

Classification & Experimentation

Bijan Parsia <bijan.parsia@manchester.ac.uk>

Today

- Some brief hints on engineering
- Thinking about the problem
- Classification without heat death
- Experimentation on reasoning

A Tale of Three Rules

Wherein we see that a little thought goes a long way

Consider the ¬-rule

 $\square\text{-rule: if} \quad C_1 \sqcap C_2 \in L(\mathbf{a}) \text{ for some } \mathbf{a} \text{ and } \{C_1, C_2\} \not\subseteq L(\mathbf{a})$ then add $\{C_1, C_2\}$ to $L(\mathbf{a})$

- How do you implement this?
- When do you fire this?

Consider the clash rule

 $\{A, \neg A\} \not\subseteq L(a), \perp \notin L(a) \text{ for all } a, A$

- How do you test for clashes?
- How often do you test for clashes?

Consider the u-rule

- How do you create G1 and G2?
 - Deep copy?

There's other stuff in your code!

```
debugString = currentClass.toString();
if (debug)
    System.out.println(debugString);
```

```
debugString = currentClass.toString();
if (debug)
    System.out.println(debugString);
```

- What's wrong with this?
- What should it look like?
- This appeared in real code
 - by one of the top 4 programmers I know

Classify Classification

Wherein we despair

Classification: Formulations

- Most standard formulation:
 - For all class names A, B in O, determine whether
 - $O \models A \sqsubseteq B$ (or not)
- Slight generalisation
 - For all class names (plus \perp and \top), A, B in O, determine whether
 - $O \models A \sqsubseteq B$

MANCHESTER

- This neatly includes
 - the consistency check (i.e., whether $O \vDash \top \sqsubseteq \bot$)
 - concept satisfiabilities (i.e., whether $O \models A \sqsubseteq \bot$)
 - concept trivialities (i.e., whether $O \vDash \top \sqsubseteq A$)
- Full generalisation
 - For all predicate names (user defined or built in) A, B in O, determine whether
 - $O \models A \sqsubseteq B$
 - This includes roles/properties/binary predicates!
 - Few systems do this! (Only HermiT?)

Classification: For implementation (1)

- Close Functional Formulation (CFF)
 - Input: An ontology O (i.e., a set of axioms)
 - Output: A new ontology O' st
 - $O' = \{ A \sqsubseteq B \mid A, B \in (\tilde{O} \cup \{ \bot, \top \}) \& O \vDash A \sqsubseteq B \} \text{ or }$
 - Transitive closure
 - $O' = \{A \sqsubseteq B \mid A, B \in (\tilde{O} \cup \{\bot, \top\}) \& O \vDash A \sqsubseteq B \\ \& \not\exists C \text{ s.t. } \{A \sqsubseteq C, C \sqsubseteq B\} \subseteq O'\}$
 - Transitive reduct...almost
 - (Pick your favorite data structure to represent this)
- Problems?

MANCHESTER

CFF Problems: \perp and \top

- Many subsumptions involving \perp and \top are trivial
 - $-A \sqsubseteq \top$
 - $-\perp \sqsubseteq \mathsf{A}$
 - Other key trivial subsumption:
 - $A \sqsubseteq A$ (and circular!)

 $A \sqsubseteq \top$ VS.

- Non trivial examples "blow up" the transitive closure
 - If A \sqsubseteq \top , then A is subsumed by every other term

