D, 6 n ?x.D, or 6 n ?x−.D if ?x occurs negatively (positively) in D,

• in = n r.D if ?x occurs in D.

We further say that ?x occurs positively (negatively) in C1 ⊑ C2 if ?x occurs negatively
(positively) in C1 or positively (negatively) in C2. We define a partial function polr that
maps a role variable ?x and a concept template C (axiom template of the form C1 ⊑ C2) to
pos if ?x occurs only positively in C (C1 ⊑ C2) and to neg if ?x occurs only negatively in
C (C1 ⊑ C2).

Note also that we do not make any assumption about occurrences of ?x in D in the first
part of the definition.

We now show, that the hierarchy optimization is also applicable to role variables, pro-
vided they occur only positively or only negatively.

Theorem 2. Let O be an ontology, r, s role names such that O |= r ⊑ s, C1, C2 concept
templates, C1 ⊑ C2 an axiom template, C = ¬C1 ⊔ C2, ?x ∈ VR a role variable occurring
in C and µ a mapping that covers all variables of C apart from ?x.

1. For polr(?x,C) = pos it holds that if O 6|= (C1 ⊑ C2)µ(?x)=s, then O 6|= (C1 ⊑ C2)µ(?x)=r.

2. For polr(?x,C) = neg it holds that if O 6|= (C1 ⊑ C2)µ(?x)=r, then O 6|= (C1 ⊑ C2)µ(?x)=s.

279



Kollia & Glimm

Proof. Due to Lemma 1, it suffices to show for some model I = (∆I , ·I) of O and some
element δ ∈ ∆I the following (which is formalized in contrapositive form):

1. For polr(?x,C) = pos it holds that if δ ∈ (Cµ(?x)=r)
I , then δ ∈ (Cµ(?x)=s)

I .

2. For polr(?x,C) = neg it holds that if δ ∈ (Cµ(?x)=s)
I , then δ ∈ (Cµ(?x)=r)

I .

We prove the claim by induction on the structure of the concept template C:

• For C = ∃?x.D, where D is a concept template that does not contain ?x. We have
polr(?x,C) = pos. Assume, δ ∈ ((∃?x.D)µ(?x)=r)

I , that is, δ ∈ (∃r.µ(D))I . Then

there is some δ′ ∈ ∆I such that 〈δ, δ′〉 ∈ rI and δ′ ∈ µ(D)I . Since O |= r ⊑ s, we also
have 〈δ, δ′〉 ∈ sI and, therefore, δ ∈ (∃s.µ(D))I = ((∃?x.D)µ(?x)=s)

I .

• For C = ∀?x.D, where D is a concept template that does not contain ?x. We have
polr(?x,C) = neg. If δ ∈ ((∀?x.D)µ(?x)=s)

I , we have to show that δ ∈ ((∀?x.D)µ(?x)=r)
I .

In contrary to what is to be shown, assume that δ ∈ (¬(∀?x.D)µ(?x)=r)
I , i.e., δ ∈

(∃r.µ(¬D))I . Hence, there is some δ′ ∈ ∆I such that 〈δ, δ′〉 ∈ rI and δ′ ∈ µ(¬D)I .
Since O |= r ⊑ s, we also have 〈δ, δ′〉 ∈ sI and, therefore, δ /∈ (∀s.µ(D))I =
((∀?x.D)µ(?x)=s)

I , which is a contradiction.

• For C = > n ?x.D where D is a concept template that does not contain ?x. We have
polr(?x,C) = pos. Assume, δ ∈ ((> n ?x.D)µ(?x)=r)

I , that is δ ∈ (> n r.µ(D))I and
δ has at least n distinct r-successors which are instances of µ(D). Since O |= r ⊑ s
these r-successors are also s-successors of δ and, therefore, δ ∈ (> n s.µ(D))I = ((>
n ?x.D)µ(?x)=s)

I .

• For C = 6 n ?x.D where C is a concept template that does not contain ?x. We
have polr(?x,C) = neg. If δ ∈ ((6 n ?x.D)µ(?x)=s)

I , we have to show that δ ∈

((6 n ?x.D)µ(?x)=r)
I . In contrary to what is to be shown, assume that δ ∈ (¬(6

n ?x.D)µ(?x)=r)
I , i.e., δ ∈ (> n + 1 r.µ(D))I . Hence, δ has at least n + 1 distinct

r-successors, which are instances of µ(D). Since O |= r ⊑ s, these r-successors are
also s-successors and δ ∈ ((> n+ 1 s.µ(D)))I = ((> n+ 1 ?x.D)µ(?x)=s)

I , which is a
contradiction.

• For C = C1⊓C2 and polr(?x,C) = pos, if δ ∈ ((C1⊓C2)µ(?x)=r)
I , then δ ∈ (C1µ(?x)=r)

I

and δ ∈ (C2µ(?x)=r)
I . Since O |= r ⊑ s and by the induction hypothesis, δ ∈

(C1µ(?x)=s)
I and δ ∈ (C2µ(?x)=s)

I . Thus, δ ∈ ((C1 ⊓ C2)µ(?x)=s)
I . The proof is

analogous for polr(?x,C) = neg.

• The proof for C1 ⊔C2 is analogous to the one for C1 ⊓ C2.

• For C = ¬D and polr(?x,C) = pos, if δ ∈ (¬Dµ(?x)=r)
I , we have to show that

δ ∈ (¬Dµ(?x)=s)
I . Note that polr(?x,D) = neg. In contrary to what is to be shown,

assume that δ ∈ (Dµ(?x)=s)
I . Since O |= r ⊑ s and by induction hypothesis δ ∈

(Dµ(?x)=r)
I and δ ∈ (¬Dµ(?x)=r)

I which is a contradiction. The proof is analogous
for polr(?x,C) = neg.
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• For C = ∃p.D and polr(?x,C) = pos, we also have polr(?x,D) = pos. Now, if
δ ∈ ((∃p.D)µ(?x)=r)

I , then δ has at least one p-successor that is an instance ofDµ(?x)=r .
Since O |= r ⊑ s and by induction hypothesis, this p-successor is an instance of
Dµ(?x)=s. Hence, δ ∈ ((∃p.D)µ(?x)=s)

I . The proof is analogous for polr(?x,C) = neg.

• For C = ∃?x.D and polr(?x,C) = pos, we also have polr(?x,D) = pos. Note
that ?x occurs in D since otherwise the case is handled already above. Now, if
δ ∈ ((∃?x.D)µ(?x)=r)

I , then δ has at least one r-successor which is an instance of
Dµ(?x)=r . Since O |= r ⊑ s and by induction hypothesis, δ has at least one s-successor

that is an instance of Dµ(?x)=s. Hence, δ ∈ ((∃?x.D)µ(?x)=s)
I .

• For C = ∀p.D and polr(?x,C) = pos, we also have polr(?x,D) = pos. Now, if δ ∈
((∀p.D)µ(?x)=r)

I , then δ ∈ (∀p.(D)µ(?x)=r)
I and each p-successor of δ is an instance

of Dµ(?x)=r . Since O |= r ⊑ s and by induction hypothesis, these p-successors are also

instances of Dµ(?x)=s. Hence, δ ∈ (∀p.(Dµ(?x)=s))
I = ((∀p.D)µ(?x)=s)

I . The proof is
analogous for polr(?x,C) = neg.

