
Classification & Experimentation

Bijan Parsia
<bijan.parsia@manchester.ac.uk>

1

Today
• Some brief hints on engineering
• Thinking about the problem
• Classification without heat death
• Experimentation on reasoning

A Tale of Three Rules

Wherein we see that a little thought goes a
long way

3

Consider the ⊓-rule

• How do you implement this?
• When do you fire this?

Consider the clash rule

• How do you test for clashes?
• How often do you test for clashes?

Consider the ⊔-rule

• How do you create G1 and G2?
– Deep copy?

There’s other stuff in your code!

• What’s wrong with this?
• What should it look like?
• This appeared in real code

– by one of the top 4 programmers I know

debugString = currentClass.toString();
if (debug)

System.out.println(debugString);

debugString = currentClass.toString();
if (debug)

System.out.println(debugString);

Classify Classification

Wherein we despair

8

Classification: Formulations
• Most standard formulation:

– For all class names A, B in O, determine whether
• O ⊨ A ⊑ B (or not)

• Slight generalisation
– For all class names (plus ⊥ and ⊤), A, B in O, determine whether

• O ⊨ A ⊑ B

– This neatly includes
• the consistency check (i.e., whether O ⊨ ⊤ ⊑ ⊥)
• concept satisfiabilities (i.e., whether O ⊨ A ⊑ ⊥)
• concept trivialities (i.e., whether O ⊨ ⊤ ⊑ A)

• Full generalisation
– For all predicate names (user defined or built in) A, B in O, determine

whether
• O ⊨ A ⊑ B

– This includes roles/properties/binary predicates!
– Few systems do this! (Only HermiT?)

Classification: For implementation (1)
• Close Functional Formulation (CFF)

– Input: An ontology O (i.e., a set of axioms)
– Output: A new ontology O' st

• O' = {A ⊑ B | A, B ∈ (Õ ∪ {⊥,⊤}) & O ⊨ A ⊑ B} or
– Transitive closure

• O' = {A ⊑ B | A, B ∈ (Õ ∪ {⊥,⊤}) & O ⊨ A ⊑ B
 & ∄C s.t. {A ⊑ C, C ⊑ B} ⊆ O'}

– Transitive reduct...almost
• (Pick your favorite data structure to represent this)

• Problems?

CFF Problems: ⊥ and ⊤
• Many subsumptions involving ⊥ and ⊤ are trivial

– A ⊑ ⊤

– ⊥ ⊑ A

– Other key trivial subsumption:
• A ⊑ A (and circular!)

• Non trivial examples “blow up” the transitive closure
– If A ⊑ ⊤, then A is subsumed by every other term

A ⊑ ⊤
C ⊑ A

A ⊑ ⊤
C ⊑ ⊤vs.

A ⊑ B
C ⊑ D

A ⊑ B
C ⊑ D

⊥ ⊑ A
⊥ ⊑ B
⊥ ⊑ C
⊥ ⊑ D

A ⊑ B
C ⊑ D
A ⊑ ⊥A ⊑ ⊤

B ⊑ ⊤
C ⊑ ⊤
D ⊑ ⊤

A ⊑ B
C ⊑ D
A ⊑ ⊥
A ⊑ C
A ⊑ D

A ⊑ ⊤
B ⊑ ⊤
C ⊑ ⊤
D ⊑ ⊤

⊥ ⊑ A
⊥ ⊑ B
⊥ ⊑ C
⊥ ⊑ D

CFF Problems: Equivalences
• In CFF, if A ≣ B, then

– it shows up as A ⊑ B and B ⊑ A

• But what happens with longer chains?
• Problems even

– if we allow equivalences
A ≣ B A ≣ B

B ≣ C
A ≣ B
B ≣ C
A ≣ DA ⊑ B

B ⊑ A A ⊑ B
A ⊑ C
B ⊑ A
B ⊑ C
C ⊑ A
C ⊑ B

A ⊑ B
A ⊑ C
A ⊑ D
B ⊑ A
B ⊑ C
B ⊑ D
C ⊑ A
C ⊑ B
C ⊑ D
D ⊑ A
D ⊑ B
D ⊑ C

A ≣ B
B ≣ C

A ≣ B
A ≣ Cvs.

Transitive Reduct Saves the Day?
• Modified Functional Formulation (CFF)

– Input: An ontology O (i.e., a set of axioms)
– Output: A new ontology O' st

• O' = {A ⊑ B | A, B ∈ (Õ ∪ {⊥,⊤}) & O ⊨ A ⊑ B*
 & ∄C s.t. {A ⊑ C, C ⊑ B} ⊆ O'
 & O ⊭ A ≣ B} ∪
 {≣(A1...An)** | A1...An ∈ (Õ ∪ {⊥,⊤}) &
 1≤i,j≤n*, O ⊨ Ai ≣ Aj}
*And a few more side conditions

**Where A1...An is “appropriately” sorted

– (Pick your favorite data structure to represent this)

• Great for some applications
– But the downstream application should know your particulars!

• Bad for some applications

Downstream apps...oy!