CFF Problems: Equivalences

- In CFF, if $A \equiv B$, then
 - it shows up as $A \sqsubseteq B$ and $B \sqsubseteq A$
- But what happens with longer chains?
- $A \sqsubseteq C$ $A \sqsubseteq D$ Problems even $A \equiv B$ $A \equiv B$ $A \equiv B$ $\mathsf{B} \sqsubseteq \mathsf{A}$ - if we allow equivalences $\mathsf{B} \equiv \mathsf{C}$ $B \equiv C$ B ⊑ C $A \sqsubseteq B$ $A \equiv D$ $\mathsf{B} \sqsubseteq \mathsf{D}$ $A \equiv B$ $A \equiv B$ $A \sqsubseteq B$ $\mathsf{B} \sqsubseteq \mathsf{A}$ VS. $B \equiv C$ $C \sqsubseteq A$ $A \sqsubseteq C$ $C \sqsubseteq B$ $\mathsf{B} \sqsubseteq \mathsf{A}$ $C \sqsubseteq D$ $B \subseteq C$ $\mathsf{D} \sqsubseteq \mathsf{A}$ $C \sqsubseteq A$ $D \sqsubset B$ C ⊑ B D⊑

 $A \sqsubseteq B$

Transitive Reduct Saves the Day?

- Modified Functional Formulation (CFF)
 - Input: An ontology O (i.e., a set of axioms)
 - Output: A new ontology O' st
 - $O' = \{A \sqsubseteq B \mid A, B \in (\tilde{O} \cup \{\bot, \top\}) \& O \vDash A \sqsubseteq B^* \& \nexists C \text{ s.t. } \{A \sqsubseteq C, C \sqsubseteq B\} \subseteq O' \& O \nvDash A \equiv B\} \cup \{\equiv (A_1...A_n)^{**} \mid A_1...A_n \in (\tilde{O} \cup \{\bot, \top\}) \& 1 \le i, j \le n^*, O \vDash A_i \equiv A_j\}$

*And a few more side conditions

**Where A1...An is "appropriately" sorted

- (Pick your favorite data structure to represent this)
- Great for some applications

- But the downstream application should know your particulars!

Bad for some applications

Downstream apps...oy!

Class hierarchy Class hierarchy (inferred)	Class hierarchy Class hierarchy (inferred)	
Class hierarchy: Thing	Class hierarchy (inferred): Thing	
 Containing Nothing = A A B 	 Thing Nothing A B 	

Declaration(Class(:A)) EquivalentClasses(:A owl:Nothing) Declaration(Class(:B)) EquivalentClasses(owl:Nothing :A)

Declaration(Class(:A)) EquivalentClasses(:A owl:Nothing) SubClassOf(:A owl:Thing) Declaration(Class(:B)) SubClassOf(:B owl:Thing) EquivalentClasses(owl:Nothing :A)

Counting Entailments

- Goal:
 - Given O1 and O2, determine
 - whether O1 has "more entailments" than O2
 - restrict our attention to atomic subsumptions
- Easy if one entails the other
- Transitive reduct fails to be monotonic

Counting Entailments

- Goal:
 - Given O1 and O2, determine
 - whether O1 has "more entailments" than O2
 - restrict our attention to atomic subsumptions
- Easy if one entails the other
- Transitive reduct fails to be monotonic

Extended notions

- What about disjointnesses?
 - Negative literals as well!
 - L = $\tilde{O} \cup \{ \neg A \mid A \in \tilde{O} \}$
 - $\left\{ A \sqsubseteq B \mid A, \ B \in L \ \& \ \mathit{O} \vDash A \sqsubseteq B \right\}$
 - Note redundancy and choice!

$$- \mathsf{A} \sqsubseteq \mathsf{B} \Leftrightarrow \neg \mathsf{B} \sqsubseteq \neg \mathsf{A}$$

 $- A \sqsubseteq \neg B \Longleftrightarrow B \sqsubseteq \neg A$

- Beyond literals!
 - We could classify sub-expressions (Sub)

B}

•
$$A \in Sub$$

 $C \sqsubseteq D \in Sub \rightarrow C, D \in Sub$
 $\neg C \in Sub \rightarrow C \in Sub$
 $C \sqcup D \in Sub \rightarrow C, D \in Sub$
 $C \sqcap D \in Sub \rightarrow C, D \in Sub$
 $\exists P.C \in Sub \rightarrow C \in Sub$
 $\forall P.C \in Sub \rightarrow C \in Sub$
 $\forall P.C \in Sub \rightarrow C \in Sub$