• For C = ∀?x.D and polr(?x,C) = neg, we also have polr(?x,D) = neg. Note
that ?x occurs in D since otherwise the case is handled already above. Now, if
δ ∈ ((∀?x.D)µ(?x)=s)

I , we have to show that δ ∈ ((∀?x.D)µ(?x)=r)
I . In contrary to

what is to be shown, assume that δ /∈ ((∀?x.D)µ(?x)=r)
I , i.e., δ ∈ (∃r.(¬D)µ(?x)=r)

I .

Hence, there is some δ′ ∈ ∆I such that 〈δ, δ′〉 ∈ rI and δ′ ∈ ((¬D)µ(?x)=r)
I . Since

O |= r ⊑ s, δ′ is also an s-successor of δ and, by induction hypothesis, we have
δ′ ∈ ((¬D)µ(?x)=s)

I which is a contradiction.

• For C = > n p.D and polr(?x,C) = pos, if δ ∈ (( > n p.D)µ(?x)=r)
I , then δ has at

least n distinct p-successors that are instances of Dµ(?x)=r . Since O |= r ⊑ s and
by induction hypothesis, these p-successors are also instances of Dµ(?x)=s. Hence,

δ ∈ (( > n p.D)µ(?x)=s)
I . The proof is analogous for polr(?x,C) = neg

• For C = > n ?x.D and polr(?x,C) = pos, we also have polr(?x,D) = pos. Note
that ?x occurs in D since otherwise the case is handled already above. Now, if
δ ∈ (( > n ?x.D)µ(?x)=r)

I , then δ has at least n distinct r-successors which are
instances of Dµ(?x)=r. Since O |= r ⊑ s and by induction hypothesis, δ has at least n

distinct s-successors that are instances of Dµ(?x)=s. Hence, δ ∈ (( > n ?x.D)µ(?x)=s)
I .

• For C = 6 n p.D and polr(?x,C) = pos, if δ ∈ ((6 n p.D)µ(?x)=r)
I , we have to show

that δ ∈ ((6 n p.D)µ(?x)=s)
I . Note that polr(?x,D) = neg. In contrary to what is to

be shown, assume that δ ∈ (¬(6 n p.D)µ(?x)=s)
I , i.e., δ ∈ ((> n + 1 p.D)µ(?x)=s)

I .
Hence, δ has at least n + 1 distinct p-successors which are instances of Dµ(?x)=s.
Since polr(?x,D) = neg and by induction hypothesis, these Dµ(?x)=s instances are

also Dµ(?x)=r instances and δ ∈ (> n + 1 p.(D)µ(?x)=r)
I = ((> n + 1 p.D)µ(?x)=r)

I ,
which is a contradiction. The proof is analogous for polr(?x,C) = neg.

• For C = 6 n ?x.D and polr(?x,C) = neg, we have polr(?x,D) = pos. Note that
?x occurs in D since otherwise the case is handled already above. If δ ∈ ((6
n ?x.D)µ(?x)=s)

I we have to show that δ ∈ ((6 n ?x.D)µ(?x)=r)
I . In contrary
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Algorithm 2 getPossibleMappings(O, ?x, at, µ)

Input: O: the queried SROIQ ontology
?x: a concept or role variable
at: an axiom template in which ?x occurs
µ: a mapping with ?x ∈ dom(µ)

Output: a set of mappings
1: S := ∅
2: if ?x ∈ VC then
3: if polc(?x, at) = pos then
4: S := {µ′ | µ′(?x) = A,A is a direct subconcept of µ(?x) in O,

µ′(?y) = µ(?y) for ?y ∈ dom(µ) \ {?x}}
5: else
6: S := {µ′ | µ′(?x) = A,A is a direct superconcept of µ(?x) in O,

µ′(?y) = µ(?y) for ?y ∈ dom(µ) \ {?x}}
7: end if
8: else
9: if polr(?x, at) = pos then

10: S := {µ′ | µ′(?x) = r, r is a direct subrole of µ(?x) in O,
µ′(?y) = µ(?y) for ?y ∈ dom(µ) \ {?x}}

11: else
12: S := {µ′ | µ′(?x) = r, r is a direct superrole of µ(?x) in O,

µ′(?y) = µ(?y) for ?y ∈ dom(µ) \ {?x}}
13: end if
14: end if
15: return S

to what is to be shown, assume that δ ∈ (¬(6 n ?x.D)µ(?x)=r)
I , i.e., δ ∈ ((>

n + 1 ?x.D)µ(?x)=r)
I . Hence, δ has at least n + 1 distinct r-successors which are in-

stances of Dµ(?x)=r . Since O |= r ⊑ s, and by induction hypothesis, these r-successors

are also s-successors and instances of Dµ(?x)=s. Hence, δ ∈ ((> n + 1 ?x.D)µ(?x)=s)
I

and δ ∈ ((6 n ?x.D)µ(?x)=s)
I , which is a contradiction.

• For C = (= n ?x.D) or C = (= n r.D), the polarity of ?x in C is always positive
and negative, so polr(?x,C) is undefined and the case cannot occur.

• The cases for ?x occurring in the form of an inverse (?x−) are analogous, given that
O |= r ⊑ s iff O |= r− ⊑ s−.

Algorithm 2, which we explain in detail in Section 6.3, shows how we use the above
theorems to create possible concept and role mappings for a concept or role variable ?x
that appears only positively or only negatively in an axiom template C1 ⊑ C2.

6.3 Query Answering Algorithm

Algorithm 3 shows an optimized way of evaluating queries using static ordering. First,
axiom templates are simplified where possible (method rewrite in line 1). Next, the method
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Algorithm 3 evaluate(O, q)

Input: O: the queried SROIQ ontology
q: a query over O

Output: a set of solutions for evaluating q over O
1: At := rewrite(q)
2: At1, . . . , Atm:=connectedComponents(At)
3: for j=1, . . . , m do
4: Rj := {µ0 | dom(µ0) = ∅}
5: at1, . . . , atn := order(Atj)
6: for i = 1, . . . , n do
7: R := ∅
8: for each µ ∈ Rj do
9: if isSimple(ati) and Vars(ati) \ dom(µ) 6= ∅ then

10: R := R ∪ {µ′ ∪ µ | µ′ ∈ callSpecificReasonerTask(µ(ati))}
11: else if Vars(ati) \ dom(µ) = ∅ then
12: if O |= µ(ati) then
13: R := R ∪ {µ}
14: end if
15: else
16: Vopt := {?x |?x 6∈ dom(µ), Theorem 1 or 2 applies to ?x and ati}
17: B := initializeVariableMappings(O, ati, µ, Vopt)
18: while B 6= ∅ do
19: µ′ := removeMapping(B)
20: if O |= µ′(ati) then
21: R := R ∪ {µ′′ | µ′′(?x) = µ′(?x) if ?x /∈ Vopt and