Declaration(Class(:A))
EquivalentClasses(:A owl:Nothing)
Declaration(Class(:B))
EquivalentClasses(owl:Nothing :A)

Declaration(Class(:A))
EquivalentClasses(:A owl:Nothing)
SubClassOf(:A owl:Thing)
Declaration(Class(:B))
SubClassOf(:B owl:Thing)
EquivalentClasses(owl:Nothing :A)

Counting Entailments
• Goal:

– Given O1 and O2, determine
• whether O1 has “more entailments” than O2
• restrict our attention to atomic subsumptions

• Easy if one entails the other
• Transitive reduct fails to be monotonic

X1 ⊑ A
X2 ⊑ A
X3 ⊑ A
X1 ⊑ B
X2 ⊑ B
X3 ⊑ B
A ⊑ B 4

Counting Entailments
• Goal:

– Given O1 and O2, determine
• whether O1 has “more entailments” than O2
• restrict our attention to atomic subsumptions

• Easy if one entails the other
• Transitive reduct fails to be monotonic

X1 ⊑ A
X2 ⊑ A
X3 ⊑ A
X1 ⊑ B
X2 ⊑ B
X3 ⊑ B
A ⊑ B 4 6!

Extended notions
• What about disjointnesses?

– Negative literals as well!
• L = Õ ∪ {¬A | A ∈ Õ}

– {A ⊑ B | A, B ∈ L & O ⊨ A ⊑ B}
• Note redundancy and choice!

– A ⊑ B ⟺ ¬B ⊑ ¬A
– A ⊑ ¬B ⟺ B ⊑ ¬A

• Beyond literals!
– We could classify sub-expressions (Sub)

• A ∈ Sub
C ⊑ D ∈ Sub → C,D ∈ Sub
¬C ∈ Sub → C ∈ Sub
C ⊔ D ∈ Sub → C,D ∈ Sub
C ⊓ D ∈ Sub → C,D ∈ Sub
∃P.C ∈ Sub → C ∈ Sub
∀P.C ∈ Sub → C ∈ Sub

– {A ⊑ B | A, B ∈ Sub & O ⊨ A ⊑ B}

Classify before you die

Wherein we avoid work

18

3 RoughClassification Approaches
• Reduction to SAT

– All tableaux & hypertableaux systems
• Dominant, covers arbitrary languages

• Consequence based
– Currently for fragments, esp. EL and horn-SHIQ

• Meta/Modular

Subsumption tests
• There can always be n2 subsumption tests

– Four possible states
1. O ⊨ A ⊑ B

– In all models of O, AI ⊆ BI

2. O ⊭ A ⊑ B
– In at least one model, AI ⊈ BI

3. O ⊨ A ⊑ ¬B
– In all models of O, AI ∩ BI = ∅

4. O ⊨ ¬(A ⊑ B)
– In every model, AI ⊈ BI

• We look for 1 & 2
– 3 and 4 entail 2
– Handy fact!

Key issues
• There can always be n2 subsumptions

– Consider O ⊨ ⊤ ⊑ ⊥!
• But this case doesn’t require n2 tests

• 1 subsumption test
– Can dominate
– Easiest to see in SAT based procedures

• If SAT is NP-hard (EXPTIME, NEXPTIME, 2NEXPTIME), then one such
test can kill you

• A ⊓ ¬B

– But even with a PTIME SAT test...
• The quadratic factor can kill you

The quadratic factor
• Consider the SNOMED CT ontology

– contains about 300,000 terms.

• Presume the naive approach
– Perform ≈ n2 subsumption tests

• Let your test we wicked fast
– 1 millisecond per test

• Classification time
– 300,000 × 300,000 milliseconds
– = 25, 000 hours
– ≈ 2.8 years

Any practically scalable classification implementation
must prune the subsumption test space

SAT based procedures

Wherein we get satisfaction

23

SAT based procedures
• Refutation procedure

– Via reduction to an concept
• C ⊓ ¬D

• Individual SAT tests
– Positive: Concept is unsatisfiable; subsumption holds
– Negative: Concept is satisfiable; nonsubsumption

• Basic strategy
1. Avoid tests
2. Substitute cheap (generally sound, but incomplete) tests

• SAT procedure independent (some are part of 1)
• Exploit extra info from the SAT test

3. Worst case, do a “full” SAT test
• And complain about it!

Does φ ⊨ ψ?

 φ, ψ

 yes

 no

 φ ∧¬ψ
 yes

 no

Is φ ∧¬ψ satisfiable?

Enhanced Traversal
• Data structure:

– A DAG where
• Nodes are (sets of) concept names
• Edges indicate subsumption relations
• Initialize with ⊥→⊤

• General idea
– DAG represents the transitive reduct of atomic subsumption
– Add subsumptions as you find them
– Don’t look for subsumptions that are

• implicit in the graph
• impossible in the graph

– Defer looking for subsumptions
• where they are unlikely

ET: Top search (Top down)
• Given a fresh concept, C, to classify
• Starting from ⊤ check whether

–C ⊑ ⊤ ⊥

⊤

ET: Top search (Top down)
• Given a fresh concept, C, to classify
• Starting from ⊤ check whether

–C ⊑ ⊤
• Easy yes!