Classify before you die

Wherein we avoid work

3 RoughClassification Approaches

- Reduction to SAT
 - All tableaux & hypertableaux systems
 - Dominant, covers arbitrary languages
- Consequence based
 - Currently for fragments, esp. EL and horn-SHIQ
- Meta/Modular

Subsumption tests

- There can always be n² subsumption tests
 - Four possible states
 - 1. $O \models A \sqsubseteq B$
 - In all models of O, $A^{I} \subseteq B^{I}$
 - 2. *O* ⊭ A ⊑ B
 - In at least one model, $A^{I} \nsubseteq B^{I}$
 - 3. $O \models A \sqsubseteq \neg B$
 - In all models of O, $A^{I} \cap B^{I} = \emptyset$
 - 4. *O* ⊨ ¬(A ⊑ B)
 - In every model, $A^{I} \not\subseteq B^{I}$

• We look for 1 & 2

- 3 and 4 entail 2
- Handy fact!

Key issues

- There can always be n² subsumptions
 - Consider $O \vDash \top \sqsubseteq \bot!$
 - But this case doesn't require n² tests
- 1 subsumption test
 - Can dominate
 - Easiest to see in SAT based procedures
 - If SAT is NP-hard (EXPTIME, NEXPTIME, 2NEXPTIME), then one such test can kill you
 - A ⊓ ¬B
 - But even with a PTIME SAT test...
 - The quadratic factor can kill you

The quadratic factor

- Consider the SNOMED CT ontology
 - contains about 300,000 terms.
- Presume the naive approach
 - Perform \approx n² subsumption tests
- Let your test we wicked fast
 - 1 millisecond per test
- Classification time
 - 300,000 × 300,000 milliseconds
 - = 25, 000 hours
 - ≈ 2.8 years

Any practically scalable classification implementation must prune the subsumption test space

SAT based procedures

Wherein we get satisfaction

SAT based procedures

- Refutation procedure
 - Via reduction to an concept
 - C ⊓ ¬D
- Individual SAT tests
 - Positive: Concept is unsatisfiable; subsumption holds
 - Negative: Concept is satisfiable; nonsubsumption
- Basic strategy
 - 1. Avoid tests
 - 2. Substitute cheap (generally sound, but incomplete) tests
 - SAT procedure independent (some are part of 1)
 - Exploit extra info from the SAT test
 - 3. Worst case, do a "full" SAT test
 - And complain about it!

Enhanced Traversal

• Data structure:

- A DAG where
 - Nodes are (sets of) concept names
 - Edges indicate subsumption relations
 - Initialize with $\bot {\rightarrow} \top$

General idea

- DAG represents the transitive reduct of atomic subsumption
- Add subsumptions as you find them
- Don't look for subsumptions that are
 - implicit in the graph
 - impossible in the graph
- Defer looking for subsumptions
 - where they are unlikely

ET: Top search (Top down)

- Given a fresh concept, C, to classify
- Starting from ⊤ check whether

 $-C \sqsubseteq \top$

ET: Top search (Top down)

- Given a fresh concept, C, to classify
- Starting from \top check whether
 - −C ⊑ ⊤
 - Easy yes!
 - –Only candidate left is \perp
 - SAT test!??!?
 - (In some cases)
 - Answer (let's say): no
 - No other candidates for subsumers
 - Done Top search for C

ET: Bottom search (Bottom Up)

- Given our placed concept C
- Starting from \perp check whether
 - $-\perp \sqsubseteq C$

ET: Bottom search (Bottom Up)

- Given our placed concept C
- Starting from \perp check whether
 - $-\perp \sqsubseteq \mathsf{C}$
 - Easy yes!
 - -What's left?
 - \bullet Only candidate is \top
 - T subsumes all subsumees of C
 –Potential SAT test!!!
 –In this case, ⊤⊈C
 –So we're done!