µ′′(?x) = C if ?x ∈ Vopt ∩ VC ,O |= C ≡ µ′(?x) and
µ′′(?x) = r if ?x ∈ Vopt ∩ VR,O |= r ≡ µ′(?x)}

22: for each ?x ∈ Vopt do
23: B := B ∪ getPossibleMappings(O, ?x, ati, µ

′)
24: end for
25: end if
26: end while
27: end if
28: end for
29: Rj := R
30: end for
31: end for
32: Rans := {µ1 ∪ . . . ∪ µm | µj ∈ Rj, 1 ≤ j ≤ m}
33: return Rans

connectedComponents (line 2) partitions the axiom templates into sets of connected com-
ponents, i.e., within a component the templates share common variables, whereas between
components there are no shared variables. Unconnected components unnecessarily increase
the amount of intermediate results and, instead, one can simply combine the results for the
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Algorithm 4 initializeVariableMappings(O, at, µ, Vopt)

Input: O: the queried SROIQ ontology
at: an axiom template
µ: a partial mapping
Vopt: the variables of at to which Theorem 1 or 2 applies

Output: a set of mappings
1: S := {µ}
2: for each ?x ∈ Vars(at) \ dom(µ) do
3: R := ∅
4: if ?x ∈ VC and ?x ∈ Vopt then
5: for each µ′ ∈ S do
6: if polc(?x, at) = pos then
7: µ′(?x) := ⊤
8: else
9: µ′(?x) := ⊥

10: end if
11: R := R ∪ {µ′}
12: end for
13: else if ?x ∈ VR and ?x ∈ Vopt then
14: for each µ′ ∈ S do
15: if polr(?x, at) = pos then
16: µ′(?x) := ⊤r

17: else
18: µ′(?x) := ⊥r

19: end if
20: R := R ∪ {µ′}
21: end for
22: else
23: R := {µ′ | µ′(?x) = a, a ∈ NO

C
or a ∈ NO

R
or a ∈ NO

I
and µ′(?y) = µ1(?y)

for µ1 ∈ S and ?y ∈ dom(µ1)}
24: end if
25: S := R
26: end for
27: return S

components in the end (line 32). For each component, we proceed as described below: we
first determine an order (method order in line 5) as described in Section 5. For a simple ax-
iom template, which contains so far unbound variables, we call a specialized reasoner method
to retrieve entailed results, i.e., mappings for unbound variables (callSpecificReasonerTask
in line 10). Note that the mappings µ′ do not assign values to any of the variables covered
by the already computed (partial) solution µ since we instantiate the atom ati by µ. This
allows for defining the union of µ and µ′ by setting (µ ∪ µ′)(v) = µ(v) if v ∈ dom(µ),
and (µ ∪ µ′)(v) = µ′(v) otherwise. For templates with all their variables bound, we check
whether the mappings lead to entailed axioms (lines 11 to 14). For all other cases, i.e.,
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for complex axiom templates with unbound variables, we check which compatible mappings
yield an entailed axiom (lines 15 to 27). In particular, we first initialize a set B of candi-
date mappings for the unbound variables of the axiom template (line 17, which refers to
Algorithm 4). Algorithm 4 initializes the unbound variables of axiom templates on which
Theorem 1 or 2 applies to ⊤ (⊤r) or ⊥ (⊥r) depending on whether the respective polarity
function returns pos or neg. For template variables on which the optimization is not appli-
cable, all compatible mappings are returned. The method removeMapping (line 19) returns
a mapping from B and deletes this mapping from B. We then instantiate the axiom tem-
plate and check entailment. In case the entailment holds, we first extend the set R with the
current mapping µ′ and with mappings that map the optimization variables to equivalent
concepts or roles of the respective variable mappings in µ′ (line 21) and we afterwards ex-
tend the set B of possible mappings for the variables to which the hierarchy optimization
is applicable (getPossibleMappings in line 23). For example, if we just checked a mapping µ
that maps a concept variable ?x to the concept A and ?x only occurs positively in the axiom
template, then we add to the set B all mappings that map ?x to a direct subconcept3 of
A (see Algorithm 2 line 4). In the implementation we use a more involved procedure, i.e.,
in order to avoid checking entailment of an instantiated axiom template more than once
with the same mapping, which can be the case with the concept (role) hierarchy traversal
that we perform, we keep track of already processed mappings and check only those that
have not been checked in a previous iteration of the while loop (lines 18 to 26). For ease
of presentation, this is not shown in Algorithm 3. We then repeat the procedure until B is
empty (lines 18 to 26).

For the dynamic ordering, Algorithm 3 has to be changed as follows: We first compute
the number of axiom templates in Atj; n := |Atj |. We then swap line 5 and line 6, i.e.,
instead of ordering all axiom templates before the loop that evaluates the axiom templates,
we order within the for loop. The function order gets as additional input parameter the
set of currently computed solutions and returns only the next cheapest axiom template
according to the dynamic ordering function. Hence, we have ati := order(Atj , Rj) instead
of at1, . . . , atn := order(Atj). We further insert a line after calling order to remove the
cheapest axiom template from the current component: Atj := Atj \ {ati}. As a result, the
next iteration of the for loop will compute the cheapest axiom template amongst the not
yet evaluated templates until, in the last iteration, we only have one axiom template left.

Algorithm 3 is sound and complete. The soundness and completeness of the algorithm
is based on the following facts:

• The method rewrite (see Definition 13) does not affect the answers to a query q, since
it rewrites axiom templates to templates with the same set of answers.

• The method connectedComponents does not affect the answers of q; it just splits the
query into several components that are evaluated separately and we then take the
cartesian product of the answers.

• The method order does not change the query in any way; it just reorders the axiom
templates.

3. We say that a concept name A is a direct subconcept of a concept name B w.r.t. O, if O |= A ⊑ B and
there is no other concept name A

′ such that O |= A
′ ⊑ B, O |= A ⊑ A

′ and O 6|= A ≡ A
′. In a similar

way we can define the direct superconcept, the direct subrole and direct superrole.
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• For the actual axiom template evaluation, we iterate over all the templates of the
query by taking into account the mappings that have already been computed from
the evaluation of previous templates and we distinguish between three cases:

1. The axiom template is a simple one and contains unbound variables. We use
specialized reasoner tasks to compute entailed mappings and since we use a
sound and complete reasoner the result is indeed sound and complete.

2. The axiom template does not contain unbound variables. In this case, we simply
check entailment using a sound and complete reasoner.

3. The axiom template is a complex template that has at least one variable unbound.
For variables for which the optimization of Section 6.2 is applicable, we initialize
the variables to ⊤/⊤r (⊥/⊥r) and we traverse the concept/role hierarchy top-
down (bottom-up). We prune mappings according to Theorems 1 and 2 in case
a checked mapping does not constitute a solution mapping. In this case, we do
not extend the set of possible mappings B. For variables of axiom templates
to which the hierarchy optimization is not applicable, we check all compatible
mappings. Thus, due to Theorem 1 and 2 the procedure is sound and complete.

Although the above algorithm was implemented in the HermiT reasoner, one can com-
pute the answers of a query using any (hyper)tableau reasoner.