–Only candidate left is ⊥
• SAT test!??!?
• (In some cases)
• Answer (let’s say): no
• No other candidates for subsumers
• Done Top search for C

⊥

⊤

C

ET: Bottom search (Bottom Up)
• Given our placed concept C
• Starting from ⊥ check whether

–⊥ ⊑ C
⊥

⊤

C

ET: Bottom search (Bottom Up)
• Given our placed concept C
• Starting from ⊥ check whether

–⊥ ⊑ C
• Easy yes!

–What’s left?
• Only candidate is ⊤
• ⊤ subsumes all subsumees of C

–Potential SAT test!!!
–In this case, ⊤⋢C
–So we’re done!

⊥

⊤

C

Information reuse
• Top Down

– If we know
• E ⊑ D
• C ⋢ D

– Then we know
• C ⋢ E

– No need to perform a test!

• Bottom up
– If we know

• E ⊑ D
• E ⋢ C

– Then we know
• D ⋢ C

– No need to perform a test!

⊥

⊤

C D

E

Savings
• Possible tests (assuming consistency)

– Total
• n = 5
• n2 = 25

• Count (order C, D, E)

⊥

⊤

C D

E

Savings
• Possible tests (assuming consistency)

– Total
• n = 5
• n2 = 25

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)!
– C

• Top Down

⊥

⊤

C D

E

⊥

⊤

Savings
• Possible tests (assuming consistency)

– Total
• n = 5
• n2 = 25

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C

• Top Down
– (3) C ⊑ ⊤ (trivial!)
– (4) C ⊑ ⊥ (hard!)

» C is is satisfiable (SAT)

⊥

⊤

C D

E

⊥

⊤

C

Savings
• Possible tests

– Total
• n = 5
• n2 = 25 SAT!

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C [1 SAT, 1 Trivial]

• Bottom up
– (5) ⊥⊑C (trivial)
– (6) ⊤⊑ C (SAT!)

⊥

⊤

C D

E

⊥

⊤

C

Savings
• Possible tests

– Total
• n = 5
• n2 = 25 SAT!?

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C [2 SAT, 2 Trivial]
– D

• Top Down
– (7) D ⊑ ⊤ (trivial!)
– (8) D ⊑ C (SAT!)
– (9) D ⊑ ⊥ AVOIDED

⊥

⊤

C D

E

⊥

⊤

C D

Savings
• Possible tests

– Total
• n = 5
• n2 = 25 SAT!?

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C [2 SAT, 2 Trivial]
– D [1 SAT, 1 Trivial, 1 Avoided]

• Bottom up
– (10) ⊥⊑ D Trivial
– (11) C ⊑ D (SAT)
– (12) ⊤⊑D AVOIDED!

⊥

⊤

C D

E

⊥

⊤

C D

Savings
• Possible tests

– Total
• n = 5
• n2 = 25 SAT!?

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C [2 SAT, 2 Trivial]
– D [2 SAT, 2 Trivial, 2 Avoided]
– E

• Top Down
– (13) E ⊑ ⊤ (trivial)
– (14) E ⊑ C (SAT)
– (15) E ⊑ D (SAT)
– (16) E ⊑ ⊥ (AVOIDED)

⊥

⊤

C D

E

⊥

⊤

C D

E

Savings
• Possible tests

– Total
• n = 5
• n2 = 25 SAT!?

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C [2 SAT, 2 Trivial]
– D [2 SAT, 2 Trivial, 2 Avoided]
– E [1 Trivial, 2 SAT, 1 Avoided]

• Bottom up
– (17) ⊥⊑ E (trivial)
– (18) C ⊑ E AVOIDED
– (19) D ⊑ E (SAT)
– (20) ⊤ ⊑ E AVOIDED

⊥

⊤

C D

E

⊥

⊤

C D

E

Savings
• Possible tests

– Total
• n = 5
• n2 = 25 SAT!?

• Count (order C, D, E)
– (1) trivial (⊥⊑⊤)
– (2) non trivial (⊤⊑⊥)

• Consistent! (SAT)
– C [2 SAT, 2 Trivial]
– D [2 SAT, 2 Trivial, 2 Avoided]
– E [2 Trivial, 3 SAT, 3 Avoided]
– Reflexive!

• C ⊑ C
– All avoided = 5

• Total [8 SAT, 7 Trivial, 5+5 avoided] = 25

⊥

⊤

C D

E

⊥

⊤

C D

E

9 SAT seem like a lot!
• Assertions!

– If our ontology contains E ⊑ D
• We can just enter that! No sat!

– If our ontology contains (or implies) C ⊑ ¬D
• Then we don’t need to test D ⊑ C, C ⊑ D, E ⊑ C
• 4 tests gone!

– We can look for cheap consequences
• E.g., A ⊑ C ⊓ D immediately gives A ⊑ C, A ⊑ D

– Must take care about ⊤ ⊑ A, C, D or ⊤ ⊑ A, C, D

• Exploit internals
– For any SAT test we can

• extract a representation of a model
• if we have such a “pseudo-model” of C and of ¬D

– We can see if they merge to form a new model
» Done!