Information reuse

- Top Down
 - If we know
 - E ⊑ D
 - C ⊈ D
 - Then we know
 - C ⊈ E
 - No need to perform a test!
- Bottom up
 - If we know
 - E ⊑ D
 - E ⊈ C
 - Then we know
 - D ⊈ C
 - No need to perform a test!

- Possible tests (assuming consistency)
 - Total
 - n = 5
 - n² = 25
- Count (order C, D, E)

- Possible tests (assuming consistency)
 - Total
 - n = 5
 - n² = 25
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)!
 - C
 - Top Down

- Possible tests (assuming consistency)
 - Total
 - n = 5
 - n² = 25
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C
 - Top Down
 - $-(3) C \sqsubseteq \top (trivial!)$
 - $-(4) C \sqsubseteq \perp (hard!)$
 - » C is is satisfiable (SAT)

- Possible tests
 - Total
 - n = 5
 - n² = 25 SAT!
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C [1 SAT, 1 Trivial]
 - Bottom up
 - $-(5) \perp \sqsubseteq C$ (trivial)
 - $-(6) \top \sqsubseteq C (SAT!)$

- Possible tests
 - Total
 - n = 5
 - n² = 25 SAT!?
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D
 - Top Down
 - $-(7) D \sqsubseteq \top (trivial!)$
 - $-(8) D \sqsubseteq C (SAT!)$
 - $-(9) D \sqsubseteq \perp AVOIDED$

- Possible tests
 - Total
 - n = 5
 - n² = 25 SAT!?
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [1 SAT, 1 Trivial, 1 Avoided]
 - Bottom up
 - $-(10) \perp \sqsubseteq D$ Trivial
 - $-(11) C \sqsubseteq D (SAT)$
 - $-(12) \top \sqsubseteq D \text{ AVOIDED}!$

- Possible tests
 - Total
 - n = 5
 - n² = 25 SAT!?
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [2 SAT, 2 Trivial, 2 Avoided]
 - E
 - Top Down $-(13) E \sqsubseteq \top (trivial)$ $-(14) E \sqsubseteq C (SAT)$ $-(15) E \sqsubseteq D (SAT)$ $-(16) E \sqsubseteq \bot (AVOIDED)$

- Possible tests
 - Total
 - n = 5
 - n² = 25 SAT!?
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [2 SAT, 2 Trivial, 2 Avoided]
 - E [1 Trivial, 2 SAT, 1 Avoided]
 - Bottom up
 - $-(17) \perp \sqsubseteq E (trivial)$ $-(18) C \sqsubseteq E AVOIDED$ $-(19) D \sqsubseteq E (SAT)$ $-(20) \top \sqsubseteq E AVOIDED$

- Possible tests
 - Total
 - n = 5
 - n² = 25 SAT!?
- Count (order C, D, E)
 - (1) trivial ($\bot \sqsubseteq \top$)
 - (2) non trivial ($\top \sqsubseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [2 SAT, 2 Trivial, 2 Avoided]
 - E [2 Trivial, 3 SAT, 3 Avoided]
 - Reflexive!
 - C ⊑ C
 - All avoided = 5
- Total [8 SAT, 7 Trivial, 5+5 avoided] = 25

9 SAT seem like a lot!

- Assertions!
 - If our ontology contains $E \sqsubseteq D$
 - We can just enter that! No sat!
 - If our ontology contains (or implies) C $\sqsubseteq \neg$ D
 - Then we don't need to test $D \sqsubseteq C$, $C \sqsubseteq D$, $E \sqsubseteq C$
 - 4 tests gone!
 - We can look for cheap consequences
 - E.g., $A \sqsubseteq C \sqcap D$ immediately gives $A \sqsubseteq C$, $A \sqsubseteq D$
 - Must take care about $\top \sqsubseteq A$, C, D or $\top \sqsubseteq A$, C, D
- Exploit internals
 - For any SAT test we can
 - extract a representation of a model
 - if we have such a "pseudo-model" of C and of $\neg D$
 - We can see if they merge to form a new model » Done!