7. Evaluation

We tested the developed optimizations with standard benchmarks and a range of custom
queries that test complex axiom template evaluation over more expressive ontologies. All
experiments were performed on a Mac OS X Lion machine with a 2.53 GHz Intel Core i7
processor and Java 1.6 allowing 1GB of Java heap space. We measure the time for one-off
tasks such as classification separately since such tasks are usually performed before the
system accepts queries. The ontologies and all code required to perform the experiments
are available online (Kollia & Glimm, 2013). The developed system (Glimm & Kollia,
2013), called OWL-BGP, is implemented as a SPARQL Wrapper that can be used with
any reasoner that implements the OWLReasoner interface of the OWL API (Horridge &
Bechhofer, 2009). In Section 7.1 we compare the different ordering strategies that have been
developed on two benchmarks (LUBM and UOBM) that contain queries with variables only
in place of individuals (query atoms). We also show the effect of ordering on LUBM using
some custom queries with simple axiom templates created for SPARQL-DL (Kremen &
Sirin, 2008). In Section 7.2 we show the effect of the proposed optimizations for queries
with complex axiom templates. For the evaluation we have used the HermiT hypertableau
reasoner (Motik, Shearer, Glimm, Stoilos, & Horrocks, 2013). Other reasoners such as
Pellet (Clark & Parsia, 2013a) or Racer Pro (Racer Systems GmbH & Co. KG, 2013) could
equally well be used with our implementation as long as they provide an interface with the
required statistics, i.e., the number of known and possible instances of concepts and roles for
the computation of the cost functions used for query ordering. Without any optimizations,
providing this interface with statistics can easily be realized as described in the current
paper. The presented query ordering techniques can also be used when optimizations such
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as caching, pseudo model merging techniques, binary instance retrieval, or absorption are
employed. The cost functions might, however, require some adaptation to take the reduction
in the required number of consistency checks into account. For example, Pellet uses binary
instance retrieval, where testing possible instances of a concept A is realized by splitting
the candidate instances into two partitions. For each partition, a single consistency check
is performed. If the consistency check is successful, it is safe to consider all individuals
belonging to the partition as non-instances of the tested concept A. Otherwise, we further
split the partition and process the resulting partitions in the same way. In this case, one
performs one consistency check to potentially determine several (non-)instances of A, which
should be reflected in the cost functions.

It is also worth noting that the TrOWL reasoning framework (Thomas, Pan, & Ren,
2013) started to use our SPARQL wrapper to provide SPARQL support. An adaptation to
also provide statistics is, to the best of our knowledge, still outstanding, although this should
be straightforward. TrOWL is based on two approximate reasoners: one that underapprox-
imates (computation of concept and role instances is sound, but incomplete) (Ren, Pan, &
Zhao, 2010) and one that overapproximates (computation of concept and role instances is
complete, but unsound) (Pan, Thomas, & Zhao, 2009). In such a setting, the underapprox-
imation can straightforwardly be seen as the known instances and the overapproximation
minus the underapproximation as the possible instances.

7.1 Query Ordering

We tested our ordering techniques with the Lehigh University Benchmark (LUBM) (Guo,
Pan, & Heflin, 2005) as a case where no disjunctive information is present and with the
more expressive University Ontology Benchmark (UOBM) (Ma, Yang, Qiu, Xie, Pan, &
Liu, 2006).

We first used the 14 conjunctive ABox queries provided in LUBM. From these, queries
2, 7, 8, 9 are the most interesting ones in our setting since they contain many atoms and
ordering them can have an effect in running time. We tested the queries on LUBM(1,0) and
LUBM(2,0) which contain data for one or two universities respectively, starting from index
0. LUBM(1,0) contains 17,174 individuals and LUBM(2,0) contains 38,334 individuals.
LUBM(1,0) took 19 s to load and 0.092 s for classification and initialization of known and
possible instances of concepts and roles. The clustering approach for concepts took 1 s
and resulted in 16 clusters. The clustering approach for roles lasted 4.9 s and resulted in
17 role successor clusters, 29 role predecessor clusters and 87 role clusters. LUBM(2,0)
took 48.5 s to load and 0.136 s for classification and initialization of known and possible
instances. The clustering approach for concepts took 3.4 s and resulted in 16 clusters. The
clustering approach for roles lasted 16.3 s and resulted in 17 role successor clusters, 31 role
predecessor clusters and 102 role clusters. Table 2 shows the execution time for each of
the four queries for LUBM(1,0) and LUBM(2,0) for four cases: i) when we use the static
algorithm (columns 2 and 6), ii) when we use the dynamic algorithm (columns 3 and 7), iii)
when we use random sampling, i.e., taking half of the individuals that are returned (from
the evaluation of previous query atoms) in each run, to decide about the next cheapest atom
to be evaluated in the dynamic case and iv) using the proposed sampling approach that
is based on clusters constructed from individuals in the queried ontology (columns 4 and
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LUBM(1,0) LUBM(2,0)
Q Static Dynamic RSampling CSampling Static Dynamic RSampling CSampling
∗2 51 119 390 37 162 442 1,036 153
7 25 29 852 20 70 77 2,733 64
8 485 644 639 551 622 866 631 660

∗9 1,099 2,935 3,021 769 6,108 23,202 14,362 3,018

Table 2: Query answering times in milliseconds for LUBM(1,0) and LUBM(2,0) using i) the
static algorithm ii) the dynamic algorithm, iii) 50% random sampling (RSampling),
iv) the constructed individual clusters for sampling (CSampling)

Q PlansNo Chosen Plan Order Pellet Plan Worst Plan
Static Dynamic Sampling

2 336 2 1 1 51 4,930
7 14 1 1 1 25 7,519
8 56 1 1 1 495 1,782
9 336 173 160 150 1,235 5,388

Table 3: Statistics about the constructed plans and chosen orderings and running times in
milliseconds for the orderings chosen by Pellet and for the worst constructed plans

8). The queries marked with (*) are the queries where the static and dynamic algorithms
result in a different ordering. In Queries 7 and 8 we observe an increase in running
time when the dynamic technique is used (in comparison to the static) which is especially
evident on Query 8 of LUBM(2,0), where the number of individuals in the ontology and
the intermediate result sizes are larger. Dynamic ordering also behaves worse than static
in Queries 2 and 9. This happens because, although the dynamic algorithm chooses a
better ordering than the static algorithm, the intermediate results (that need to be checked
in each iteration to determine the next query atom to be executed) are quite large and
hence the cost of iterating over all possible mappings in the dynamic case far outweighs the
better ordering that is obtained. We also observe that a random sampling for collecting the
ordering statistics in the dynamic case (checking only 50% of individuals in Ωi−1 randomly
for detecting the next query atom to be executed) leads to much worse results in most
queries than plain static or dynamic ordering. This happens since random sampling often
leads to the choice of a worse execution order. The use of the cluster based sampling method
performs better than the plain dynamic algorithm in all queries. In Queries 2 and 9, the
gain we have from the better ordering of the dynamic algorithm when sampling is used is
much more evident. This is the case since we use at most one individual from every cluster
for the cost functions computation and the number of clusters is much smaller than the
number of the otherwise tested individuals in each run.

In order to show the effectiveness of our proposed cost functions we compared the
running times of all the valid plans (plans that comply to the connectedness condition of
Definition 10, i.e., plans on which consecutive atoms share at least one common variable)
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LUBM(3,0) LUBM(4,0) LUBM(5,0) LUBM(6,0) LUBM(7,0) LUBM(8,0) LUBM(9,0)
55,664 78,579 102,368 118,500 144,612 163,552 183,425

Table 4: Number of individuals in LUBM with increasing number of universities

with the running time of the plan chosen by our method. In the following we show the results
for LUBM(1, 0), but the results for LUBM(2,0) are comparable. In Table 3 we show, for
each query, the number of valid plans that were constructed according to Definition 10
(column 2), the order of the plan chosen by the static, dynamic, and cluster based sampling
methods if we order the valid plans by their execution time (columns 3,4,5; e.g., a value
of 2 indicates that the ordering method chose the second best plan), the running time of
HermiT for the plan that was created by Pellet (column 6) as well as the running time of
the worst constructed plan (column 7).

The comparison of our ordering approach with the approach followed by other reasoners
that support conjunctive query answering such as Pellet or Racer Pro is not very straight-
forward. This is the case because Pellet and Racer have many optimizations for instance
retrieval (Sirin et al., 2007; Haarslev & Möller, 2008), which HermiT does not have. Thus,
a comparison between the execution times of these reasoners and HermiT would not convey
much information about the effectiveness of the proposed query ordering techniques. The
idea of comparing only the orderings computed by other reasoners with those computed by
our methods is also not very informative since the orderings chosen by different reasoners
depend much on the way that queries are evaluated and on the costs of specific tasks in
these reasoners and, hence, are reasoner dependent, i.e., an ordering that is good for one
reasoner and which leads to an efficient evaluation may not be good for another reasoner.
We should note that when we were searching for orderings according to Pellet, we switched
off the simplification optimization that Pellet implements regarding the exploitation of do-
main and range axioms of the queried ontology for reducing the number of query atoms to
be evaluated (Sirin & Parsia, 2006). This has been done in order to better evaluate the
difference of the plain ordering obtained by Pellet and HermiT since our cost functions take
into account all the query atoms.

We observe that for all queries apart from Query 9 the orderings chosen by our algorithms
are the (near)optimal ones. For Queries 2 and 7, Pellet chooses the same ordering as our
algorithms. For Query 8, Pellet chooses an ordering which, when evaluated with HermiT,
results in higher execution time. For Query 9, our algorithms choose plans from about the
middle of the order over all the valid plans w.r.t. the query execution time, which means that
our algorithms do not perform well in this query. This is because of the greedy techniques
we have used to find the execution plan which take into account only local information to
choose the next query atom to be executed. Interestingly, the use of cluster based sampling
has led to the finding of a better ordering, as we can see from the running time in Table 2
and the better ordering of the plan found with cluster based sampling techniques compared
to static or plain dynamic ordering (Table 3). The ordering chosen by Pellet for Query 9
does also not perform well. We see that, in all queries, the worst running times are many
orders of magnitude greater than the running times achieved by our ordering algorithms.
In general, we observe that in LUBM static techniques are adequate and the use of dynamic
ordering does not improve the execution time much compared to static ordering.

289



Kollia & Glimm

Q LUBM(3,0) LUBM(4,0) LUBM(5,0) LUBM(6,0) LUBM(7,0) LUBM(8,0) LUBM(9,0)
2 0.35 0.62 1.26 1.71 2.26 3.11 4.18
7 0.11 0.16 0.23 0.32 0.33 0.33 0.40
8 0.77 0.91 1.27 1.29 1.34 1.44 1.65
9 18.49 42.98 85.54 116.88 181.07 235.06 312.71

all 20.64 55.16 90.99 138.84 213.59 241.85 323.15

Table 5: Query answering times in seconds for LUBM with increasing number of universities

Q Static Dynamic CSampling PlansNo Chosen Plan Order Pellet Worst
Static Dynamic Sampling Plan Plan

4 13.35 13.40 13.41 14 1 1 1 13.40 271.56
9 186.30 188.58 185.40 8 1 1 1 636.91 636.91
11 0.98 0.84 1.67 30 1 1 1 0.98 > 30 min
12 0.01 0.01 0.01 4 1 1 1 0.01 > 30 min
14 94.61 90.60 93.40 14 2 1 1 > 30 min > 30 min
q1 191.07 98.24 100.25 6 2 1 1 > 30 min > 30 min
q2 47.04 22.20 22.51 6 2 1 1 22.2 > 30 min

Table 6: Query answering times in seconds for UOBM (1 university, 3 departments) and
statistics

In order to show the scalability of the system, we next run the LUBM queries with
different numbers of universities, i.e., LUBM(i,0) where i ranges from 3 to 9. Table 4 shows
the number of individuals appearing in each ABox of different university size. The running
times of Queries 2, 7, 8, 9 as well as the running time of all the 14 LUBM queries are
shown in Table 5. The results for LUBM(1,0) and LUBM(2,0) are shown in Table 2. Note
that the results shown are for the case that static ordering is performed. From this table
we see that for all queries, the running time increases when the number of individuals of
the ABox increases, which is reasonable. We observe that query answering over ontologies
is still not as scalable as query answering over databases and this is so, because of the more
expressive schema that has to be taken into account and the fact that we have incomplete
information in contrast to databases where we have complete information.

Unlike LUBM, the UOBM ontology contains disjunctions and the reasoner makes also
nondeterministic derivations. In order to reduce the reasoning time, we removed the nomi-
nals and only used the first three departments containing 6,409 individuals. The resulting
ontology took 16 s to load and 0.1 s to classify and initialize the known and possible in-
stances. The clustering approach for concepts took 1.6 s and resulted in 356 clusters. The
clustering approach for roles lasted 6.3 s and resulted in 451 role successor clusters, 390
role predecessor clusters and 4,270 role clusters. We present results for the static and dy-
namic algorithms on Queries 4, 9, 11, 12 and 14 provided in UOBM, which are the most
interesting ones because they consist of many atoms. Most of these queries contain one
atom with possible instances. As we see from Table 6, static and dynamic ordering show
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similar performance in Queries 4, 9, 11 and 12. Since the available statistics in this case are
quite accurate, both methods find the optimal plans and the intermediate result set sizes
are small. For both ordering methods, atoms with possible instances for these queries are
executed last. In Query 14, the dynamic algorithm finds a better ordering which results in
comparable performance. The effect that the cluster based sampling technique has on the
running time is not as obvious as in the case of LUBM. This happens because in the current
experiment the intermediate result sizes are not very large and, most importantly, because
the gain obtained due to sampling is in the order of milliseconds whereas the total query
answering times are in the order of seconds obscuring the small improvement in running
time due to sampling. In all queries the orderings that are created by Pellet result in the
same or worse running times than the orderings created by our algorithms.

In order to illustrate when dynamic ordering performs better than static, we also created
the two custom queries:

q1 = { isAdvisedBy(?x,?y), GraduateStudent(?x), Woman(?y) }
q2 = { SportsFan(?x), GraduateStudent(?x), Woman(?x) }

In both queries, P [GraduateStudent], P [Woman] and P [isAdvisedBy] are non-empty, i.e.,
the query concepts and roles have possible instances. The running times for dynamic
ordering are smaller since the more accurate statistics result in a smaller number of possible
instances that have to be checked during query execution. In particular, for the static
ordering, 151 and 41 possible instances have to be checked in query q1 and q2, respectively,
compared to only 77 and 23 for the dynamic ordering. Moreover, the intermediate results
are generally smaller in dynamic ordering than in static leading to a significant reduction
in the running time of the queries. Interestingly, query q2 could not be answered within the
time limit of 30 minutes when we transformed the three query concepts into a conjunction,
i.e., when we asked for instances of the intersection of the three concepts. This is because for
complex concepts the reasoner can no longer use the information about known and possible
instances and falls back to a more naive way of computing the concept instances. Again, for
the same reasons as before, the sampling techniques have no apparent effect on the running
time of these queries.

For each query of the SPARQL-DL tests issued over LUBM(1,0) (Kremen & Sirin, 2008)
(cf. Table 7), Table 8 shows the running time of the plan chosen by our method (column
2), the number of valid plans, i.e., plans that comply to the connectedness condition of
Definition 10 (column 3), the order of the chosen plan if we order the valid plans by their
execution times (column 4), the running time of HermiT for the plan that was created by
Pellet (column 5) as well as the running time of the worst constructed plan (column 6). The
queries as shown in Table 7 are ordered according to our static ordering algorithm. Since
reasoning for LUBM is deterministic, we use static planning to order the axiom templates.
Dynamic planning does not improve the execution times (actually it makes them worse)
since, as it has been explained before, with only deterministic reasoning we have most of the
important information for ordering from the beginning and the overhead caused by dynamic
ordering results in worse query execution time.

From the results of Table 8 one can observe that for Queries 1, 2, 3, 4 and 8 the
proposed ordering chooses the optimal plan among all valid plans. For Queries 5, 6, 7, 9
and 10 the optimal plan is not chosen according to the proposed cost estimation algorithm.
For Queries 5, 7, 9 and 10 this is due to the greedy techniques we have used for finding in
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1 GraduateStudent(?x) 6 GraduateStudent(?x)
?y(?x, ?z) ?y(?x, ?w)

Course(?w) ?z(?w)
GraduateCourse ⊑ ¬?z

2 ?c ⊑ Employee 7 ?c ⊑ ⊤
?c(?x) ?c(?x)

Student(?x) teachingAssistantOf(?x, ?y)
undergraduateDegreeFrom(?x, ?y) takesCourse(?x, ?y)

3 ?y ⊑ memberOf 8 ?c ⊑ Person
?y(?x,University0) ?c(?x)

Person(?x) advisor(?x, ?y)
4 ?y(GraduateStudent5, ?w) 9 ?c ⊑ Person

?z(?w) ?c(?x)
?z ⊑ Course teachingAssistantOf(?x, ?y)

Course(?y)
5 ?z ⊑ Course 10 ?p ⊑ worksFor

?z(?w) ?p(?y, ?w)
?y(?x, ?w) ?c(?y)

GraduateStudent(?x) ?c ⊑ Faculty
advisor(?x, ?y)

GraduateStudent(?x)
memberOf(?x, ?w)

Table 7: Queries used for SPARQL-DL tests

Query Chosen Ordering PlansNo Chosen Plan Pellet Plan Worst Plan
Time Order Time Time

1 0.36 2 1 0.36 0.58
2 0.03 14 1 0.37 0.61
3 0.05 4 1 5.44 5.45
4 0.01 4 1 0.01 11.46
5 26.10 8 5 0.95 454.25
6 10.49 8 2 10.49 499.65
7 0.42 14 6 2.68 2.68
8 0.23 4 1 0.23 0.80
9 0.19 8 4 0.19 0.47

10 0.80 812 21 0.80 992.77

Table 8: Query answering times in seconds for the queries of Table 7 over LUBM(1,0) and
statistics

each iteration of our ordering algorithm the next cheapest axiom template to be evaluated.
For example, the optimal plan for Query 10 starts with the template GraduateStudent(?x),
which is not the cheapest one according to our cost based technique and then, while moving
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over connected templates, a different order is chosen than the order chosen by our algorithm.
It turns out that all valid plans beginning with the atom GraduateStudent(?x) lead to better
execution times than the plan chosen by our algorithm resulting in the existence of several
better plans than the chosen one.

For Query 6 we do not find the optimal plan because we have overestimated the cost of
the disjoint axiom template and hence have missed the optimal ordering. Nevertheless, the
chosen plans lead to execution times for all queries that are up to three orders of magnitude
lower than those when the worst plans are chosen. For queries in which the proposed
ordering does not lead to the optimal plan, one has to additionally take into account the
time we saved from not computing the costs for the |q!| possible orderings, which can be
very high. Apart from Queries 4, 6 and 8, we observe that the plans produced by Pellet
are not optimal when evaluated with HermiT. As we have discussed before, this happens
because the statistics created for ordering are reasoner specific and hence a good ordering
for one reasoner may not be good for another reasoner.

7.2 Complex Axiom Template Optimizations

In the absence of suitable standard benchmarks for arbitrary SPARQL queries, we created
a custom set of queries as shown in Tables 10 and 12 for the GALEN and the FBbt XP
ontology, respectively. Systems that fully support the SPARQL Direct Semantics entailment
regime are still under development, which makes it hard to compare our results for these
kinds of queries with other systems.

GALEN is a biomedical ontology. It’s expressivity is (Horn-)SHIF and it consists
of 2,748 concepts and 413 abstract roles. FBbt XP is an ontology taken from the Open
Biological Ontologies (OBO) Foundry (OBO Foundry, 2013). It falls into the SHI fragment
of SROIQ and consists of 7,221 concepts and 21 abstract roles. We only consider the
TBox part of FBbt XP since the ABox is not relevant for showing the different effects of
the proposed optimizations on the execution times of the considered queries. GALEN took
3.7 s to load and 11.1 s to classify (concepts and roles), while FBbt XP took 1.5 s to load
and 7.4 s to classify.

The execution times for the queries of Tables 10 and 12 are shown on the right-hand
side of Tables 9 and 11, respectively. We have set a time limit of 30 minutes for each
query. For each query, we tested the execution once without optimizations and once for
each combination of applicable optimizations from Sections 5 and 6. In Tables 9 and 11,
one can also see the number of consistency checks that were performed for the evaluation
of each query and each combination of the applicable optimizations as well as the number
of results of each query. In these tables we have taken the time of the worst ordering of
query atoms for the cases in which the ordering optimization is applicable but not enabled.
Note that only the complex axiom templates require consistency checks to be evaluated;
the simple ones (subsumption axiom templates in this case) need only cache lookups in the
reasoner’s internal structures since the concepts and roles are already classified.

GALEN Queries: As expected, an increase in the number of variables within an axiom
template leads to a significant increase in the query execution time because the number of
mappings that have to be checked grows exponentially in the number of variables. This can,
in particular, be observed from the difference in execution time between Query 1 and 2.
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Query Reordering Hierarchy Rewriting Consistency Time AnswersNo
Exploitation Checks

1 2,750 1.68 10
1 x 50 0.18 10

2 1,141,250 578.98 214
2 x 1,291 9.85 214

3 x >30 min
3 x 19,250 102.37 2,816
3 x x 3,073 2.69 2,816

4 x x > 30 min
4 x x > 30 min
4 x x 16,135 7.68 51
4 x x x 197 1.12 51

5 x > 30 min
5 x 1,883 0.67 4,392
5 x x 1,883 0.8 4,392

Table 9: Query answering times in seconds for the queries of Table 10 with and without
optimizations

1 Infection ⊑ ∃hasCausalLinkTo.?x
2 Infection ⊑ ∃?y.?x
3 ?x ⊑ Infection ⊓ ∃hasCausalAgent.?y
4 NAMEDLigament ⊑ NAMEDInternalBodyPart ⊓ ?x

?x ⊑ ∃hasShapeAnalagousTo?y ⊓ ∃?z.linear
5 ?x ⊑ NonNormalCondition

?z ⊑ ModifierAttribute
Bacterium ⊑ ∃?z.?w

?y ⊑ StatusAttribute
?w ⊑ AbstractStatus
?x ⊑ ∃?y.Status

Table 10: Sample complex queries for the GALEN ontology

From these two queries, it is evident that the use of the hierarchy exploitation optimization
leads to a decrease in execution time of up to two orders of magnitude. Query 3 can only be
completed in the time limit if at least the query rewriting optimization is enabled. We can
get an improvement of up to three orders of magnitude in this query, by using rewriting in
combination with the hierarchy exploitation. Query 4 can only be completed in the given
time limit if at least reordering and rewriting is enabled. Rewriting splits the first axiom
template into the following two simple axiom templates, which are evaluated much more
efficiently:

NAMEDLigament ⊑ NAMEDInternalBodyPart and NAMEDLigament ⊑?x
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After the rewriting, the ordering optimization has an even more pronounced effect since
both rewritten axiom templates can be evaluated with a simple cache lookup. Without
ordering, the complex axiom template could be executed before the simple ones, which
leads to the inability of answering the query within the time limit of 30 min. Without
a good ordering, Query 5 can also not be answered within the time limit. The ordering
chosen by our algorithm is shown below. Note that the query consists of two connected
components: one for the axioms containing ?z and ?w and another one for the axioms
containing ?x and ?y.

?z ⊑ ModifierAttribute

?w ⊑ AbstractStatus

Bacterium ⊑ ∃?z.?w

?y ⊑ StatusAttribute

?x ⊑ NonNormalCondition

?x ⊑ ∃?y.Status

In this query, the hierarchy exploitation optimization does not improve the execution time
since, due to the chosen ordering, the variables on which the hierarchy optimization can
be applied, are already bound when it comes to the evaluation of the complex templates.
Hence, the running times with and without the hierarchy exploitation are similar. The
number of consistency checks is significantly lower than the number of answers because the
overall results are computed by taking the cartesian products of the results for the two
connected components. Interestingly, for queries with complex axiom templates, it does
not make sense to require that the next axiom template to evaluate shares a variable with
the previously evaluated axiom templates, as in the case of simple axiom templates. For
example, if we would require that, the first connected component of the query would be
executed in the following order:

?z ⊑ ModifierAttribute

Bacterium ⊑ ∃?z.?w

?w ⊑ AbstractStatus

this results in 294,250 instead of 1,498 consistency checks since we no longer use a cheap
cache look-up check to determine the bindings for ?w, but first iterate over all possible
?w bindings and check entailment of the complex axiom template and then reduce the
computed candidates when processing the last axiom template.

Although our optimizations can significantly improve the query execution time, the
required time can still be quite high. In practice, it is, therefore, advisable to add as many
restrictive axiom templates (axiom templates which require only cache lookups) for query
variables as possible. For example, the addition of ?y ⊑ Shape to Query 4 reduces the
runtime from 1.12 s to 0.65 s. We observe, as expected, that the execution time for each
query and applicable optimization is analogous to the number of consistency checks that
are performed for the evaluation of the query.

FBbt XP Queries: For Queries 1, 2, 3, 5 and 6, on which the ordering optimization
is applicable, we observe a decrease in execution time up to two orders of magnitude when
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Query Reordering Hierarchy Rewriting Consistency Time AnswersNo
Exploitation Checks

1 x 151,683 44.13 7,243
1 x > 30 min
1 x x 11,262 5.64 7,243

2 x 14,446 37.38 7,224
2 x > 30 min
2 x x 12,637 39.20 7,224

3 x 72,230 357.59 188
3 x > 30 min
3 x x 54,186 252.41 188

4 166,129 486.81 68
4 x 1335 17.03 68

5 166,129 457.84 0
5 x 21,669 19.68 0
5 x 907 11.74 0
5 x x 3 0.01 0

6 x x > 30 min
6 x x 43,338 183.66 43,338
6 x x > 30 min
6 x x x 32,490 152.38 43,338

Table 11: Query answering times in seconds for the queries of Table 12 with and without
optimizations

1 ?x ⊑ ∀part of.?y 4 FBbt 00001606 ⊑ ∃?y.?x
?x ⊑ FBbt 00005789

2 ?y ⊑ part of 5 FBbt 00001606 ⊑ ∃?y.?x
?x ⊑ ∀?y.FBbt 00001606 ?y ⊑ develops from

3 ?x ⊑ ∃?y.FBbt 00025990 6 ?y ⊑ FBbt 00001884
?y ⊑ overlaps ?p ⊑ part of

?x ⊑ ∃?p.?y ⊓ ?w

Table 12: Sample complex queries for the FBbt XP ontology

the ordering optimization is used. The ordering optimization is important for answering
Queries 1, 2 and 3 within the time limit. For all queries, the additional use of the hierarchy
exploitation optimization leads to an improvement of up to three orders of magnitude.
We observe that in some queries the effect of the hierarchy exploitation is more profound
than in others. More precisely, the smaller the ratio of the result size to the number of
consistency checks without the hierarchy optimization, the more pronounced is the effect
when enabling this optimization. In other words, when more tested mappings are indeed
solutions, one can prune fewer parts of the hierarchy since pruning can only be performed
when we find a non-solution. In Query 2, we even observe a slight increase in running
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time when the hierarchy optimization is used. This is because the optimization can only
prune few candidate mappings, which does not outweigh the overhead caused by maintaining
information about which hierarchy parts have already been tested. In Query 6, the rewriting
optimization is important to answer the query within the time limit. When all optimizations
are enabled, the number of consistency checks is less than the result size (32,490 versus
43,338) since only the complex axiom template requires consistency checks.

8. Related Work

There is not yet a standardized and commonly implemented query language for OWL on-
tologies. Several of the widely deployed systems support, however, some query language.
Pellet supports SPARQL-DL (Sirin & Parsia, 2007), which is a subset of SPARQL, adapted
to work with OWL’s Direct Semantics. The kinds of SPARQL queries that are supported in
SPARQL-DL are those that can directly be mapped to reasoner tasks. Therefore, SPARQL-
DL can be understood as queries that only use simple axiom templates in our terminology.
Similarly, KAON2 (Hustadt, Motik, & Sattler, 2004) supports SPARQL queries, but re-
stricted to ABox queries/conjunctive instance queries. To the best of our knowledge, there
are no publications that describe any ordering strategies for KAON2. Racer Pro (Haarslev
& Möller, 2001) has a proprietary query language, called nRQL (Haarslev et al., 2004),
which allows for queries that go beyond ABox queries, e.g., one can retrieve sub- or super-
concepts of a given concept. TrOWL (Thomas et al., 2013) is another system that supports
SPARQL queries, but the reasoning in TrOWL is approximate, i.e., an OWL DL ontology
is rewritten into an ontology that uses a less expressive language before reasoning is ap-
plied (Thomas, Pan, & Ren, 2010). TrOWL is based on the SPARQL framework presented
here, but instead of using HermiT as background reasoner, it uses its approximate reason-
ers for the OWL 2 EL and OWL 2 QL profiles. Furthermore, there are systems such as
QuOnto (Acciarri, Calvanese, De Giacomo, Lembo, Lenzerini, Palmieri, & Rosati, 2013) or
Requiem (Pérez-Urbina, Motik, & Horrocks, 2013), which support profiles of OWL 2, and
which support conjunctive queries, e.g., written in SPARQL syntax, but with proper non-
distinguished variables. Of the systems that support all of OWL 2 DL, only Pellet supports
non-distinguished variables as long as they are not used in cycles, since decidability of cyclic
conjunctive queries is to the best of our knowledge still an open problem.

The problem of finding good orderings for the templates of a query issued over an on-
tology has already been preliminarily studied (Sirin & Parsia, 2006; Kremen & Sirin, 2008;
Haarslev & Möller, 2008). Similarly to our work, Sirin and Parsia as well as Kremen and
Sirin exploit reasoning techniques and information provided by reasoner models to create
statistics about the cost and the result size of axiom template evaluations within execution
plans. A difference is that they use cached models for cheaply finding obvious concept
and role (non-)instances, whereas in our case we do not cache any model or model parts.
Instead we process the pre-model constructed for the initial ontology consistency check and
extract the known and possible instances of concepts and roles from it. We subsequently
use this information to create and update the query atom statistics. Moreover, Sirin and
Parsia and Kremen and Sirin compare the costs of complete execution plans —after heuris-
tically reducing the huge number of possible complete plans — and choose the one that is
most promising before the beginning of query execution. This is different from our cheap
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greedy algorithm that finds, at each iteration, the next most promising axiom template.
Our experimental study shows that this is equally effective as the investigation of all pos-
sible execution orders. Moreover, in our work we have additionally used dynamic ordering
combined with clustering techniques, apart from static ones, and have shown that these
techniques lead to better performance particularly in ontologies that contain disjunctions
and do now allow for purely deterministic reasoning.

Haarslev and Möller discuss by means of an example the ordering criteria they use
to find efficient query execution plans in Racer Pro. In particular, they use traditional
database cost based optimization techniques, which means that they take into account only
the cardinality of concept and role atoms to decide about the most promising ordering.
As previously discussed, this can be inadequate especially for ontologies with disjunctive
information.

A significant amount of work on the estimation of cost metrics and the search for optimal
orders for evaluating joins has been performed in the context of databases. As discussed
in Section 3, in databases, cost formulas are defined that estimate the CPU and I/O costs
(similar to our reasoning costs) and the number of returned tuples (similar to our result
sizes). These estimates are used to find good join orders. The System R query optimizer, for
example, is among the first works to use extended statistics and a novel dynamic program-
ming algorithm to find effective (minimal) join orders of query atoms (Selinger, Astrahan,
Chamberlin, Lorie, & Price, 1979). A heuristic similar to ours (for the case of conjunctive
instance queries) is used in this work, according to which the join order permutations are
reduced by avoiding Cartesian products of result sets of query atoms. Regarding join or-
der selection, apart from dynamic programming, also other algorithmic paradigms based on
branch-and-bound or simulated annealing have, since then, been presented in the literature.
Dynamic ordering has also been explored in the literature in the context of adaptive query
processing techniques (Gounaris, Paton, Fernandes, & Sakellariou, 2002), which have been
proposed to overcome the problems caused by the lack of necessary statistics, good selec-
tivity estimates, knowledge for the runtime mappings of a query at compile time. These
techniques take into account changes that happen to the evaluation environment at runtime
and modify the execution plan at runtime (i.e., they change the used operators for joins or
the order in which the (remaining) query atoms are evaluated).

9. Conclusions

In the current paper, we presented a sound and complete query answering algorithm and
novel optimizations for the OWL Direct Semantics entailment regime of SPARQL 1.1. Our
prototypical query answering system combines existing tools such as ARQ, the OWL API,
and the HermiT OWL reasoner. Apart from the query ordering optimization—which uses
(reasoner dependent) statistics provided by HermiT—the system is independent of the rea-
soner used, and could employ any reasoner that supports the OWL API.

We propose two cost-based ordering strategies for finding (near-)optimal execution or-
ders for conjunctive instance queries. The cost formulas are based on information extracted
from models of a reasoner (in our case HermiT). We show through an experimental study
that static techniques are quite adequate for ontologies in which reasoning is deterministic.
When reasoning is nondeterministic, however, dynamic techniques often perform better.
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The use of cluster based sampling techniques can improve the performance of the dynamic
algorithm when the intermediate result sizes of queries are sufficiently large, whereas ran-
dom sampling is not beneficial and often leads to suboptimal query execution plans.

The presented approach can be used to find answers to queries issued over SROIQ
ontologies. Since it is based on entailment checking for finding answers to conjunctive
instance queries it is not as scalable as other techniques, such as query rewriting, which
are applied to ontologies of lower expressivity, such as DL-Lite. In other words, there is
a trade-off between scalability and ontology expressivity and one needs to consider if it is
more important for one’s application to use a more scalable query answering system with a
less expressive ontology or a less scalable system with a more expressive ontology.

The module for ordering is based on the extraction of statistics from a reasoner model,
which is computed off-line. Any update of the ontology ABox would then cause the con-
struction of a new model from scratch and the consequent recompilation of known and
possible instances of concepts and roles unless an incremental reasoner is used. An incre-
mental reasoner could, for example, find modules of the pre-model that are affected by the
update and recompute only model parts. One could then also incrementally update the
statistics that are used for ordering. To the best of our knowledge, OWL DL reasoners only
partially support incremental reasoning and we have not considered this case in the current
paper.

For queries that go beyond conjunctive instance queries we further provide optimiza-
tions such as rewriting into equivalent, but simpler queries. Another highly effective and
frequently applicable optimization prunes the number of candidate solutions that have to
be checked by exploiting the concept and role hierarchies. One can, usually, assume that
these hierarchies are computed before a system accepts queries. Our empirical evaluation
shows that this optimization can reduce the query evaluation times up to three orders of
magnitude.
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